Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells
Abstract
:1. Introduction
2. Results
2.1. Suppression of Cell Viability and Cell Proliferation by Coriloxin
2.2. Coriloxin Inhibits Colony Formation in CL1-5 Cells
2.3. Coriloxin Suppresses CL1-5 Cells’ Migration and Invasion Abilities
2.4. Putative Molecular Mechanisms of Coriloxin in Lung Adenocarcinoma Cells
3. Discussion
4. Materials and Methods
4.1. Fungal Fermentation
4.2. Compound Isolation and Purification
4.3. Structural Elucidation
4.4. Cell Culture
4.5. Cell Cytotoxicity Assay
4.6. Cell Proliferation Assay
4.7. Colony Formation Assays
4.8. Cell Migration and Invasion Assays
4.9. Gelatin Zymography Assay
4.10. Western Blot Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ma, M.; Liu, Y.; Zhou, T.; Wang, K.; Deng, Z.; Hong, K. PreQ0 Base, an Unusual Metabolite with Anti-cancer Activity from Streptomyces qinglanensis 172205. Anticancer Agents Med. Chem. 2015, 15, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.C.; Kharwar, R.N.; Strobel, G.A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 2009, 4, 1511–1532. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Wang, Y.Z.; Chen, Y.P. The fungal barcoding work in Taiwan. In Book of Abstracts, 2011 TELDAP International Conference; Academia Sinica: Taipei, Taiwan, 2011. [Google Scholar]
- Petch, T. Revisions of Ceylon fungi (Part VII). Ann. R. Bot. Gard. Perad. 1924, 9, 119–184. [Google Scholar]
- Hsiao, H.Y. Chemical Constitutes from the Fermented Broths of Nalanthamala psidii YMJ400, Trichobotrys effuse YMJ1179 and Alveophoma caballeroi YMJ309 Isolated in Taiwan. Master’s Thesis, Taipei Medical University, Taipei, Taiwan, 2012. [Google Scholar]
- Chen, J.J.; Wang, S.W.; Hsiao, H.Y.; Lee, M.S.; Ju, Y.M.; Kuo, Y.H.; Lee, T.H. Aliphatic phenolic ethers from Trichobotrys effuse. J. Nat. Prod. 2014, 77, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Nuthan, B.R.; Rakshith, D.; Marulasiddaswamy, K.M.; Rao, H.C.Y.; Ramesha, K.P.; Mohana, N.C.; Siddappa, S.; Darshan, D.; Kumara, K.K.S.; Satish, S. Application of optimized and validated agar overlay TLC–bioautography assay for detecting the antimicrobial metabolites of pharmaceutical interest. J. Chromatogr. Sci. 2020, 58, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Murayama, T.; Takahashi, K.; Okada, K.; Katohda, S.; Ikeda, M. Three Oxygenated cyclohexenone derivatives produced by an endophytic fungus. Biosci. Biotechnol. Biochem. 2005, 69, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Hu, Z.Y.; Shen, Y.M. Two new cyclopeptides and one new nonenolide from Xylaria sp. 101. Nat. Prod. Commun. 2011, 6, 1843–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tansuwan, S.; Chanaprat, P.; Teerawatananond, T.; Muangsin, N.; Pornpakakul, S. (4S,5S,6S)-4-Hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-en-1-one. Acta Cryst. 2010, E66, o2263. [Google Scholar] [CrossRef] [Green Version]
- Eo, J.K.; Choi, M.S.; Eom, A.H. Diversity of endophytic fungi isolated from Korean ginseng leaves. Mycobiology 2014, 42, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Husaini, H.; Wheatley-Price, P.; Clemons, M.; Shepherd, F.A. Prevention and management of bone metastases in lung cancer: A review. J. Thorac. Oncol. 2009, 4, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanvorachote, P.; Chamni, S.; Ninsontia, C.; Phiboonchaiyanan, P.P. Potential anti-metastasis natural compounds for lung cancer. Anticancer Res. 2016, 36, 5707–5718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Q.Z.; Wang, Y.; Tang, Z.P.; Fu, L.; Li, Q.C.; Wang, E.D.; Wang, E.H. Derlin-1 is overexpressed in non-small cell lung cancer and promotes cancer cell invasion via EGFR-ERK-mediated up-regulation of MMP-2 and MMP-9. Am. J. Pathol. 2013, 182, 954–964. [Google Scholar] [CrossRef]
- Chien, J.T.; Chang, R.H.; Hsieh, C.H.; Hsu, C.Y.; Wang, C.C. Antioxidant property of Taraxacum formosanum Kitam and its antitumor activity in non-small-cell lung cancer cells. Phytomedicine 2018, 49, 1–10. [Google Scholar] [CrossRef]
- Wang, C.C.; Hsu, Y.L.; Chang, C.J.; Wang, C.J.; Hsiao, T.H.; Pan, S.H. Inhibitor of DNA-binding protein 4 inhibits cancer metastasis through regulation of epithelial mesenchymal transition in non-small cell lung cancer. Cancers 2019, 11, 2021. [Google Scholar] [CrossRef] [Green Version]
- Kornienko, A.; Evidente, A.; Vurro, M.; Mathieu, V.; Cimmino, A.; Evidente, M.; van Otterlo, W.A.; Dasari, R.; Lefranc, F.; Kiss, R. Toward a cancer drug of fubgal origin. Med. Res. Rev. 2015, 35, 937–967. [Google Scholar] [CrossRef]
- Péter, B.; Boldizsár, I.; Kovács, G.M.; Erdei, A.; Bajtay, Z.; Vörös, A.; Ramsden, J.J.; Szabó, I.; Bősze, S.; Horvath, R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021, 9, 1781. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 2008, 69, 1273–1278. [Google Scholar] [CrossRef]
- Strobel, G.A.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic fungi. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, L.; Incani, U.C.; Steelman, L.S.; Abrams, S.L.; Falcone, I.; Curatolo, A.D.; Chappell, W.H.; Franklin, R.A.; Vari, S.; Cognetti, F.; et al. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC. Curr. Pharm. Des. 2014, 20, 3944–3957. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res. 2019, 79, 1019–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V. Epithelial Mesenchymal Tranition in Tumor Metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef]
- Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 2011, 68, 3033–3046. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.F.; Wang, C.C.; Chang, G.C.; Chen, C.Y.; Chen, H.Y.; Cheng, C.L.; Yang, Y.P.; Wu, C.Y.; Shih, F.Y.; Liu, C.C.; et al. A new tumor suppressor DnaJ-like heat shock protein HLJ1 and survival of patients with non-small cell lung carcinoma. J. Natl. Cancer Inst. 2006, 98, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Tsai, M.F.; Hong, T.M.; Chang, G.C.; Chen, C.Y.; Yang, W.M.; Chen, J.J.W.; Yang, P.C. The Transcriptional Factor YY1 Up-regulates the Novel Invasion Suppressor HLJ1 Expression and Inhibits Cancer Cell Invasion. Oncogene 2005, 24, 4081–4093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, Y.M.; Gu, J.R.; Hsieh, H.J. Nectriaceous fungi collected from forests in Taiwan. Bot. Stud. 2007, 48, 187–203. [Google Scholar]
- Chen, J.J.W.; Peck, K.; Hong, T.M.; Yang, S.C.; Sher, Y.P.; Shih, J.Y.; Wu, R.; Cheng, J.L.; Roffler, S.R.; Wu, C.W.; et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res. 2001, 61, 5223–5230. [Google Scholar] [PubMed]
- Chen, B.H.; Hsieh, C.H.; Tsai, S.Y.; Wang, C.Y.; Wang, C.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep. 2020, 10, 5163. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Su, K.Y.; Chen, H.Y.; Chang, S.Y.; Shen, C.F.; Hsieh, C.H.; Hong, Q.S.; Chiang, C.C.; Chang, G.C.; Yu, S.L.; et al. HOXA5 inhibits metastasis via regulating cytoskeletal remodelling and associates with prolonged survival in non-small-cell lung carcinoma. PLoS ONE 2015, 10, e0124191. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, Y.-H.; Wang, Y.-X.; Peng, W.-H.; Chi, N.-Y.; Lee, T.-H.; Wang, C.-C. Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 3991. https://doi.org/10.3390/ijms23073991
Kuo Y-H, Wang Y-X, Peng W-H, Chi N-Y, Lee T-H, Wang C-C. Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells. International Journal of Molecular Sciences. 2022; 23(7):3991. https://doi.org/10.3390/ijms23073991
Chicago/Turabian StyleKuo, Yu-Hsuan, Yi-Xuan Wang, Wan-Hua Peng, Nian-Yu Chi, Tzong-Huei Lee, and Chi-Chung Wang. 2022. "Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells" International Journal of Molecular Sciences 23, no. 7: 3991. https://doi.org/10.3390/ijms23073991
APA StyleKuo, Y. -H., Wang, Y. -X., Peng, W. -H., Chi, N. -Y., Lee, T. -H., & Wang, C. -C. (2022). Coriloxin Exerts Antitumor Effects in Human Lung Adenocarcinoma Cells. International Journal of Molecular Sciences, 23(7), 3991. https://doi.org/10.3390/ijms23073991