Enhancement of the Water Affinity of Histidine by Zinc and Copper Ions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Computational Methods
3.2. Experiments Materials
3.3. Solubility Measurement
3.4. Measurement of pH
3.5. UV Spectroscopy
3.6. Fluorescence Spectrofluorophotometer
3.7. IR Spectra
3.8. Solid-State NMR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sundberg, R.J.; Martin, R.B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev. 1974, 74, 471–517. [Google Scholar] [CrossRef]
- Wang, L.; Sun, N.; Terzyan, S.; Zhang, X.; Benson, D.R. A histidine/tryptophan π-stacking interaction stabilizes the heme-independent folding core of microsomal apocytochrome b5 relative to that of mitochondrial apocytochrome b5. Biochemistry 2006, 45, 13750–13759. [Google Scholar] [CrossRef] [PubMed]
- Henry, M. Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules. ChemPhysChem 2002, 3, 607–616. [Google Scholar] [CrossRef]
- Graham, B.; Comba, P.; Hearn, M.T.W.; Spiccia, L. An examination of the binding behavior of histidine-containing peptides with immobilized metal complexes derived from the macrocyclic ligand, 1,4,7-triazacyclononane. J. Biol. Inorg. Chem. 2007, 12, 11–21. [Google Scholar] [CrossRef]
- Miessler, G.L.; Tarr, D.A. Inorganic Chemistry, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Ginotra, Y.P.; Kulkarni, P.P. Solution structure of physiological Cu(His)2: Novel considerations into imidazole coordination. lnorg. Chem. 2009, 48, 7000–7002. [Google Scholar] [CrossRef]
- Annual Review of BiophysicsWatly, J.; Simonovsky, E.; Wieczorek, R.; Barbosa, N.; Miller, Y.; Kozlowski, H. Insight into the coordination and the binding sites of Cu2+ by the histidyl-6-tag using experimental and computational tools. lnorg. Chem. 2014, 53, 6675–6683. [Google Scholar]
- Milorey, B.; Malyshka, D.; Schweitzer-Stenner, R. pH dependence of ferricytochrome c conformational transitions during binding to cardiolipin membranes: Evidence for histidine as the distal ligand at neutral pH. J. Phys. Chem. Lett. 2017, 8, 1993–1998. [Google Scholar] [CrossRef]
- Reddy, A.S.; Sastry, G.N. Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: A theoretical study. J. Phys. Chem. A 2005, 109, 8893–8903. [Google Scholar] [CrossRef]
- Dougherty, D.A. Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163–168. [Google Scholar] [CrossRef]
- Liao, S.; Du, Q.; Meng, J.; Pang, Z.; Huang, R. The multiple roles of histidine in protein interactions. Chem. Cent. J. 2013, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A. Evidence for a functionally important histidine residue in human tyrosine hydroxylase. Amino Acids 1995, 9, 285–292. [Google Scholar] [CrossRef]
- Covés-Datson, E.M.; King, S.R.; Legendre, M.; Swanson, M.D.; Gupta, A.; Claes, S.; Meagher, J.L.; Boonen, A.; Zhang, L.; Kalveram, B.; et al. Targeted disruption of π–πstacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity. Sci. Rep. 2021, 11, 656. [Google Scholar] [CrossRef]
- Chang, K.-L.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Development of lysine–histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J. Control. Release 2011, 156, 195–202. [Google Scholar] [CrossRef]
- Gu, J.; Wang, X.; Jiang, X.; Chen, Y.; Chen, L.; Fang, X.-l.; Sha, X. Self-assembled carboxymethyl poly (L-histidine) coated poly +²-amino ester)/DNA complexes for gene transfection. Biomaterials 2012, 33, 644–658. [Google Scholar] [CrossRef]
- Ferrer-Miralles, N.; Corchero, J.L.; Kumar, P.; Cedano, J.A.; Gupta, K.C.; Villaverde, A.; Vazquez, E. Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microb. Cell Fact. 2011, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
- Hoch, E.; Lin, W.; Chai, J.; Hershfinkel, M.; Fu, D.; Sekler, I. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc. Natl. Acad. Sci. USA 2012, 109, 7202. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L. Investigation of the Copper Binding Site and the Role of Histidine as a Ligand in Riboflavin Binding Protein. lnorg. Chem. 2008, 47, 6867–6872. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, Y.; Suzuki, T.; Arimori, T.; Ikemura, N.; Mihara, E.; Kirita, Y.; Ohgitani, E.; Mazda, O.; Motooka, D.; Nakamura, S.; et al. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat. Commun. 2021, 12, 3802. [Google Scholar] [CrossRef]
- Thompsett, A.R.; Abdelraheim, S.R.; Daniels, M.; Brown, D.R. High Affinity Binding between Copper and Full-length Prion Protein Identified by Two Different Techniques*. J. Biol. Chem. 2005, 280, 42750–42758. [Google Scholar] [CrossRef] [Green Version]
- Christianson, D.W.; Alexander, R.S. Carboxylate-histidine-zinc interactions in protein structure and function. J. Am. Chem. Soc. 1989, 111, 6412–6419. [Google Scholar] [CrossRef]
- Schölmerich, J.; Krauss, E.; Wietholtz, H.; Köttgen, E.; Löhle, E.; Gerok, W. Bioavailability of zinc from zinc-histidine complexes. II Studies on patients with liver cirrhosis and the influence of the time of application. Am. J. Clin. Nutr. 1987, 45, 1487–1491. [Google Scholar] [CrossRef]
- Schölmerich, J.; Freudemann, A.; Köttgen, E.; Wietholtz, H.; Steiert, B.; Löhle, E.; Häussinger, D.; Gerok, W. Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulfate in healthy men. Am. J. Clin. Nutr. 1987, 45, 1480–1486. [Google Scholar] [CrossRef]
- Sarkar, B. Treatment of Wilson and Menkes Diseases. Chem. Rev. 1999, 99, 2535–2544. [Google Scholar] [CrossRef]
- Bahng, J.H.; Yeom, B.; Wang, Y.C.; Tung, S.O.; Hoff, J.D.; Kotov, N. Anomalous dispersions of ‘hedgehog’ particles. Nature 2015, 517, 596–599. [Google Scholar] [CrossRef]
- Babu, N.J.; Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des. 2011, 11, 2662–2679. [Google Scholar] [CrossRef]
- Ashbaugh, H.S.; Pratt, L.R. Colloquium: Scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 2006, 78, 159–178. [Google Scholar] [CrossRef]
- Li, Z.; Loh, X.J. Water soluble polyhydroxyalkanoates: Future materials for therapeutic applications. Chem. Soc. Rev. 2015, 44, 2865–2879. [Google Scholar] [CrossRef]
- Schaper, L.-A.; Hock, S.J.; Herrmann, W.A.; Kühn, F.E. Synthesis and application of water-soluble NHC transition-metal complexes. Angew. Chem. Int. Ed. 2013, 52, 270–289. [Google Scholar] [CrossRef]
- Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science 2012, 338, 1042–1046. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Xi, W.; Nussinov, R.; Ma, B. Protein ensembles: How does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 2016, 116, 6516–6551. [Google Scholar] [CrossRef] [PubMed]
- Berne, B.J.; Weeks, J.D.; Zhou, R. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 2009, 60, 85–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and spreading. Rev. Mod. Phys. 2009, 81, 739–805. [Google Scholar] [CrossRef]
- Shi, G.; Dang, Y.; Pan, T.; Liu, X.; Liu, H.; Li, S.; Zhang, L.; Zhao, H.; Li, S.; Han, J.; et al. Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations. Phys. Rev. Lett. 2016, 117, 238102. [Google Scholar] [CrossRef] [PubMed]
- Rimola, A.; Rodríguez-Santiago, L.; Sodupe, M. Cation–π interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and His amino acids in the gas phase. Insights from first-principles calculations. J. Phys. Chem. B 2006, 110, 24189–24199. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, S.; Ying, F.; Su, P.; Wu, W. Valence Bond Based Energy Decomposition Analysis Scheme and Its Application to Cation–π Interactions. J. Phys. Chem. A 2018, 122, 5886–5894. [Google Scholar] [CrossRef]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Deschamps, P.; Kulkarni, P.P.; Gautam-Basak, M.; Sarkar, B. The saga of copper(II)-L-histidine. Coord. Chem. Rev. 2005, 249, 895–909. [Google Scholar] [CrossRef]
- Perrin, D.D.; Sharma, V.S. Histidine complexes with some bivalent cations. J. Chem. Soc. A 1967, 724–728. [Google Scholar] [CrossRef]
- Sigel, H.; Griesser, R.; McCormick, D.B. On the structure of manganese (II)- and copper (II)-histidine complexes. Arch. Biochem. Biophys. 1969, 134, 217–227. [Google Scholar] [CrossRef]
- Mesu, J.G.; Visser, T.; Soulimani, F.; van Faassen, E.E.; de Peinder, P.; Beale, A.M.; Weckhuysen, B.M. New insights into the coordination chemistry and molecular structure of copper(II) histidine complexes in aqueous solutions. lnorg. Chem. 2006, 45, 1960–1971. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.; Denisov, S.A.; Roux, A.; Imbert, D.; Jonusauskas, G.; McClenaghan, N.D.; Seneque, O. Lanthanide luminescence modulation by cation-π interaction in a bioinspired scaffold: Selective detection of copper(I). Angew. Chem. Int. Ed. 2015, 54, 11453–11456. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, H. UV Raman markers for structural analysis of aromatic side chains in proteins. Anal. Sci. 2011, 27, 1077. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hong, M. Protonation, tautomerization, and rotameric structure of histidine: A comprehensive study by magic-angle-spinning solid-state NMR. J. Am. Chem. Soc. 2011, 133, 1534–1544. [Google Scholar] [CrossRef] [Green Version]
- Polfer, N.C.; Oomens, J.; Moore, D.T.; von Helden, G.; Meijer, G.; Dunbar, R.C. Infrared spectroscopy of phenylalanine Ag(I) and Zn(II) complexes in the gas phase. J. Am. Chem. Soc. 2006, 128, 517–525. [Google Scholar] [CrossRef]
- Kruck, T.P.A.; Sarkar, B. Structure of the species in the copper (II)–L-histidine system. Can. J. Chem. 1973, 51, 3563–3571. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision, A. 02; Gaussian. Inc.: Wallingford, CT, USA, 2009; p. 200. [Google Scholar]
- Peng, C.Y.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 1996, 17, 49–56. [Google Scholar] [CrossRef]
- Rumble, J.R. CRC Handbook of Chemistry and Physics, 98th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tu, Y.; Liu, H.; Shi, G.; Zhang, F.; Su, T.; Wu, Y.; Sun, J.; Zhang, L.; Zhang, S.; Fang, H. Selectivity mechanism of magnesium and calcium in cation-binding pocket structures of phosphotyrosine. Phys. Rev. E 2020, 101, 022410. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
Pure Water | ZnCl2 | CuCl2 | ||
---|---|---|---|---|
Solubility (mg·mL−1) | His | 41.9 | 233.4 1 | 244.4 1 |
Trp | 11.4 | 17.1 2 | 57.6 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhan, J.; Li, M.; Zhao, H.; Shi, G.; Wu, M.; Fang, H. Enhancement of the Water Affinity of Histidine by Zinc and Copper Ions. Int. J. Mol. Sci. 2022, 23, 3957. https://doi.org/10.3390/ijms23073957
Song Y, Zhan J, Li M, Zhao H, Shi G, Wu M, Fang H. Enhancement of the Water Affinity of Histidine by Zinc and Copper Ions. International Journal of Molecular Sciences. 2022; 23(7):3957. https://doi.org/10.3390/ijms23073957
Chicago/Turabian StyleSong, Yongshun, Jing Zhan, Minyue Li, Hongwei Zhao, Guosheng Shi, Minghong Wu, and Haiping Fang. 2022. "Enhancement of the Water Affinity of Histidine by Zinc and Copper Ions" International Journal of Molecular Sciences 23, no. 7: 3957. https://doi.org/10.3390/ijms23073957
APA StyleSong, Y., Zhan, J., Li, M., Zhao, H., Shi, G., Wu, M., & Fang, H. (2022). Enhancement of the Water Affinity of Histidine by Zinc and Copper Ions. International Journal of Molecular Sciences, 23(7), 3957. https://doi.org/10.3390/ijms23073957