Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Construction of PfptaA Deletion Mutants
2.2. Assessment of Secondary Metabolites
2.3. Identification of Compound 1
2.4. Proposed Biosynthesis Pathway of 1 in P. fici
2.5. Assessment of Conidia Development in the Mutant Strains
2.6. Assessment of Oxidative Stress Response of the Mutant Strains
3. Materials and Methods
3.1. Strains, Media and Culture Conditions
3.2. Plasmids for Deletion of PfptaA
3.3. Transformation in P. fici
3.4. Oxidative Stress Sensitivity Assays
3.5. Conidia Counting
3.6. Analytical Methods for HPLC and LC-MS
3.7. Isolation and Identification of New Compound
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Pfannenstiel, B.T.; Keller, N.P. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol. Adv. 2019, 37, 107345. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.N.; Liu, H.W.; Keller, N.P.; Yin, W.B. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat. Prod. Rep. 2020, 37, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.M.; Ahuja, M.; Oakley, C.E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C.C.; Oakley, B.R. Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of aspercryptin. Angew. Chem. Int. Ed. Engl. 2016, 55, 1662–1665. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wu, H.; Liu, H.; Li, E.; Ren, J.; Wang, W.; Wang, S.; Yin, W.B. Genetic dereplication of Trichoderma hypoxylon reveals two novel polycyclic lactones. Bioorg. Chem. 2019, 91, 103185. [Google Scholar] [CrossRef]
- Liu, H.; Pu, Y.H.; Ren, J.W.; Li, E.W.; Guo, L.X.; Yin, W.B. Genetic dereplication driven discovery of a tricinoloniol acid biosynthetic pathway in Trichoderma hypoxylon. Org. Biomol. Chem. 2020, 18, 5344–5348. [Google Scholar] [CrossRef]
- Kim, W.; Liu, R.; Woo, S.; Kang, K.B.; Park, H.; Yu, Y.H.; Ha, H.-H.; Oh, S.-Y.; Yang, J.H.; Kim, H.; et al. Linking a gene cluster to atranorin, a major cortical substance of Lichens, through genetic dereplication and heterologous expression. mbio 2021, 12, e0111121. [Google Scholar] [CrossRef]
- Wei, Q.; Bai, J.; Yan, D.; Bao, X.; Li, W.; Liu, B.; Zhang, D.; Qi, X.; Yu, D.; Hu, Y. Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta. Pharm. Sin. B. 2021, 11, 572–587. [Google Scholar] [CrossRef]
- Lee, I.; Oh, J.H.; Shwab, E.K.; Dagenais, T.R.; Andes, D.; Keller, N.P. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet. Biol. 2009, 46, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Studt, L.; Schmidt, F.J.; Jahn, L.; Sieber, C.M.; Connolly, L.R.; Niehaus, E.M.; Freitag, M.; Humpf, H.U.; Tudzynski, B. Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl. Environ. Microbiol. 2013, 79, 7719–7734. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Hao, X.; Hong, Z.; Chen, L.; Yu, X.; Zhu, X. A putative histone deacetylase modulates the biosynthesis of pestalotiollide B and conidiation in Pestalotiopsis microspora. J. Microbiol. Biotechnol. 2015, 25, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Bok, J.W.; Tribus, M.; Galehr, J.; Graessle, S.; Keller, N.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell. 2007, 6, 1656–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Izawa, M.; Nakajima, Y.; Jin, Q.; Hirose, T.; Nakamura, T.; Koshino, H.; Kanamaru, K.; Ohsato, S.; Kamakura, T.; et al. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum. Lett. Appl. Microbiol. 2017, 65, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, L.; Wang, B.; Pan, L. The histone deacetylases HosA and HdaA affect the phenotype and transcriptomic and metabolic profiles of Aspergillus niger. Toxins 2019, 11, 520. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Zhou, H.; Wang, X.; Huang, H.; Wang, H.; Zhang, R.; Wang, Z.; Han, J. Deletion of the histone deacetylase hdaA in endophytic fungus Penicillium chrysogenum Fes1701 induces the complex response of multiple bioactive secondary metabolite production and relevant gene cluster expression. Molecules 2020, 25, 3657. [Google Scholar] [CrossRef]
- Mao, X.M.; Xu, W.; Li, D.; Yin, W.B.; Chooi, Y.H.; Li, Y.Q.; Tang, Y.; Hu, Y. Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew. Chem. Int. Ed. Engl. 2015, 54, 7592–7596. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Chavez, F.; Salo, O.; Samol, M.; Ries, M.; Kuipers, J.; Bovenberg, R.A.L.; Vreeken, R.J.; Driessen, A.J.M. Deregulation of secondary metabolism in a histone deacetylase mutant of Penicillium chrysogenum. Microbiology 2018, 7, e00598. [Google Scholar] [CrossRef] [Green Version]
- Bok, J.W.; Chiang, Y.M.; Szewczyk, E.; Reyes-Dominguez, Y.; Davidson, A.D.; Sanchez, J.F.; Lo, H.C.; Watanabe, K.; Strauss, J.; Oakley, B.R.; et al. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 2009, 5, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.M.; Bok, J.; Lee, S.; Dagenais, T.R.T.; Andes, D.R.; Kontoyiannis, D.P.; Keller, N.P. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 2013, 1, e4. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, Y.; Kawatani, M.; Futamura, Y.; Osada, H.; Koyama, Y. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae. J. Antibiot. (Tokyo) 2016, 69, 4–8. [Google Scholar] [CrossRef]
- Dallery, J.F.; Adelin, E.; Le Goff, G.; Pigne, S.; Auger, A.; Ouazzani, J.; O’Connell, R.J. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum. Mol. Plant Pathol. 2019, 20, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, N.; Yin, Y.; Chen, Y.; Jiang, J.; Ma, Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ. Microbiol. 2015, 17, 4615–4630. [Google Scholar] [CrossRef] [PubMed]
- Studt, L.; Janevska, S.; Arndt, B.; Boedi, S.; Sulyok, M.; Humpf, H.U.; Tudzynski, B.; Strauss, J. Lack of the COMPASS component Ccl1 reduces H3K4 trimethylation levels and affects transcription of secondary metabolite genes in two plant-pathogenic Fusarium species. Front. Microbiol. 2017, 7, 2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harting, R.; Bayram, O.; Laubinger, K.; Valerius, O.; Braus, G.H. Interplay of the fungal sumoylation network for control of multicellular development. Mol. Microbiol. 2013, 90, 1125–1145. [Google Scholar] [CrossRef] [Green Version]
- Chaiwan, N.; Wanasinghe, D.N.; Mapook, A.; Jayawardena, R.S.; Norphanphoun, C.; Hyde, K.D. Novel species of pestalotiopsis fungi on Dracaena from Thailand. Mycol. Int. J. Fungal Biol. 2020, 11, 306–315. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Prakash, V.; Ranjan, N. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem. Rev. 2017, 16, 883–920. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, J.Z.; Luo, D.Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat. Prod. Rep. 2012, 29, 622–641. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Zhang, F.; Wang, W.; Li, J.; Guo, L.; Che, Y.; Liu, G. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. ChemBioChem 2014, 15, 284–292. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, H.; Zhang, P.; Wang, X.; Li, W.; Zhang, W.; Liu, X.; Liu, H.W.; Keller, N.P.; An, Z.; et al. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org. Lett. 2016, 18, 1832–1835. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, K.; Lyu, H.; Huang, Y.; Liu, H.; Liu, L.; Che, Y.; Liu, X.; Zou, H.; Yin, W.B. Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici. Org. Lett. 2017, 19, 4700–4703. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol. Biol. 2018, 1848, 25–38. [Google Scholar] [PubMed]
- Liu, L. Bioactive metabolites from the plant endophyte Pestalotiopsis fici. Mycol. Int. J. Fungal Biol. 2011, 2, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, S.; Jiang, L.; Chen, X.; Guo, L.; Che, Y. Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org. Lett. 2008, 10, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; Zhang, X.; Li, W.; Liu, G.; Wang, S.; Yan, X.; Zou, H.; Yin, W.B. COP9 signalosome subunit PfCsnE regulates secondary metabolism and conidial formation in Pestalotiopsis fici. Sci. China Life Sci. 2017, 60, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, F.; Liu, L.; Liu, X.; Che, Y.; Keller, N.P.; Guo, L.; Yin, W.B. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet. Biol. 2015, 81, 221–228. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Chen, X.; Guo, L.; Che, Y. Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg. Med. Chem. 2009, 17, 606–613. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Niu, S.; Guo, L.; Chen, X.; Che, Y. Isoprenylated chromone derivatives from the plant endophytic fungus Pestalotiopsis fici. J. Nat. Prod. 2009, 72, 1482–1486. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Guo, L.; Che, Y.; Liu, L. 2H-pyran-2-one and 2H-furan-2-one derivatives from the plant endophytic fungus Pestalotiopsis fici. Chem. Biodivers. 2013, 10, 2007–2013. [Google Scholar] [CrossRef]
- Kupka, J.; Anke, T.; Steglich, W.; Zechlin, L. Antibiotics from Basidiomycetes. XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J. & E. Kohlmeyer. J. Antibiot. (Tokyo) 1981, 34, 298–304. [Google Scholar]
- Feng, J.; Zhang, P.; Cui, Y.L.; Li, K.; Qiao, X.; Zhang, Y.T.; Li, S.M.; Cox, R.J.; Wu, B.; Ye, M.; et al. Regio- and stereospecific O-glycosylation of phenolic compounds catalyzed by a fungal glycosyltransferase from Mucor hiemalis. Adv. Synth. Catal. 2017, 359, 3270–3271. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Guo, L.; Che, Y.; Liu, L. Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 2013, 85, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, G.D.; Zou, J.; He, R.R.; Qin, S.Y.; Hu, D.; Li, G.Q.; Guo, L.D.; Yao, X.S.; Gao, H. Dimericbiscognienyne A: A meroterpenoid dimer from Biscogniauxia sp. with new skeleton and its activity. Org. Lett. 2017, 19, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, R.J.; Mahoney, N.; Bayman, P.; Wong, R.Y.; Meyer, K.; Irelan, N. Eutypa dieback in grapevines: Differential production of acetylenic phenol metabolites by strains of Eutypa lata. J. Agric. Food Chem. 2002, 50, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Rukachaisirikul, V.; Rungsaiwattana, N.; Klaiklay, S.; Phongpaichit, S.; Borwornwiriyapan, K.; Sakayaroj, J. γ-Butyrolactone, cytochalasin, cyclic carbonate, eutypinic acid, and phenalenone derivatives from the soil fungus Aspergillus sp. PSU-RSPG185. J. Nat. Prod. 2014, 77, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, L.; Guan, F.; Li, E.; Jin, J.; Li, J.; Che, Y.; Liu, G. Characterization of a prenyltransferase for iso-A82775C biosynthesis and generation of new congeners of chloropestolides. ACS Chem. Biol. 2018, 13, 703–711. [Google Scholar] [CrossRef]
- Lv, J.M.; Gao, Y.H.; Zhao, H.; Awakawa, T.; Liu, L.; Chen, G.D.; Yao, X.S.; Hu, D.; Abe, I.; Gao, H. Biosynthesis of biscognienyne B involving a cytochrome P450-dependent alkynylation. Angew. Chem. Int. Ed. Engl. 2020, 59, 13531–13536. [Google Scholar] [CrossRef]
- Chen, Y.R.; Naresh, A.; Liang, S.Y.; Lin, C.H.; Chein, R.J.; Lin, H.C. Discovery of a dual function cytochrome P450 that catalyzes enyne formation in cyclohexanoid terpenoid biosynthesis. Angew. Chem. Int. Ed. Engl. 2020, 59, 13537–13541. [Google Scholar] [CrossRef]
- Sordon, S.; Poplonski, J.; Tronina, T.; Huszcza, E. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorg. Chem. 2019, 93, 102750. [Google Scholar] [CrossRef]
- Tribus, M.; Galehr, J.; Trojer, P.; Brosch, G.; Loidl, P.; Marx, F.; Haas, H.; Graessle, S. HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot. Cell 2005, 4, 1736–1745. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.; Wu, L.; Sun, R.; Keller, N.P.; Yang, K.; Ye, L.; He, S.; Zhang, F.; Wang, S. The HosA histone deacetylase regulates aflatoxin biosynthesis through direct regulation of aflatoxin cluster genes. Mol. Plant Microbe. Interact. 2019, 32, 1210–1228. [Google Scholar] [CrossRef]
- Li, W.; Fan, A.; Wang, L.; Zhang, P.; Liu, Z.; An, Z.; Yin, W.B. Asperphenamate biosynthesis reveals a novel two-module NRPS system to synthesize amino acid esters in fungi. Chem. Sci. 2018, 9, 2589–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Zhou, S.; Wang, G.; An, Z.; Liu, X.; Li, K.; Yin, W.B. Two transcription factors cooperatively regulate DHN melanin biosynthesis and development in Pestalotiopsis fici. Mol. Microbiol. 2019, 112, 649–666. [Google Scholar] [CrossRef] [PubMed]
Position | δC, Type | δH, Multi., J in Hz | HMBC Correlation | 1H-1H COSY |
---|---|---|---|---|
1 | 113.0 C | - | - | - |
2 | 150.5 C | - | - | - |
3 | 117.0 CH | 6.99, d, 9.8 | C-1′, 1, 2, 5 | H-4 |
4 | 116.8 CH | 6.71, m, overlap | C-2, 6 | H-3 |
5 | 151.7 C | - | - | - |
6 | 118.2 CH | 6.72, m, overlap | C-1′, 4, 5 | - |
1′ | 85.3 C | - | - | - |
2′ | 94.1 C | - | - | - |
3′ | 126.7 C | - | - | - |
4′ | 122.1 CH2 | 5.38, s 5.35, s | C-2′, 3′, 5′ | H-5′ |
5′ | 23.2 CH3 | 1.93, s | C-2′, 3′, 4′ | H-4′ |
- | - | |||
1″ | 100.7 CH | 4.81, d, 7.2 | C-2 | H-2″ |
2″ | 73.9 CH | 3.26–3.22, overlap | C-1″, 4″ | H-1″ |
3″ | 76.9 CH | 3.26–3.12, overlap | C-4″ | - |
4″ | 70.1 CH | 3.26–3.22, overlap | C-5″ | - |
5″ | 77.0 CH | 3.26–3.12, overlap | C-4″ | - |
6″ | 60.7 CH2 | 3.65, d, 12.0 3.51–3.16, overlap | C-5″ | - |
-OH | 9.39, brd | - | - | |
-OH | - | 4.53, brs | - | - |
-OH | - | 5.07, brs | - | - |
-OH | - | 7.40, brs | - | - |
-OH | - | 8.42, brs | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wu, G.; Meng, F.; Ran, H.; Yin, W.; Li, W.; Liu, X. Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. Int. J. Mol. Sci. 2022, 23, 3686. https://doi.org/10.3390/ijms23073686
Yang L, Wu G, Meng F, Ran H, Yin W, Li W, Liu X. Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. International Journal of Molecular Sciences. 2022; 23(7):3686. https://doi.org/10.3390/ijms23073686
Chicago/Turabian StyleYang, Lu, Guangwei Wu, Fanyue Meng, Huomiao Ran, Wenbing Yin, Wei Li, and Xiaoqing Liu. 2022. "Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus" International Journal of Molecular Sciences 23, no. 7: 3686. https://doi.org/10.3390/ijms23073686
APA StyleYang, L., Wu, G., Meng, F., Ran, H., Yin, W., Li, W., & Liu, X. (2022). Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. International Journal of Molecular Sciences, 23(7), 3686. https://doi.org/10.3390/ijms23073686