The Role of Axonal Transport in Glaucoma
Abstract
:1. Introduction
2. Axonal Damage in Glaucoma
3. Axonal Transport and Neurodegeneration
4. Common Methods to Evaluate Transport Blockage in High IOP
5. Evidence of Axonal Transport Impairment in Glaucoma
5.1. First Indications of Axonal Transport Blockage with High IOP
5.2. Further Evidence of Axonal Transport Impairment at the ONH in Glaucoma
5.3. Characterization of Axonal Transport in DBA/2J Mice
5.4. Axonal Transport Impairment and RGC Degeneration
5.5. Other Aspects of Axonal Transport Deficits in Glaucoma Models
5.6. Live Imaging of Axonal Transport in Glaucoma
6. Neuroprotective Strategies for Glaucomatous Axonopathy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary Open-Angle Glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019; Volume 214, ISBN 9789241516570. [Google Scholar]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; McNally, S.; Kilpatrick, J.I.; Jarvis, S.P.; O’Brien, C.J. Aging and Ocular Tissue Stiffness in Glaucoma. Surv. Ophthalmol. 2018, 63, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.L.; Boisjoly, H.; Schmaltz, H.; Kergoat, M.-J.; Rousseau, J.; Moghadaszadeh, S.; Djafari, F.; Freeman, E.E. Explaining the Relationship between Three Eye Diseases and Depressive Symptoms in Older Adults. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bullard, K.M.; Cotch, M.F.; Wilson, M.R.; Rovner, B.W.; McGwin, G.J.; Owsley, C.; Barker, L.; Crews, J.E.; Saaddine, J.B. Association between Depression and Functional Vision Loss in Persons 20 Years of Age or Older in the United States, NHANES 2005–2008. JAMA Ophthalmol. 2013, 131, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swenor, B.K.; Ehrlich, J.R. Ageing and Vision Loss: Looking to the Future. Lancet Glob. Health 2021, 9, e385–e386. [Google Scholar] [CrossRef]
- Alqawlaq, S.; Flanagan, J.G.; Sivak, J.M. All Roads Lead to Glaucoma: Induced Retinal Injury Cascades Contribute to a Common Neurodegenerative Outcome. Exp. Eye Res. 2019, 183, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Dietze, J.; Blair, K.; Havens, S.J. Glaucoma; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Leung, C.K.S. Detecting Optic Nerve Head Deformation and Retinal Nerve Fiber Layer Thinning in Glaucoma Progression. Taiwan J. Ophthalmol. 2015, 5, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.R. The Optic Nerve Head in Glaucoma. Community Eye Health 2012, 25, 55–57. [Google Scholar]
- Kang, J.M.; Tanna, A.P. Glaucoma. Med. Clin. N. Am. 2021, 105, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.T.; Chrysostomou, V.; Crowston, J.G. Impaired Axonal Transport and Glaucoma. Curr. Eye Res. 2016, 41, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Surana, S.; Villarroel-Campos, D.; Lazo, O.M.; Moretto, E.; Tosolini, A.P.; Rhymes, E.R.; Richter, S.; Sleigh, J.N.; Schiavo, G. The Evolution of the Axonal Transport Toolkit. Traffic 2020, 21, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Dias, P.; Holzbaur, E.L.F. Axonal Transport: Driving Synaptic Function. Science 2019, 366, eaaw9997. [Google Scholar] [CrossRef] [PubMed]
- Sleigh, J.N.; Rossor, A.M.; Fellows, A.D.; Tosolini, A.P.; Schiavo, G. Axonal Transport and Neurological Disease. Nat. Rev. Neurol. 2019, 15, 691–703. [Google Scholar] [CrossRef]
- Guo, W.; Stoklund Dittlau, K.; van den Bosch, L. Axonal Transport Defects and Neurodegeneration: Molecular Mechanisms and Therapeutic Implications. Semin. Cell Dev. Biol. 2020, 99, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Guillaud, L.; El-Agamy, S.E.; Otsuki, M.; Terenzio, M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front. Mol. Neurosci. 2020, 13, 556175. [Google Scholar] [CrossRef]
- Anderson, D.R.; Hendrickson, A. Effect of Intraocular Pressure on Rapid Axoplasmic Transport in Monkey Optic Nerve. Investig. Ophthalmol. 1974, 13, 771–783. [Google Scholar]
- Gaasterland, D.; Tanishima, T.; Kuwabara, T. Axoplasmic Flow during Chronic Experimental Glaucoma. 1. Light and Electron Microscopic Studies of the Monkey Optic Nervehead during Development of Glaucomatous Cupping. Investig. Ophthalmol. Vis. Sci. 1978, 17, 838–846. [Google Scholar]
- Balaratnasingam, C.; Morgan, W.H.; Bass, L.; Cringle, S.J.; Yu, D.-Y. Time-Dependent Effects of Elevated Intraocular Pressure on Optic Nerve Head Axonal Transport and Cytoskeleton Proteins. Investig. Ophthalmol. Vis. Sci. 2008, 49, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Crish, S.D.; Sappington, R.M.; Inman, D.M.; Horner, P.J.; Calkins, D.J. Distal Axonopathy with Structural Persistence in Glaucomatous Neurodegeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 5196–5201. [Google Scholar] [CrossRef] [Green Version]
- Chidlow, G.; Ebneter, A.; Wood, J.P.M.; Casson, R.J. The Optic Nerve Head Is the Site of Axonal Transport Disruption, Axonal Cytoskeleton Damage and Putative Axonal Regeneration Failure in a Rat Model of Glaucoma. Acta Neuropathol. 2011, 121, 737–751. [Google Scholar] [CrossRef] [Green Version]
- Chiasseu, M.; Cueva Vargas, J.L.; Destroismaisons, L.; vande Velde, C.; Leclerc, N.; di Polo, A. Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 5785–5798. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R. Ultrastructure of Human and Monkey Lamina Cribrosa and Optic Nerve Head. Arch. Ophthalmol. 1969, 82, 800–814. [Google Scholar] [CrossRef]
- Elkington, A.R.; Inman, C.B.E.; Steart, P.V.; Weller, R.O. The Structure of the Lamina Cribrosa of the Human Eye: An Immunocytochemical and Electron Microscopical Study. Eye 1990, 4, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Grytz, R.; Meschke, G.; Jonas, J.B.; Downs, J.C. Glaucoma and Structure-Based Mechanics of the Lamina Cribrosa at Multiple Scales. In Structure-Based Mechanics of Tissues and Organs; Kassab, G.S., Sacks, M.S., Eds.; Springer: Boston, MA, USA, 2016; pp. 93–122. ISBN 9781489976307. [Google Scholar]
- May, C.A.; Lu, E. Morphology of the Murine Optic Nerve AND. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2206–2212. [Google Scholar]
- Sun, D.; Lye-Barthel, M.; Masland, R.H.; Jakobs, T.C. The Morphology and Spatial Arrangement of Astrocytes in the Optic Nerve Head of the Mouse. J. Comp. Neurol. 2009, 516, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tamm, E.R.; Ethier, C.R.; Dowling, J.E.; Downs, C.; Ellisman, M.H.; Fisher, S.; Fortune, B.; Fruttiger, M.; Jakobs, T.; Lewis, G.; et al. Biological Aspects of Axonal Damage in Glaucoma: A Brief Review. Exp. Eye Res. 2017, 157, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Waxman, S.G.; Hildebrand, C. Axo-Glial Relations in the Retina-Optic Nerve Junction of the Adult Rat: Freeze-Fracture Observations on Axon Membrane Structure. J. Neurocytol. 1985, 14, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.J.; Ramírez, A.I.; De Hoz, R.; Salobrar-Garcia, E.; Rojas, P.; Fernández-Albarral, J.A.; López-Cuenca, I.; Rojas, B.; Triviño, A.; Ramírez, J.M. Anatomy of the Human Optic Nerve: Structure and Function; Ferreri, F.M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Quigley, H.A.; Flower, R.W.; Addicks, E.M.; McLeod, D.S. The Mechanism of Optic Nerve Damage in Experimental Acute Intraocular Pressure Elevation. Investig. Ophthalmol. Vis. Sci. 1980, 19, 505–517. [Google Scholar]
- Howell, G.R.; Libby, R.T.; Jakobs, T.C.; Smith, R.S.; Phalan, F.C.; Barter, J.W.; Barbay, J.M.; Marchant, J.K.; Mahesh, N.; Porciatti, V.; et al. Axons of Retinal Ganglion Cells Are Insulted in the Optic Nerve Early in DBA/2J Glaucoma. J. Cell Biol. 2007, 179, 1523–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calkins, D.J.; Pekny, M.; Cooper, M.L.; Benowitz, L. The Challenge of Regenerative Therapies for the Optic Nerve in Glaucoma. Exp. Eye Res. 2017, 157, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Miglior, S.; Bertuzzi, F. Relationship between Intraocular Pressure and Glaucoma Onset and Progression. Curr. Opin. Pharmacol. 2013, 13, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Syc-Mazurek, S.B.; Libby, R.T. Axon Injury Signaling and Compartmentalized Injury Response in Glaucoma. Prog. Retin. Eye Res. 2019, 73, 100769. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, T.; Fukuchi, T. What Is Glaucomatous Optic Neuropathy? Jpn. J. Ophthalmol. 2020, 64, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; Tomarev, S.I. Rodent Models of Glaucoma. Brain Res. Bull. 2010, 81, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Killer, H.E.; Pircher, A. Normal Tension Glaucoma: Review of Current Understanding and Mechanisms of the Pathogenesis. Eye 2018, 32, 924–930. [Google Scholar] [CrossRef]
- Matlach, J.; Bender, S.; König, J.; Binder, H.; Pfeiffer, N.; Hoffmann, E.M. Investigation of Intraocular Pressure Fluctuation as a Risk Factor of Glaucoma Progression. Clin. Ophthalmol. 2019, 13, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.-Z.; Chang, K.; Wei, X. Intraocular Pressure Fluctuation and the Risk of Glaucomatous Damage Deterioration: A Meta-Analysis. Int. J. Ophthalmol. 2019, 12, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Baneke, A.J.; Aubry, J.; Viswanathan, A.C.; Plant, G.T. The Role of Intracranial Pressure in Glaucoma and Therapeutic Implications. Eye 2020, 34, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; Harris, A.; Siesky, B.; Mathew, S. The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review. J. Glaucoma 2020, 29, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The Primary Vascular Dysregulation Syndrome: Implications for Eye Diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Grzybowski, A.; Och, M.; Kanclerz, P.; Leffler, C.; Moraes, C.G. de Primary Open Angle Glaucoma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. J. Clin. Med. 2020, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Mursch-Edlmayr, A.-S.; Bolz, M.; Strohmaier, C. Vascular Aspects in Glaucoma: From Pathogenesis to Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 4662. [Google Scholar] [CrossRef]
- Sung, K.R.; Lee, S.; Park, S.B.; Choi, J.; Kim, S.T.; Yun, S.-C.; Kang, S.Y.; Cho, J.W.; Kook, M.S. Twenty-Four Hour Ocular Perfusion Pressure Fluctuation and Risk of Normal-Tension Glaucoma Progression. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5266–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasińska, B.; Karolczak-Kulesza, M.; Krasiński, Z.; Pawlaczyk-Gabriel, K.; Niklas, A.; Głuszek, J.; Tykarski, A. A Marked Fall in Nocturnal Blood Pressure Is Associated with the Stage of Primary Open-Angle Glaucoma in Patients with Arterial Hypertension. Blood Press. 2011, 20, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, J.D.; Lee, J.H.; Petitto, M.; Yépez, J.B.; Murati, F.A.; Jin, Z.; Chávez, C.A.; Pirela, R.V.; Calmón, G.E.; Lee, W.; et al. Glaucomatous Optic Neuropathy Associated with Nocturnal Dip in Blood Pressure: Findings from the Maracaibo Aging Study. Ophthalmology 2018, 125, 807–814. [Google Scholar] [CrossRef]
- Wareham, L.K.; Calkins, D.J. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front. Cell Dev. Biol. 2020, 8, 452. [Google Scholar] [CrossRef]
- Minckler, D.S.; Bunt, A.H.; Johanson, G.W. Orthograde and Retrograde Axoplasmic Transport during Acute Ocular Hypertension in the Monkey. Investig. Ophthalmol. Vis. Sci. 1977, 16, 426–441. [Google Scholar]
- Quigley, H.A.; Anderson, D.R. Distribution of Axonal Transport Blockade by Acute Intraocular Pressure Elevation in the Primate Optic Nerve Head. Investig. Ophthalmol. Vis. Sci. 1977, 16, 640–644. [Google Scholar]
- Shah, S.H.; Goldberg, J.L. The Role of Axon Transport in Neuroprotection and Regeneration. Dev. Neurobiol. 2018, 78, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Addicks, E.M. Chronic Experimental Glaucoma in Primates. II. Effect of Extended Intraocular Pressure Elevation on Optic Nerve Head and Axonal Transport. Investig. Ophthalmol. Vis. Sci. 1980, 19, 137–152. [Google Scholar]
- He, Z.; Nguyen, C.T.O.; Armitage, J.A.; Vingrys, A.J.; Bui, B.V. Blood Pressure Modifies Retinal Susceptibility to Intraocular Pressure Elevation. PLoS ONE 2012, 7, e31104. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Z.; Cepurna, W.; Johnson, E.; Jayaram, H.; Morrison, J.; Wang, R.K. Evaluation of the Effect of Elevated Intraocular Pressure and Reduced Ocular Perfusion Pressure on Retinal Capillary Bed Filling and Total Retinal Blood Flow in Rats by OMAG/OCT. Microvasc. Res. 2015, 101, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.J.; Ho, K.W.; Lambert, W.S.; Weitlauf, C.; Calkins, D.J. Absence of Transient Receptor Potential Vanilloid-1 Accelerates Stress-Induced Axonopathy in the Optic Projection. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 3161–3170. [Google Scholar] [CrossRef]
- Bordone, M.P.; González Fleitas, M.F.; Pasquini, L.A.; Bosco, A.; Sande, P.H.; Rosenstein, R.E.; Dorfman, D. Involvement of Microglia in Early Axoglial Alterations of the Optic Nerve Induced by Experimental Glaucoma. J. Neurochem. 2017, 142, 323–337. [Google Scholar] [CrossRef]
- Maddineni, P.; Kasetti, R.B.; Patel, P.D.; Millar, J.C.; Kiehlbauch, C.; Clark, A.F.; Zode, G.S. CNS Axonal Degeneration and Transport Deficits at the Optic Nerve Head Precede Structural and Functional Loss of Retinal Ganglion Cells in a Mouse Model of Glaucoma. Mol. Neurodegener. 2020, 15, 48. [Google Scholar] [CrossRef]
- Mogre, S.S.; Brown, A.I.; Koslover, E.F. Getting around the Cell: Physical Transport in the Intracellular World. Phys. Biol. 2020, 17, 61003. [Google Scholar] [CrossRef]
- Barlan, K.; Gelfand, V.I. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harb. Perspect. Biol. 2017, 9, 5817. [Google Scholar] [CrossRef]
- Brady, S.T.; Morfini, G.A. Regulation of Motor Proteins, Axonal Transport Deficits and Adult-Onset Neurodegenerative Diseases. Neurobiol. Dis. 2017, 105, 273–282. [Google Scholar] [CrossRef]
- Laterza, A.; Nappo, A. Optic Nerve: A Concise Review of the Anatomy, Pathophysiology and Principal Acquired Disorders. Ital. J. Neurol. Sci. 1987, 8, 529–535. [Google Scholar] [CrossRef]
- Muench, N.A.; Patel, S.; Maes, M.E.; Donahue, R.J.; Ikeda, A.; Nickells, R.W. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021, 10, 1593. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, N.; Sato-Yoshitake, R.; Kobayashi, N.; Pfister, K.K.; Bloom, G.S.; Brady, S.T. Kinesin Associates with Anterogradely Transported Membranous Organelles in Vivo. J. Cell Biol. 1991, 114, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, N.; Sato-Yoshitake, R.; Yoshida, T.; Kawashima, T. Brain Dynein (MAP1C) Localizes on Both Anterogradely and Retrogradely Transported Membranous Organelles in Vivo. J. Cell Biol. 1990, 111, 1027–1037. [Google Scholar] [CrossRef]
- Howard, J.; Hudspeth, A.J.; Vale, R.D. Movement of Microtubules by Single Kinesin Molecules. Nature 1989, 342, 154–158. [Google Scholar] [CrossRef]
- Gibbons, I.R. Dynein ATPases as Microtubule Motors. J. Biol. Chem. 1988, 263, 15837–15840. [Google Scholar] [CrossRef]
- Gennerich, A.; Vale, R.D. Walking the Walk: How Kinesin and Dynein Coordinate Their Steps. Curr. Opin. Cell Biol. 2009, 21, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Maday, S.; Twelvetrees, A.E.; Moughamian, A.J.; Holzbaur, E.L.F. Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation. Neuron 2014, 84, 292–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin Superfamily Motor Proteins and Intracellular Transport. Nat. Rev. Mol. Cell Biol. 2009, 10, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Reck-Peterson, S.L.; Redwine, W.B.; Vale, R.D.; Carter, A.P. The Cytoplasmic Dynein Transport Machinery and Its Many Cargoes. Nat. Rev. Mol. Cell Biol. 2018, 19, 382–398. [Google Scholar] [CrossRef]
- Maday, S.; Holzbaur, E.L.F. Autophagosome Biogenesis in Primary Neurons Follows an Ordered and Spatially Regulated Pathway. Dev. Cell 2014, 30, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Maday, S.; Holzbaur, E.L.F. Compartment-Specific Regulation of Autophagy in Primary Neurons. J. Neurosci. 2016, 36, 5933–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misgeld, T.; Kerschensteiner, M.; Bareyre, F.M.; Burgess, R.W.; Lichtman, J.W. Imaging Axonal Transport of Mitochondria in Vivo. Nat. Methods 2007, 4, 559–561. [Google Scholar] [CrossRef] [PubMed]
- van Spronsen, M.; Mikhaylova, M.; Lipka, J.; Schlager, M.A.; van den Heuvel, D.J.; Kuijpers, M.; Wulf, P.S.; Keijzer, N.; Demmers, J.; Kapitein, L.C.; et al. TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron 2013, 77, 485–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicario-Orri, E.; Opazo, C.M.; Muñoz, F.J. The Pathophysiology of Axonal Transport in Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2015, 43, 1097–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millecamps, S.; Julien, J.-P. Axonal Transport Deficits and Neurodegenerative Diseases. Nat. Rev. Neurosci. 2013, 14, 161–176. [Google Scholar] [CrossRef]
- Vitet, H.; Brandt, V.; Saudou, F. Traffic Signaling: New Functions of Huntingtin and Axonal Transport in Neurological Disease. Curr. Opin. Neurobiol. 2020, 63, 122–130. [Google Scholar] [CrossRef]
- de Vos, K.J.; Hafezparast, M. Neurobiology of Axonal Transport Defects in Motor Neuron Diseases: Opportunities for Translational Research? Neurobiol. Dis. 2017, 105, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Hunn, B.H.M.; Cragg, S.J.; Bolam, J.P.; Spillantini, M.-G.; Wade-Martins, R. Impaired Intracellular Trafficking Defines Early Parkinson’s Disease. Trends Neurosci. 2015, 38, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Takihara, Y.; Inatani, M.; Eto, K.; Inoue, T.; Kreymerman, A.; Miyake, S.; Ueno, S.; Nagaya, M.; Nakanishi, A.; Iwao, K.; et al. In Vivo Imaging of Axonal Transport of Mitochondria in the Diseased and Aged Mammalian CNS. Proc. Natl. Acad. Sci. USA 2015, 112, 10515–10520. [Google Scholar] [CrossRef] [Green Version]
- Kimball, E.C.; Jefferys, J.L.; Pease, M.E.; Oglesby, E.N.; Nguyen, C.; Schaub, J.; Pitha, I.; Quigley, H.A. The Effects of Age on Mitochondria, Axonal Transport, and Axonal Degeneration after Chronic IOP Elevation Using a Murine Ocular Explant Model. Exp. Eye Res. 2018, 172, 78–85. [Google Scholar] [CrossRef]
- Dukes, A.A.; Bai, Q.; van Laar, V.S.; Zhou, Y.; Ilin, V.; David, C.N.; Agim, Z.S.; Bonkowsky, J.L.; Cannon, J.R.; Watkins, S.C.; et al. Live Imaging of Mitochondrial Dynamics in CNS Dopaminergic Neurons in Vivo Demonstrates Early Reversal of Mitochondrial Transport Following MPP(+) Exposure. Neurobiol. Dis. 2016, 95, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Sleigh, J.N.; Tosolini, A.P.; Gordon, D.; Devoy, A.; Fratta, P.; Fisher, E.M.C.; Talbot, K.; Schiavo, G. Mice Carrying ALS Mutant TDP-43, but Not Mutant FUS, Display In Vivo Defects in Axonal Transport of Signaling Endosomes. Cell Rep. 2020, 30, 3655–3662.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.C.; Vargas, M.E.; Sagasti, A. WldS and PGC-1α Regulate Mitochondrial Transport and Oxidation State after Axonal Injury. J. Neurosci. 2013, 33, 14778–14790. [Google Scholar] [CrossRef] [Green Version]
- Kevenaar, J.T.; Hoogenraad, C.C. The Axonal Cytoskeleton: From Organization to Function. Front. Mol. Neurosci. 2015, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, N.M.; Lyons, L.L.; Gowrishankar, S.; de Camilli, P.; Ferguson, S.M. JIP3 Links Lysosome Transport to Regulation of Multiple Components of the Axonal Cytoskeleton. Commun. Biol. 2022, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Kong, W.; Zhou, Y.; Gregori, G. Distortion of Axonal Cytoskeleton: An Early Sign of Glaucomatous Damage. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2879–2888. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.N.; Smith, M.A.; Inman, D.M.; Dengler-Crish, C.M.; Crish, S.D. Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma. Front. Neurosci. 2016, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.M.; Griffiths, P.G.; Johnson, M.A.; Turnbull, D.M. Histochemical Localisation of Mitochondrial Enzyme Activity in Human Optic Nerve and Retina. Br. J. Ophthalmol. 1999, 83, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.-Y.; Cringle, S.J.; Balaratnasingam, C.; Morgan, W.H.; Yu, P.K.; Su, E.-N. Retinal Ganglion Cells: Energetics, Compartmentation, Axonal Transport, Cytoskeletons and Vulnerability. Prog. Retin. Eye Res. 2013, 36, 217–246. [Google Scholar] [CrossRef] [PubMed]
- Bellezza, A.J.; Hart, R.T.; Burgoyne, C.F. The Optic Nerve Head as a Biomechanical Structure: Initial Finite Element Modeling. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2991–3000. [Google Scholar]
- Salinas-Navarro, M.; Alarcón-Martínez, L.; Valiente-Soriano, F.J.; Jiménez-López, M.; Mayor-Torroglosa, S.; Avilés-Trigueros, M.; Villegas-Pérez, M.P.; Vidal-Sanz, M. Ocular Hypertension Impairs Optic Nerve Axonal Transport Leading to Progressive Retinal Ganglion Cell Degeneration. Exp. Eye Res. 2010, 90, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Xia, C.Z.; Dengler-Crish, C.M.; Fening, K.M.; Inman, D.M.; Schofield, B.R.; Crish, S.D. Persistence of Intact Retinal Ganglion Cell Terminals after Axonal Transport Loss in the DBA/2J Mouse Model of Glaucoma. J. Comp. Neurol. 2016, 524, 3503–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgoyne, C.F. A Biomechanical Paradigm for Axonal Insult within the Optic Nerve Head in Aging and Glaucoma. Exp. Eye Res. 2011, 93, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, H.A.; Addicks, E.M.; Green, W.R.; Maumenee, A.E. Optic Nerve Damage in Human Glaucoma. II. The Site of Injury and Susceptibility to Damage. Arch. Ophthalmol. 1981, 99, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, B.P.; Inman, D.M.; Lambert, W.; Oglesby, E.; Calkins, D.J.; Steele, M.R.; Vetter, M.L.; Marsh-Armstrong, N.; Horner, P.J. Progressive Ganglion Cell Degeneration Precedes Neuronal Loss in a Mouse Model of Glaucoma. J. Neurosci. 2008, 28, 2735–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, H.; Anderson, D.R. The Dynamics and Location of Axonal Transport Blockade by Acute Intraocular Pressure Elevation in Primate Optic Nerve. Investig. Ophthalmol. 1976, 15, 606–616. [Google Scholar]
- Radius, R.L.; Anderson, D.R. Rapid Axonal Transport in Primate Optic Nerve. Distribution of Pressure-Induced Interruption. Arch. Ophthalmol. 1981, 99, 650–654. [Google Scholar] [CrossRef]
- Chihara, E.; Honda, Y. Analysis of Orthograde Fast Axonal Transport and Nonaxonal Transport along the Optic Pathway of Albino Rabbits during Increased and Decreased Intraocular Pressure. Exp. Eye Res. 1981, 32, 229–239. [Google Scholar] [CrossRef]
- Dengler-Crish, C.M.; Smith, M.A.; Inman, D.M.; Wilson, G.N.; Young, J.W.; Crish, S.D. Anterograde Transport Blockade Precedes Deficits in Retrograde Transport in the Visual Projection of the DBA/2J Mouse Model of Glaucoma. Front. Neurosci. 2014, 8, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, C.J.; Choe, T.E.; Lusardi, T.A.; Burgoyne, C.F.; Wang, L.; Fortune, B. Evaluation of Retinal Nerve Fiber Layer Thickness and Axonal Transport 1 and 2 Weeks after 8 Hours of Acute Intraocular Pressure Elevation in Rats. Investig. Ophthalmol. Vis. Sci. 2014, 55, 674–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleesattel, D.; Crish, S.D.; Inman, D.M. Decreased Energy Capacity and Increased Autophagic Activity in Optic Nerve Axons with Defective Anterograde Transport. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8215–8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, C.J.; Choe, T.E.; Lusardi, T.A.; Burgoyne, C.F.; Wang, L.; Fortune, B. Imaging Axonal Transport in the Rat Visual Pathway. Biomed. Opt. Express 2013, 4, 364–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crish, S.D.; Schofield, B.R. Anterograde Tract Tracing for Assaying Axonopathy and Transport Deficits in Glaucoma. Methods Mol. Biol. 2018, 1695, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.; Oglesby, E.; Buckingham, B.P.; Son, J.L.; Roberson, E.D.O.; Steele, M.R.; Inman, D.M.; Vetter, M.L.; Horner, P.J.; Marsh-Armstrong, N. Retinal Ganglion Cells Downregulate Gene Expression and Lose Their Axons within the Optic Nerve Head in a Mouse Glaucoma Model. J. Neurosci. 2008, 28, 548–561. [Google Scholar] [CrossRef] [Green Version]
- van Oterendorp, C.; Sgouris, S.; Bach, M.; Martin, G.; Biermann, J.; Jordan, J.F.; Lagrèze, W.A. Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry. PLoS ONE 2012, 7, e38820. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Jonas, J.B.; Wu, S.; Kwong, J.M.K.; Zhang, J.; Liu, Q.; Li, L.; Lu, Q.; Yang, D.; et al. Axonal Transport in the Rat Optic Nerve Following Short-Term Reduction in Cerebrospinal Fluid Pressure or Elevation in Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4257–4266. [Google Scholar] [CrossRef]
- Korneva, A.; Schaub, J.; Jefferys, J.; Kimball, E.; Pease, M.E.; Nawathe, M.; Johnson, T.V.; Pitha, I.; Quigley, H. A Method to Quantify Regional Axonal Transport Blockade at the Optic Nerve Head after Short Term Intraocular Pressure Elevation in Mice. Exp. Eye Res. 2020, 196, 108035. [Google Scholar] [CrossRef]
- Fu, C.T.; Sretavan, D.W. Ectopic Vesicular Glutamate Release at the Optic Nerve Head and Axon Loss in Mouse Experimental Glaucoma. J. Neurosci. 2012, 32, 15859–15876. [Google Scholar] [CrossRef] [Green Version]
- Pease, M.E.; McKinnon, S.J.; Quigley, H.A.; Kerrigan-Baumrind, L.A.; Zack, D.J. Obstructed Axonal Transport of BDNF and Its Receptor TrkB in Experimental Glaucoma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 764–774. [Google Scholar]
- Chidlow, G.; Wood, J.P.M.; Ebneter, A.; Casson, R.J. Interleukin-6 Is an Efficacious Marker of Axonal Transport Disruption during Experimental Glaucoma and Stimulates Neuritogenesis in Cultured Retinal Ganglion Cells. Neurobiol. Dis. 2012, 48, 568–581. [Google Scholar] [CrossRef]
- Martin, K.R.G.; Quigley, H.A.; Valenta, D.; Kielczewski, J.; Pease, M.E. Optic Nerve Dynein Motor Protein Distribution Changes with Intraocular Pressure Elevation in a Rat Model of Glaucoma. Exp. Eye Res. 2006, 83, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Kimball, E.C.; Pease, M.E.; Steinhart, M.R.; Oglesby, E.N.; Pitha, I.; Nguyen, C.; Quigley, H.A. A Mouse Ocular Explant Model That Enables the Study of Living Optic Nerve Head Events after Acute and Chronic Intraocular Pressure Elevation: Focusing on Retinal Ganglion Cell Axons and Mitochondria. Exp. Eye Res. 2017, 160, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Fiedorowicz, M.; Orzel, J.; Kossowski, B.; Welniak-Kaminska, M.; Choragiewicz, T.; Swiatkiewicz, M.; Rejdak, R.; Bogorodzki, P.; Grieb, P. Anterograde Transport in Axons of the Retinal Ganglion Cells and Its Relationship to the Intraocular Pressure during Aging in Mice with Hereditary Pigmentary Glaucoma. Curr. Eye Res. 2018, 43, 539–546. [Google Scholar] [CrossRef]
- Minckler, D.S.; Tso, M.O.; Zimmerman, L.E. A Light Microscopic, Autoradiographic Study of Axoplasmic Transport in the Optic Nerve Head during Ocular Hypotony, Increased Intraocular Pressure, and Papilledema. Am. J. Ophthalmol. 1976, 82, 741–757. [Google Scholar] [CrossRef]
- Shirakashi, M. The Effects of Intraocular Pressure Elevation on Optic Nerve Axonal Transport in the Monkey. Acta Ophthalmol. 1990, 68, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Dandona, L.; Hendrickson, A.; Quigley, H.A. Selective Effects of Experimental Glaucoma on Axonal Transport by Retinal Ganglion Cells to the Dorsal Lateral Geniculate Nucleus. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1593–1599. [Google Scholar]
- Quigley, H.A.; McKinnon, S.J.; Zack, D.J.; Pease, M.E.; Kerrigan-Baumrind, L.A.; Kerrigan, D.F.; Mitchell, R.S. Retrograde Axonal Transport of BDNF in Retinal Ganglion Cells Is Blocked by Acute IOP Elevation in Rats. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3460–3466. [Google Scholar]
- Holländer, H.; Makarov, F.; Stefani, F.H.; Stone, J. Evidence of Constriction of Optic Nerve Axons at the Lamina Cribrosa in the Normotensive Eye in Humans and Other Mammals. Ophthalmic Res. 1995, 27, 296–309. [Google Scholar] [CrossRef]
- Ou, B.; Ohno, S.; Tsukahara, S. Ultrastructural Changes and Immunocytochemical Localization of Microtubule-Associated Protein 1 in Guinea Pig Optic Nerves after Acute Increase in Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 1998, 39, 963–971. [Google Scholar]
- Knox, D.L.; Eagle, R.C.J.; Green, W.R. Optic Nerve Hydropic Axonal Degeneration and Blocked Retrograde Axoplasmic Transport: Histopathologic Features in Human High-Pressure Secondary Glaucoma. Arch. Ophthalmol. 2007, 125, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Quillen, S.; Schaub, J.; Quigley, H.; Pease, M.; Korneva, A.; Kimball, E. Astrocyte Responses to Experimental Glaucoma in Mouse Optic Nerve Head. PLoS ONE 2020, 15, e0238104. [Google Scholar] [CrossRef]
- Johansson, J.O. Retrograde Axoplasmic Transport in Rat Optic Nerve in Vivo. What Causes Blockage at Increased Intraocular Pressure? Exp. Eye Res. 1986, 43, 653–660. [Google Scholar] [CrossRef]
- Johansson, J.O. Inhibition and Recovery of Retrograde Axoplasmic Transport in Rat Optic Nerve during and after Elevated IOP in Vivo. Exp. Eye Res. 1988, 46, 223–227. [Google Scholar] [CrossRef]
- Balaratnasingam, C.; Morgan, W.H.; Bass, L.; Matich, G.; Cringle, S.J.; Yu, D.-Y. Axonal Transport and Cytoskeletal Changes in the Laminar Regions after Elevated Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3632–3644. [Google Scholar] [CrossRef] [PubMed]
- Balaratnasingam, C.; Cringle, S.J.; Fatehee, N.; Morgan, W.H.; Yu, D.-Y. Comparison of Fluctuating and Sustained Neural Pressure Perturbations on Axonal Transport Processes in the Optic Nerve. Brain Res. 2011, 1417, 67–76. [Google Scholar] [CrossRef]
- Soto, I.; Pease, M.E.; Son, J.L.; Shi, X.; Quigley, H.A.; Marsh-Armstrong, N. Retinal Ganglion Cell Loss in a Rat Ocular Hypertension Model Is Sectorial and Involves Early Optic Nerve Axon Loss. Investig. Ophthalmol. Vis. Sci. 2011, 52, 434–441. [Google Scholar] [CrossRef]
- Fujishiro, T.; Kawasaki, H.; Aihara, M.; Saeki, T.; Ymagishi, R.; Atarashi, T.; Mayama, C.; Araie, M. Establishment of an Experimental Ferret Ocular Hypertension Model for the Analysis of Central Visual Pathway Damage. Sci. Rep. 2014, 4, 6501. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.N.; Inman, D.M.; Dengler Crish, C.M.; Smith, M.A.; Crish, S.D. Early Pro-Inflammatory Cytokine Elevations in the DBA/2J Mouse Model of Glaucoma. J. Neuroinflamm. 2015, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- DiStefano, P.S.; Friedman, B.; Radziejewski, C.; Alexander, C.; Boland, P.; Schick, C.M.; Lindsay, R.M.; Wiegand, S.J. The Neurotrophins BDNF, NT-3, and NGF Display Distinct Patterns of Retrograde Axonal Transport in Peripheral and Central Neurons. Neuron 1992, 8, 983–993. [Google Scholar] [CrossRef]
- von Bartheld, C.S.; Williams, R.; Lefcort, F.; Clary, D.O.; Reichardt, L.F.; Bothwell, M. Retrograde Transport of Neurotrophins from the Eye to the Brain in Chick Embryos: Roles of the P75NTR and TrkB Receptors. J. Neurosci. Off. 1996, 16, 2995–3008. [Google Scholar] [CrossRef] [Green Version]
- John, S.W.; Smith, R.S.; Savinova, O.V.; Hawes, N.L.; Chang, B.; Turnbull, D.; Davisson, M.; Roderick, T.H.; Heckenlively, J.R. Essential Iris Atrophy, Pigment Dispersion, and Glaucoma in DBA/2J Mice. Investig. Ophthalmol. Vis. Sci. 1998, 39, 951–962. [Google Scholar]
- Turner, A.J.; vander Wall, R.; Gupta, V.; Klistorner, A.; Graham, S.L. DBA/2J Mouse Model for Experimental Glaucoma: Pitfalls and Problems. Clin. Exp. Ophthalmol. 2017, 45, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Berkelaar, M.; Clarke, D.B.; Wang, Y.C.; Bray, G.M.; Aguayo, A.J. Axotomy Results in Delayed Death and Apoptosis of Retinal Ganglion Cells in Adult Rats. J. Neurosci. 1994, 14, 4368–4374. [Google Scholar] [CrossRef] [Green Version]
- George, E.B.; Glass, J.D.; Griffin, J.W. Axotomy-Induced Axonal Degeneration Is Mediated by Calcium Influx through Ion-Specific Channels. J. Neurosci. 1995, 15, 6445–6452. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A.; Pitha, I.F.; Welsbie, D.S.; Nguyen, C.; Steinhart, M.R.; Nguyen, T.D.; Pease, M.E.; Oglesby, E.N.; Berlinicke, C.A.; Mitchell, K.L.; et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE 2015, 10, e0141137. [Google Scholar] [CrossRef] [Green Version]
- Lambert, W.S.; Ruiz, L.; Crish, S.D.; Wheeler, L.A.; Calkins, D.J. Brimonidine Prevents Axonal and Somatic Degeneration of Retinal Ganglion Cell Neurons. Mol. Neurodegener. 2011, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Dapper, J.D.; Crish, S.D.; Pang, I.-H.; Calkins, D.J. Proximal Inhibition of P38 MAPK Stress Signaling Prevents Distal Axonopathy. Neurobiol. Dis. 2013, 59, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Inman, D.M.; Lambert, W.S.; Calkins, D.J.; Horner, P.J. α-Lipoic Acid Antioxidant Treatment Limits Glaucoma-Related Retinal Ganglion Cell Death and Dysfunction. PLoS ONE 2013, 8, e65389. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.S.; Hines-Beard, J.; GoldenMerry, Y.L.; Davis, M.; Farooque, A.; Sappington, R.M.; Calkins, D.J.; Rex, T.S. Virus-Mediated EpoR76E Therapy Slows Optic Nerve Axonopathy in Experimental Glaucoma. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Harun-Or-Rashid, M.; Pappenhagen, N.; Palmer, P.G.; Smith, M.A.; Gevorgyan, V.; Wilson, G.N.; Crish, S.D.; Inman, D.M. Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J. Neurosci. 2018, 38, 5122–5139. [Google Scholar] [CrossRef]
- Du, R.; Wang, X.; He, S. BDNF Improves Axon Transportation and Rescues Visual Function in a Rodent Model of Acute Elevation of Intraocular Pressure. Sci. China Life Sci. 2020, 63, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Isenmann, S.; Klöcker, N.; Gravel, C.; Bähr, M. Short Communication: Protection of Axotomized Retinal Ganglion Cells by Adenovirally Delivered BDNF in Vivo. Eur. J. Neurosci. 1998, 10, 2751–2756. [Google Scholar] [CrossRef]
- Martin, K.R.G.; Quigley, H.A.; Zack, D.J.; Levkovitch-Verbin, H.; Kielczewski, J.; Valenta, D.; Baumrind, L.; Pease, M.E.; Klein, R.L.; Hauswirth, W.W. Gene Therapy with Brain-Derived Neurotrophic Factor as a Protection: Retinal Ganglion Cells in a Rat Glaucoma Model. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4357–4365. [Google Scholar] [CrossRef]
- Chiha, W.; Bartlett, C.A.; Petratos, S.; Fitzgerald, M.; Harvey, A.R. Intravitreal Application of AAV-BDNF or Mutant AAV-CRMP2 Protects Retinal Ganglion Cells and Stabilizes Axons and Myelin after Partial Optic Nerve Injury. Exp. Neurol. 2020, 326, 113167. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Miyake, K.; Kobayashi, M.; Kameya, S.; Fujimoto, C.; Nakamoto, K.; Takahashi, H.; Igarashi, T.; Miyake, N.; Iijima, O.; et al. Tyrosine Triple Mutated AAV2-BDNF Gene Therapy in a Rat Model of Transient IOP Elevation. Mol. Vis. 2016, 22, 816–826. [Google Scholar]
- Lambert, W.S.; Carlson, B.J.; Formichella, C.R.; Sappington, R.M.; Ahlem, C.; Calkins, D.J. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma. Front. Neurosci. 2017, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Rajvanshi, P.K.; Noguchi, C.T. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front. Physiol. 2019, 10, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chidlow, G.; Wood, J.P.M.; Casson, R.J. Investigations into Hypoxia and Oxidative Stress at the Optic Nerve Head in a Rat Model of Glaucoma. Front. Neurosci. 2017, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Baltan, S.; Inman, D.M.; Danilov, C.A.; Morrison, R.S.; Calkins, D.J.; Horner, P.J. Metabolic Vulnerability Disposes Retinal Ganglion Cell Axons to Dysfunction in a Model of Glaucomatous Degeneration. J. Neurosci. 2010, 30, 5644–5652. [Google Scholar] [CrossRef] [Green Version]
- Inman, D.M.; Harun-Or-Rashid, M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front. Neurosci. 2017, 11, 146. [Google Scholar] [CrossRef]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cochran, K.E.; Philip, V.M.; Porciatti, V.; Smithies, O.; John, S.W.M. Vitamin B(3) Modulates Mitochondrial Vulnerability and Prevents Glaucoma in Aged Mice. Science 2017, 355, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebneter, A.; Chidlow, G.; Wood, J.P.M.; Casson, R.J. Protection of Retinal Ganglion Cells and the Optic Nerve during Short-Term Hyperglycemia in Experimental Glaucoma. Arch. Ophthalmol. 2011, 129, 1337–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD(+) Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Petriti, B.; Williams, P.A.; Lascaratos, G.; Chau, K.-Y.; Garway-Heath, D.F. Neuroprotection in Glaucoma: NAD(+)/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021, 10, 1402. [Google Scholar] [CrossRef] [PubMed]
- Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD(+) in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019, 30, 630–655. [Google Scholar] [CrossRef]
- Conforti, L.; Gilley, J.; Coleman, M.P. Wallerian Degeneration: An Emerging Axon Death Pathway Linking Injury and Disease. Nat. Rev. Neurosci. 2014, 15, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cardozo, B.H.; Cochran, K.E.; John, S.W.M. Nicotinamide and WLD(S) Act Together to Prevent Neurodegeneration in Glaucoma. Front. Neurosci. 2017, 11, 232. [Google Scholar] [CrossRef]
- Tribble, J.R.; Otmani, A.; Sun, S.; Ellis, S.A.; Cimaglia, G.; Vohra, R.; Jöe, M.; Lardner, E.; Venkataraman, A.P.; Domínguez-Vicent, A.; et al. Nicotinamide Provides Neuroprotection in Glaucoma by Protecting against Mitochondrial and Metabolic Dysfunction. Redox Biol. 2021, 43, 101988. [Google Scholar] [CrossRef]
- Kitaoka, Y.; Munemasa, Y.; Kojima, K.; Hirano, A.; Ueno, S.; Takagi, H. Axonal Protection by Nmnat3 Overexpression with Involvement of Autophagy in Optic Nerve Degeneration. Cell Death Dis. 2013, 4, e860. [Google Scholar] [CrossRef]
- Waller, A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres. Edinb. Med. Surg. J. 1851, 76, 369–376. [Google Scholar]
- Lunn, E.R.; Perry, V.H.; Brown, M.C.; Rosen, H.; Gordon, S. Absence of Wallerian Degeneration Does Not Hinder Regeneration in Peripheral Nerve. Eur. J. Neurosci. 1989, 1, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mack, T.G.A.; Reiner, M.; Beirowski, B.; Mi, W.; Emanuelli, M.; Wagner, D.; Thomson, D.; Gillingwater, T.; Court, F.; Conforti, L.; et al. Wallerian Degeneration of Injured Axons and Synapses Is Delayed by a Ube4b/Nmnat Chimeric Gene. Nat. Neurosci. 2001, 4, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Gilley, J.; Coleman, M.P. Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of Healthy Axons. PLoS Biol. 2010, 8, e1000300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milde, S.; Gilley, J.; Coleman, M.P. Axonal Trafficking of NMNAT2 and Its Roles in Axon Growth and Survival in Vivo. Bioarchitecture 2013, 3, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Risner, M.L.; Pasini, S.; McGrady, N.R.; D’Alessandro, K.B.; Yao, V.; Cooper, M.L.; Calkins, D.J. Neuroprotection by Wld(S) Depends on Retinal Ganglion Cell Type and Age in Glaucoma. Mol. Neurodegener. 2021, 16, 36. [Google Scholar] [CrossRef]
- Krauss, R.; Bosanac, T.; Devraj, R.; Engber, T.; Hughes, R.O. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends Pharmacol. Sci. 2020, 41, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Essuman, K.; Summers, D.W.; Sasaki, Y.; Mao, X.; DiAntonio, A.; Milbrandt, J. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD(+) Cleavage Activity That Promotes Pathological Axonal Degeneration. Neuron 2017, 93, 1334–1343.e5. [Google Scholar] [CrossRef] [Green Version]
- Osterloh, J.M.; Yang, J.; Rooney, T.M.; Fox, A.N.; Adalbert, R.; Powell, E.H.; Sheehan, A.E.; Avery, M.A.; Hackett, R.; Logan, M.A.; et al. DSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science 2012, 337, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.J.; Summers, D.W.; Sasaki, Y.; Brace, E.J.; Milbrandt, J.; DiAntonio, A. MAPK Signaling Promotes Axonal Degeneration by Speeding the Turnover of the Axonal Maintenance Factor NMNAT2. eLife 2017, 6, e22540. [Google Scholar] [CrossRef]
- Ko, K.W.; Milbrandt, J.; DiAntonio, A. SARM1 Acts Downstream of Neuroinflammatory and Necroptotic Signaling to Induce Axon Degeneration. J. Cell Biol. 2020, 219, 12047. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Z.; Renier, N.; Simon, D.J.; Uryu, K.; Park, D.S.; Greer, P.A.; Tournier, C.; Davis, R.J.; Tessier-Lavigne, M. Pathological Axonal Death through a MAPK Cascade That Triggers a Local Energy Deficit. Cell 2015, 160, 161–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, K.A.; Mitchell, K.L.; Patel, A.; Marola, O.J.; Shrager, P.; Zack, D.J.; Libby, R.T.; Welsbie, D.S. Role of SARM1 and DR6 in Retinal Ganglion Cell Axonal and Somal Degeneration Following Axonal Injury. Exp. Eye Res. 2018, 171, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Eira, J.; Silva, C.S.; Sousa, M.M.; Liz, M.A. The Cytoskeleton as a Novel Therapeutic Target for Old Neurodegenerative Disorders. Prog. Neurobiol. 2016, 141, 61–82. [Google Scholar] [CrossRef]
- Ebneter, A.; Casson, R.J.; Wood, J.P.M.; Chidlow, G. Microglial Activation in the Visual Pathway in Experimental Glaucoma: Spatiotemporal Characterization and Correlation with Axonal Injury. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6448–6460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Carroll, J.; Trojanowski, J.Q.; Yao, Y.; Iba, M.; Potuzak, J.S.; Hogan, A.-M.L.; Xie, S.X.; Ballatore, C.; Smith, A.B., 3rd; et al. The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-like Pathology in an Interventional Study with Aged Tau Transgenic Mice. J. Neurosci. 2012, 32, 3601–3611. [Google Scholar] [CrossRef] [PubMed]
- Cartelli, D.; Casagrande, F.; Busceti, C.L.; Bucci, D.; Molinaro, G.; Traficante, A.; Passarella, D.; Giavini, E.; Pezzoli, G.; Battaglia, G.; et al. Microtubule Alterations Occur Early in Experimental Parkinsonism and the Microtubule Stabilizer Epothilone D Is Neuroprotective. Sci. Rep. 2013, 3, 1837. [Google Scholar] [CrossRef] [Green Version]
- Fanara, P.; Banerjee, J.; Hueck, R.V.; Harper, M.R.; Awada, M.; Turner, H.; Husted, K.H.; Brandt, R.; Hellerstein, M.K. Stabilization of Hyperdynamic Microtubules Is Neuroprotective in Amyotrophic Lateral Sclerosis. J. Biol. Chem. 2007, 282, 23465–23472. [Google Scholar] [CrossRef] [Green Version]
- Barten, D.M.; Fanara, P.; Andorfer, C.; Hoque, N.; Wong, P.Y.A.; Husted, K.H.; Cadelina, G.W.; Decarr, L.B.; Yang, L.; Liu, V.; et al. Hyperdynamic Microtubules, Cognitive Deficits, and Pathology Are Improved in Tau Transgenic Mice with Low Doses of the Microtubule-Stabilizing Agent BMS-241027. J. Neurosci. 2012, 32, 7137–7145. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Brady, S.T. Post-Translational Modifications of Tubulin: Pathways to Functional Diversity of Microtubules. Trends Cell Biol. 2015, 25, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Wloga, D.; Joachimiak, E.; Fabczak, H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int. J. Mol. Sci. 2017, 18, 2207. [Google Scholar] [CrossRef] [Green Version]
- Dompierre, J.P.; Godin, J.D.; Charrin, B.C.; Cordelières, F.P.; King, S.J.; Humbert, S.; Saudou, F. Histone Deacetylase 6 Inhibition Compensates for the Transport Deficit in Huntington’s Disease by Increasing Tubulin Acetylation. J. Neurosci. 2007, 27, 3571–3583. [Google Scholar] [CrossRef] [PubMed]
- Reed, N.A.; Cai, D.; Blasius, T.L.; Jih, G.T.; Meyhofer, E.; Gaertig, J.; Verhey, K.J. Microtubule Acetylation Promotes Kinesin-1 Binding and Transport. Curr. Biol. CB 2006, 16, 2166–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Naujock, M.; Fumagalli, L.; Vandoorne, T.; Baatsen, P.; Boon, R.; Ordovás, L.; Patel, A.; Welters, M.; Vanwelden, T.; et al. HDAC6 Inhibition Reverses Axonal Transport Defects in Motor Neurons Derived from FUS-ALS Patients. Nat. Commun. 2017, 8, 861. [Google Scholar] [CrossRef] [PubMed]
- Taes, I.; Timmers, M.; Hersmus, N.; Bento-Abreu, A.; van den Bosch, L.; van Damme, P.; Auwerx, J.; Robberecht, W. Hdac6 Deletion Delays Disease Progression in the SOD1G93A Mouse Model of ALS. Hum. Mol. Genet. 2013, 22, 1783–1790. [Google Scholar] [CrossRef]
- Godena, V.K.; Brookes-Hocking, N.; Moller, A.; Shaw, G.; Oswald, M.; Sancho, R.M.; Miller, C.C.J.; Whitworth, A.J.; de Vos, K.J. Increasing Microtubule Acetylation Rescues Axonal Transport and Locomotor Deficits Caused by LRRK2 Roc-COR Domain Mutations. Nat. Commun. 2014, 5, 5245. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Koike, T. Mammalian Sir2-Related Protein (SIRT) 2-Mediated Modulation of Resistance to Axonal Degeneration in Slow Wallerian Degeneration Mice: A Crucial Role of Tubulin Deacetylation. Neuroscience 2007, 147, 599–612. [Google Scholar] [CrossRef]
Reference | Glaucoma Model | Species | IOP | Evaluation of Axonal Transport | Main Outcomes |
---|---|---|---|---|---|
Intraocular injection of radiolabeled molecules | |||||
[19] | Cannulation of the anterior chamber | Owl monkey | 15–105 (PP = 108–(–)5 mm Hg) | Intravitreal injection of tritiated leucine; electron microscopy | Accumulation of radioactive labeling in LC with reduced labeling in LGN at 8 h of high IOP. More evident with higher IOP, with axons in the LC dilated and accumulation of mitochondria and vesicles. |
[118] | Cyclocryotherapy | Rhesus monkey | 20–55 mm Hg | Intravitreal injection of tritiated leucine | Labeling accumulated in lamina scleralis of the ONH after 6, 24 or 48 h of surgery. |
[100] | Cannulation of the anterior chamber | Owl monkey | PP = 30 mm Hg | Intravitreal injection of tritiated leucine; electron microcopy | Accumulations in the ONH within 2 h in autoradiography and 1 h in electron microscopy. With 4 h of high IOP + 4 h of normal IOP, no sign of transport blockage. |
[52] | Cannulation of the anterior chamber | Cynomolgus monkey | 25–150 mm Hg | Intravitreal injection of tritiated leucine; HRP injection into OT or dLGN | Tracers accumulated in lamina scleralis. |
[53] | Cannulation of the anterior chamber | Squirrel monkey | 20–50 mm Hg; 50–90 mm Hg | Intravitreal injection of tritiated leucine | Accumulation of transported material in ONH, mainly in superior and inferior poles. It was worse for higher IOP. |
[55] | Anterior chamber injections of autologous, fixed red blood cells | Squirrel and cynomolgus monkey | 24–73 mm Hg | Intravitreal injection of tritiated leucine; electron microscopy | IOP elevation for 2–4 days, 1 week or longer led to accumulated material in ONH, depending on height and duration of IOP elevation. With IOP rise for 2–4 days followed by 1 month of normal IOP, no accumulations were identified, but there were signs of degeneration. |
[33] | Cannulation of the anterior chamber | Cynomolgus monkey | PP = 25 (mean IOP 97 mm Hg) or PP = 0 | Intravitreal injection of tritiated leucine; electron microscopy | After 4 h of high IOP, accumulation of radiolabeled material and organelle in the ONH. It was the same for animals maintained in a hyperbaric chamber as for room air-breathing ones. |
[102] | Cannulation of the anterior chamber | Rabbit | 30 or 50 mm Hg | Intravitreal injection of tritiated leucine | Mild accumulation of radiolabeled material in the ONH at 3 h of high IOP. |
[119] | Cannulation of the anterior chamber | Japanese monkey | PP = 30 mm Hg (mean IOP ~75 mm Hg) | Intravitreal injection of tritiated leucine or proline | At 5 h of raised IOP, accumulation of radioactive protein in LC with decrease in the optic nerve, especially in its temporal portion. |
[120] | Cannulation of the anterior chamber (acute) or laser photocoagulation of the trabecular meshwork | Macaque monkey | Acute: 40–100 mm Hg; LP: 35–48 mm Hg | Intravitreal injection of tritiated leucine | Decrease of labeling in LGN after acute high IOP (12 h) and LP (2–44 weeks). After LP, monkeys had a greater decrease in the magnocellular than in the parvocellular layers of the dLGN. |
[121] | Cannulation of the anterior chamber | Brown Norway rat | PP = 25 (mean IOP 50 mm Hg) or PP = 0 | Injection of radiolabeled BDNF in SC | Reduction in BDNF transported to the NFL after 6 h of high IOP. |
Light and electron microscopy | |||||
[20] | Laser treatment of the trabecular meshwork | Rhesus monkey | Mean 26–50 + mm Hg | Light and electron microscopy | Axonal swellings in the ONH (3–11 weeks). |
[98] | Human glaucoma | Human | – | Electron microscopy | At scleral lamina, axons were swollen with major obstruction of organelle, including vesicles, mitochondria, and multivesicular bodies. Accumulated material and location were similar to findings of induced high IOP in primates. |
[101] | Cannulation of the anterior chamber | Owl monkey | PP = 35 mm Hg | Electron microscopy | Accumulation of membranous organelles, such as mitochondria and microvesicles within axons after 4 h. |
[122] | Human glaucoma | Human | – | Light and electron microscopy | Accumulations of organelles in optic nerve axons at the LC. |
[123] | Cannulation of the anterior chamber | Guinea Pig | 60 mm Hg | Electron microscopy | At 4 h of high IOP, accumulation of organelles and vesicles in axons. |
[124] | Human glaucoma | Human | – | Light microscopy | Axonal swellings posterior to the lamina, with amorphous and poorly stained material with few nuclei. |
[125] | Microbead model | Mouse | Peak ~22 mm Hg | Electron microscopy | At 1–3 days after IOP elevation, axon swelling and accumulated mitochondria and vesicles in axons at the ONH. |
Injection of exogenous actively transported molecules | |||||
[126] | Cannulation of the anterior chamber | PVG/Mol hooded rat | 50 mm Hg; or 10 min 180 mm Hg + 2 h 15 mm Hg | HRP injection into LGN | Lower absorbance in contralateral retinas after 2 and 4 h of high IOP. No decrease after 10 min of high IOP + 2 h normal IOP. |
[127] | Cannulation of the anterior chamber | PVG/Mol hooded rat | 35 mm Hg; or 2 h of 50 mm Hg + 2 h of 15 mm Hg | HRP injection into LGN | Decrease in HRP content in retina after increased IOP for 4 h. No decrease after 2 h of high IOP + 2 h normal IOP. |
[128] | Cannulation of the anterior chamber | Landrace pigs | 40–45 mm Hg | Intravitreal injection of RITC | 6 h after IOP increase, reduced RITC labeling in the postlaminar tissue. |
[21] | Cannulation of the anterior chamber | Landrace pigs | ~40–45 mm Hg | Intravitreal injection of RITC | With 12 h of high IOP, RITC was present mainly at prelaminar and LC, and reduced in postlaminar region. Changes in peripheral nerve bundle were more pronounced and earlier than in central nerve. Alterations in neurofilament proteins happened before axonal transport impairment (3 h). |
[99] | DBA/2J | Mouse | – | FG and DiI injection in SC | Density of FG+ cells in the retina decreased in 13-14 m old animals, even though NeuN+ density only decreased at 18 m. In 13 m mice, co-injection of FG and DiI led to higher number of DiI+ than FG+ cells in the retina. |
[108] | DBA/2J | Mouse | – | FG injection in SC | Retinas of 9 m old mice had regions with reduced of absent FG labeling, but preserved γ-synuclein expression. |
[22] | DBA/2J or microbead | Mouse and Brown Norway rat | DBA2J: peak ~25 mm Hg Microbead: 25–30 mm Hg (sustained) | Intravitreal injection of CTB | DBA2J: decrease in CTB labeling appeared first in the SC, starting at 8 months of age, and progressed distal-to-proximal. Microbead: after 2 weeks of high IOP, decrease of CTB labeling happened in aged (7–8 m) but not young (3–4 m) rats. |
[95] | Laser photocoagulation of the trabecular meshwork, perilimbar and episcleral veins | Sprague-Dawley rat | Peak ΔIOP ~ 20 mm Hg | FG and DTMR injection in SC | After 8 days of high IOP, there was a greater number of Brn3a+ cells in the retina then FG+ cells, as labeled post lesion. At 2 weeks after lesion, there was a larger retinal area DTMR+ (passive diffusion) than FG+. |
[129] | Cannulation of the anterior chamber | New Zealand White rabbit | 40 mm Hg; fluctuation of 7.5 and 57.5 mm Hg | Intravitreal injection of RITC | RITC intensity was diminished in the optic nerve after 6 h of high IOP. A similar decrease was observed in eyes with fluctuating high pressure, in which IOP was changed between 7.5 mm Hg and 57.5 mm Hg at 30 min intervals. |
[130] | Translimbal laser photocoagulation (trabecular meshwork + perilimbal veins) | Wistar rat | Peak ~40–50 mm Hg | FG injection in SC | 29 days after surgery, retinas contained RGCs that were FG–, but Sncg+ and/or labeled with pNF in somas and dendrites. |
[109] | Laser photocoagulation of the trabecular meshwork | Sprague-Dawley rat | 34.8 mm Hg (day 1) | FG injection in SC | FG spectrometry identified a reduction in FG levels in the SC after 5 days of high IOP. |
[104] | Cannulation of the anterior chamber | Brown Norway rat | 50 mm Hg | Intravitreal and SC injection of CTB | No decrease in CTB labeling was observed 1–2 weeks after a reversible IOP increase of 8 h. |
[103] | DBA/2J | Mouse | – | Intravitreal injection of CTB + FG injection in SC | CTB labeling in the SC was decreased by 69% in 9–10 m old mice, while FG labeling in the retina only diminished by 23%. |
[131] | Injection of cultured conjunctival cells into the anterior chamber | Marshall ferret | Mean 42.8 mm Hg (sustained) | Intravitreal injection of CTB | 13 weeks after surgery, there was a great reduction of CTB labeling in SC and LGN. |
[58] | Microbead | C57 mouse | ~20 mm Hg (sustained) | Intravitreal injection of CTB | After 5 weeks of IOP elevation, diminished CTB labeling in contralateral SC and LGN. |
[105] | DBA/2J | Mouse | – | Intravitreal injection of CTB | In 11–14 m old mice, projections in CTB- ONs had decreased axonal volume and length, with greater volume of autophagic vesicles than CTB+ ones. Mitochondria had lower volume and diameter and higher roundness. |
[132] | DBA/2J | Mouse | – | Intravitreal injection of CTB | In 12–15 m old mice, IL-6 was elevated in CTB- collicular regions compared to areas with intact transport. |
[110] | Cannulation of the anterior chamber | Sprague-Dawley rat | 40 mm Hg or PP = 25 | Intravitreal injection of RITC + FG injection in SC | With 6 h of high IOP, reduction of RITC label in the ON after 24 h of baseline, and of FG label in the retina after 6 h of baseline. |
[96] | DBA/2J | Mouse | – | Intravitreal injection of CTB | Reduced labeling of SC in DBA/2J. CTB- projections did not have less retinal boutons, but had lower mitochondrial volume, active zone number and surface area. |
[91] | DBA/2J | Mouse | – | Intravitreal injection of CTB | CTB- projections had higher levels of pNF-H in SC and retina, lower decrease in β-tubulin in the ON and higher amyloid-β42 in the SC than CTB+ ones. |
[59] | Weekly injections of chondroitin sulfate into the anterior chamber | Wistar rat | 21–23 mm Hg (sustained) | Intravitreal injection of CTB | Reduction of CTB labeling in myelinated ON (6 weeks), besides SC and LGN (6 and 15 weeks). |
[60] | Weekly periocular injection of dexamethasone | C57BL/6 J mouse | ~16–21 mm Hg (sustained) | Intravitreal injection of CTB | Decrease in CTB labeling in the ON and SC between 8–10 weeks. |
Immunolabeling of endogenous actively transported material | |||||
[113] | Cannulation of the anterior chamber (acute) or laser photocoagulation of the trabecular meshwork | Brown Norway rats or cynomolgus monkey | Acute: 51–81 mm Hg (PP = 0); 19–58 mm Hg (PP = 25 mm Hg) LP: peak 25–43 mm Hg | Labeling of TrkB and BDNF; radiolabeled BDNF injection into SC; light and electron microscopy | BDNF and/or its receptor accumulated in acute high IOP (4 h) and LP (2 m–2 y). In acute model, there was decreased transport of BDNF to the retina and axons in ONH were swollen, with accumulated vesicles. |
[115] | Cannulation of the anterior chamber or laser photocoagulation of the trabecular meshwork | Wistar rat | Acute: PP = 25 mm Hg; LP: peak IOP 37–38 mm Hg | Dynein | There was accumulation of dynein subunits in the ONH at 1 day after 4 h of acute model or after 3–7 days (mainly) of LP. |
[23] | Laser photocoagulation of the trabecular meshwork | Sprague-Dawley rat | Peak ΔIOP ~ 26 mm Hg | APP, synaptophysin, BDNF; intravitreal injection of CTB | Protein accumulation in axons at the ONH as soon as 8 h, peaking at 24 h. |
[112] | Photocoagulation of limbus (270°–300°) and three episcleral veins | CD-1 mouse | >21 mm Hg | SV2, synaptophysin, VGLUT2, SNAP-25, VAMP2, Bassoon. | Accumulation of components of the glutamatergic presynaptic machinery in ONH at 2 days after surgery. |
[114] | Laser photocoagulation of the trabecular meshwork | Sprague-Dawley rat | Peak ΔIOP~25 mm Hg | IL-6 | Accumulation of IL6 in ONH axons with 8 h of high IOP, and mainly at 1 and 3 days. |
[24] | Injection of hypertonic saline solution into episcleral vein | Brown Norway rat | Peak 35–40 mm Hg | Tau | At 3 weeks of high IOP, tau protein accumulated in the retina and diminished in the ON. |
[111] | Microbead | CD1 mouse | Peak ΔIOP~10–15 mm Hg | APP | At 3 days of high IOP, the fraction and the mean intensity of suprathreshold pixels was higher in ONH and ON. |
Imaging in live tissue/animals | |||||
[83] | Photocoagulation of limbal (300°) and episcleral veins | Thy1-mito.CFP mouse | Peak ~40 mm Hg | Intravital multiphoton imaging of anesthetized mouse RGCs through the sclera | Decrease in the number of moving mitochondria at 3 days of high IOP in adult mice (4 m), which was worse in old (23–25 m) mice. |
[116] | Ex vivo cannulation of the anterior chamber (acute) or bead + sodium hyaluronate injection in anterior chamber (chronic) | Thy1-mito.CFP mouse | Acute: 30 mm Hg; chronic: peak 28 mm Hg (14 h) | Live imaging of globe-optic nerve explants | Decrease in the number of moving mitochondria after 1 h of acute or 3 days of chronic IOP increase. |
[117] | DBA/2J | Mouse | Peak 18.4 mm Hg | Manganese-enhanced magnetic resonance imaging | Decrease in Mn2+ presence in both SC and LGN in 14-month-old DBA/2J mice after intraocular injection. |
[84] | Microbead | Thy1-mito.CFP mouse | – | Live imaging of globe-optic nerve explants | Alterations in mitochondria movements after 14 h, 1 or 3 days of high IOP. Loss of mitochondria movements was more severe in old (14–17 m) than in young (4 m) mice. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.S.; Luo, X.; Ribas, V.T.; Petrs-Silva, H.; Koch, J.C. The Role of Axonal Transport in Glaucoma. Int. J. Mol. Sci. 2022, 23, 3935. https://doi.org/10.3390/ijms23073935
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. International Journal of Molecular Sciences. 2022; 23(7):3935. https://doi.org/10.3390/ijms23073935
Chicago/Turabian StyleDias, Mariana Santana, Xiaoyue Luo, Vinicius Toledo Ribas, Hilda Petrs-Silva, and Jan Christoph Koch. 2022. "The Role of Axonal Transport in Glaucoma" International Journal of Molecular Sciences 23, no. 7: 3935. https://doi.org/10.3390/ijms23073935
APA StyleDias, M. S., Luo, X., Ribas, V. T., Petrs-Silva, H., & Koch, J. C. (2022). The Role of Axonal Transport in Glaucoma. International Journal of Molecular Sciences, 23(7), 3935. https://doi.org/10.3390/ijms23073935