Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus
Abstract
:1. Introduction
2. Results
2.1. Effects of T3 on Na+ and K+ Current Densities
2.2. Na+ Current Densities in Hippocampal Neurons from Pax8−/− Mice
2.3. K+ Current Densities in Hippocampal Neurons from Pax8−/− Mice
2.4. Membrane Capacitance in Hippocampal Neurons from Pax8−/− Mice
2.5. Expression of Na+/K+-ATPase Isoforms in Hippocampal Tissue from Pax8−/− Mice
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. Hippocampal Neuronal Culture
4.3. Cell Treatment
4.4. Acutely Dissociated Hippocampal Neurons
4.5. Patch-Clamp Recording Conditions
4.6. Hippocampal Tissue Preparation and Immunoblotting
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hashemipour, M.; Rad, A.H.; Dalili, S. Guideline for the Treatment of Hypothyroidism in Prematurity. Int. J. Prev. Med. 2021, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.V.; LaFranchi, S.H. Congenital hypothyroidism. Orphanet J. Rare Dis. 2010, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topaloglu, A.K. Athyreosis, dysgenesis, and dyshormonogenesis in congenital hypothyroidism. Pediatr. Endocrinol. Rev. 2006, 3 (Suppl. 3), 498–502. [Google Scholar] [PubMed]
- Weber, G.; Vigone, M.C.; Passoni, A.; Odoni, M.; Paesano, P.L.; Dosio, F.; Proverbio, M.C.; Corbetta, C.; Persani, L.; Chiumello, G. Congenital hypothyroidism with gland in situ: Diagnostic re-evaluation. J. Endocrinol. Investig. 2005, 28, 516–522. [Google Scholar] [CrossRef]
- Kopp, P. Perspective: Genetic defects in the etiology of congenital hypothyroidism. Endocrinology 2002, 143, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Chowdhury, K.; Gruss, P. Follicular cells of the thyroid gland require Pax8 gene function. Nat. Genet. 1998, 19, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Pohlenz, J.; Vliet, G.V.; Deladoëy, J. Chapter 8—Developmental Abnormalities of the Thyroid. In Genetic Diagnosis of Endocrine Disorders, 2nd ed.; Weiss, R.E., Refetoff, S., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 127–136. [Google Scholar]
- Nettore, I.C.; Cacace, V.; De Fusco, C.; Colao, A.; Macchia, P.E. The molecular causes of thyroid dysgenesis: A systematic review. J. Endocrinol. Investig. 2013, 36, 654–664. [Google Scholar] [CrossRef]
- Wistuba, J.; Mittag, J.; Luetjens, C.M.; Cooper, T.G.; Yeung, C.H.; Nieschlag, E.; Bauer, K. Male congenital hypothyroid Pax8−/− mice are infertile despite adequate treatment with thyroid hormone. J. Endocrinol. 2007, 192, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Mittag, J.; Winterhager, E.; Bauer, K.; Grümmer, R. Congenital hypothyroid female pax8-deficient mice are infertile despite thyroid hormone replacement therapy. Endocrinology 2007, 148, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Vincenzi, M.; Camilot, M.; Ferrarini, E.; Teofoli, F.; Venturi, G.; Gaudino, R.; Cavarzere, P.; De Marco, G.; Agretti, P.; Dimida, A.; et al. Identification of a novel pax8 gene sequence variant in four members of the same family: From congenital hypothyroidism with thyroid hypoplasia to mild subclinical hypothyroidism. BMC Endocr. Disord. 2014, 14, 69. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Chai, J.; Liu, S.; Zang, H.; Yu, X.; Tian, L.; Li, H.; Han, B. A De novo PAX8 mutation in a Chinese child with congenital thyroid dysgenesis. Int. J. Clin. Exp. Pathol. 2015, 8, 11434–11439. [Google Scholar] [PubMed]
- Plachov, D.; Chowdhury, K.; Walther, C.; Simon, D.; Guenet, J.L.; Gruss, P. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 1990, 110, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Poleev, A.; Fickenscher, H.; Mundlos, S.; Winterpacht, A.; Zabel, B.; Fidler, A.; Gruss, P.; Plachov, D. PAX8, a human paired box gene: Isolation and expression in developing thyroid, kidney and Wilms’ tumors. Development 1992, 116, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Zannini, M.; Avantaggiato, V.; Biffali, E.; Arnone, M.I.; Sato, K.; Pischetola, M.; Taylor, B.A.; Phillips, S.J.; Simeone, A.; Di Lauro, R. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997, 16, 3185–3197. [Google Scholar] [CrossRef] [Green Version]
- Grasberger, H.; Ringkananont, U.; LeFrancois, P.; Abramowicz, M.; Vassart, G.; Refetoff, S. Thyroid Transcription Factor 1 Rescues PAX8/p300 Synergism Impaired by a Natural PAX8 Paired Domain Mutation with Dominant Negative Activity. Mol. Endocrinol. 2005, 19, 1779–1791. [Google Scholar] [CrossRef] [Green Version]
- Lele, A.V.; Clutter, S.; Price, E.; De Ruyter, M.L. Severe hypothyroidism presenting as myxedema coma in the postoperative period in a patient taking sunitinib: Case report and review of literature. J. Clin. Anesth. 2013, 25, 47–51. [Google Scholar] [CrossRef]
- Wood-Allum, C.A.; Shaw, P.J. Thyroid disease and the nervous system. Handb. Clin. Neurol. 2014, 120, 703–735. [Google Scholar] [CrossRef]
- Dubbs, S.B.; Spangler, R. Hypothyroidism: Causes, killers, and life-saving treatments. Emerg. Med. Clin. N. Am. 2014, 32, 303–317. [Google Scholar] [CrossRef]
- Papi, G.; Corsello, S.M.; Pontecorvi, A. Clinical concepts on thyroid emergencies. Front. Endocrinol. (Lausanne) 2014, 5, 102. [Google Scholar] [CrossRef] [Green Version]
- Spitzweg, C.; Reincke, M.; Gärtner, R. Thyroid emergencies: Thyroid storm and myxedema coma. Internist 2017, 58, 1011–1019. [Google Scholar] [CrossRef]
- Cruz-Flores, S. Neurological Complications of Endocrine Emergencies. Curr. Neurol. Neurosci. Rep. 2021, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Garcés, P.; Vicente, R.; Wibral, M.; Pineda-Pardo, J.Á.; López, M.E.; Aurtenetxe, S.; Marcos, A.; de Andrés, M.E.; Yus, M.; Sancho, M.; et al. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front. Aging Neurosci. 2013, 5, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansing, R.W.; Trunnell, J.B. Electroencephalographic Changes Accompanying Thyroid Deficiency in Man1. J. Clin. Endocrinol. Metab. 1963, 23, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Hermann, H.T.; Quarton, G.C. Changes in alpha frequency with change in thyroid hormone level. Electroencephalogr. Clin. Neurophysiol. 1964, 16, 515–518. [Google Scholar] [CrossRef]
- Dietzel, I.D.; Mohanasundaram, S.; Niederkinkhaus, V.; Hoffmann, G.; Meyer, J.W.; Reiners, C.; Blasl, C.; Bohr, K. Thyroid Hormone Effects on Sensory Perception, Mental Speed, Neuronal Excitability and Ion Channel Regulation. In Thyroid Hormone; Agrawal, N.K., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Uma, D.; Rabbani, R.; Lee, J.H.; Gavini, D.R.; Shah, P.H.; Hamid, P. Does Hormone Supplementation With Levothyroxine Improve Hypothyroid Impaired Cognitive Dysfunction? Cureus 2021, 13, e17885. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Lin, L.; Yang, H.; Gao, F.; Gong, T.; Edden, R.A.E.; Wang, G. Brain GABA+ changes in primary hypothyroidism patients before and after levothyroxine treatment: A longitudinal magnetic resonance spectroscopy study. Neuroimage Clin. 2020, 28, 102473. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Gao, F.; Wang, Q.; Zhao, B.; Gong, T.; Wang, Z.; Chen, W.; Wang, G.; Edden, R.A. Investigation of brain GABA+ in primary hypothyroidism using edited proton MR spectroscopy. Clin. Endocrinol. 2017, 86, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, V.; Crupi, D.; Bagnato, S.; Quartarone, A.; Benvenga, S.; Bartolone, L.; Ghilardi, M.F.; Trimarchi, F.; Girlanda, P.; Battaglia, F. Neural response to transcranial magnetic stimulation in adult hypothyroidism and effect of replacement treatment. J. Neurol. Sci. 2008, 266, 38–43. [Google Scholar] [CrossRef]
- Makii, E.A.; Nerush, P.A.; Rodinskii, A.G.; Myakoushko, V.A. Evoked Activity of Afferent and Efferent Fibers of the Sciatic Nerve in Rats under Conditions of Experimental Hyperthyroidism. Neurophysiology 2002, 34, 44–51. [Google Scholar] [CrossRef]
- Potthoff, O.; Dietzel, I.D. Thyroid hormone regulates Na+ currents in cultured hippocampal neurons from postnatal rats. Proc. Biol. Sci. 1997, 264, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Luciani, P.; Cellai, I.; Deledda, C.; Baglioni, S.; Saccardi, R.; Urbani, S.; Francini, F.; Squecco, R.; Giuliani, C.; et al. Thyroid hormones promote cell differentiation and up-regulate the expression of the seladin-1 gene in in vitro models of human neuronal precursors. J. Endocrinol. 2008, 197, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, C.; Sampson, S.R. Characterization of thyroid hormone effects on Na channel synthesis in cultured skeletal myotubes: Role of Ca2+. Endocrinology 1989, 125, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.P.; Clausen, T. Thyroid hormone-induced upregulation of Na+ channels and Na(+)-K+ pumps: Implications for contractility. Am. J. Physiol. 1998, 274, R864–R867. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Dedkova, E.N.; Fiening, J.P.; Ojamaa, K.; Blatter, L.A.; Lipsius, S.L. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J. Physiol. 2003, 546, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Dietzel, I.D. Thyroid hormone regulates excitability in central neurons from postnatal rats. Neuroscience 2004, 125, 369–379. [Google Scholar] [CrossRef]
- Sánchez-Alonso, J.L.; Sánchez-Aguilera, A.; Vicente-Torres, M.A.; Colino, A. Intrinsic excitability is altered by hypothyroidism in the developing hippocampal CA1 pyramidal cells. Neuroscience 2012, 207, 37–51. [Google Scholar] [CrossRef]
- Sánchez-Alonso, J.L.; Muñoz-Cuevas, J.; Vicente-Torres, M.A.; Colino, A. Role of low-voltage-activated calcium current on the firing pattern alterations induced by hypothyroidism in the rat hippocampus. Neuroscience 2010, 171, 993–1005. [Google Scholar] [CrossRef]
- Asher, R. Myxoedematous madness. Br. Med. J. 1949, 2, 555–562. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Yu, H.; Larre, I.; Dube, P.R.; Kennedy, D.J.; Tang, W.H.W.; Westfall, K.; Pierre, S.V.; Xie, Z.; et al. Regulation of Na/K-ATPase expression by cholesterol: Isoform specificity and the molecular mechanism. Am. J. Physiol. Cell Physiol. 2020, 319, C1107–C1119. [Google Scholar] [CrossRef]
- Wyckelsma, V.L.; McKenna, M.J. Effects of Age on Na(+),K(+)-ATPase Expression in Human and Rodent Skeletal Muscle. Front. Physiol. 2016, 7, 316. [Google Scholar] [CrossRef] [Green Version]
- Kutz, L.C.; Mukherji, S.T.; Wang, X.; Bryant, A.; Larre, I.; Heiny, J.A.; Lingrel, J.B.; Pierre, S.V.; Xie, Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E620–E629. [Google Scholar] [CrossRef] [PubMed]
- Pirkmajer, S.; Chibalin, A.V. Na,K-ATPase regulation in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E1–E31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, W.C.; Mikkelsen, R.B. The role of pump number and intracellular sodium and potassium in determining Na,K pump activity in human erythrocytes. Metabolism 1987, 36, 345–350. [Google Scholar] [CrossRef]
- McBride, B.W.; Early, R.J. Energy expenditure associated with sodium/potassium transport and protein synthesis in skeletal muscle and isolated hepatocytes from hyperthyroid sheep. Br. J. Nutr. 1989, 62, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Engl, E.; Attwell, D. Non-signalling energy use in the brain. J. Physiol. 2015, 593, 3417–3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail-Beigi, F.; Edelman, I.S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J. Gen. Physiol. 1971, 57, 710–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valcana, T.; Timiras, P.S. Effect of hypothyroidism on ionic metabolism and Na-K activated ATP phosphohydrolase activity in the developing rat brain. J. Neurochem. 1969, 16, 935–943. [Google Scholar] [CrossRef]
- Lindholm, D.B. Age-dependent inhibition of neuronal protein synthesis by hypothyroidism in the developing rat brain cortex. Biochem. Biophys. Res. Commun. 1982, 109, 805–812. [Google Scholar] [CrossRef]
- Lindholm, D.B. Thyroxine regulates the activity and the concentration of synaptic plasma membrane Na,K-ATPase in the developing rat brain cortex. Brain Res. 1984, 317, 83–88. [Google Scholar] [CrossRef]
- Peng, L.; Martin-Vasallo, P.; Sweadner, K.J. Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J. Neurosci. 1997, 17, 3488–3502. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Dai, M.; Wilson, T.M.; Omelchenko, I.; Klimek, J.E.; Wilmarth, P.A.; David, L.L.; Nuttall, A.L.; Gillespie, P.G.; Shi, X. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS ONE 2011, 6, e16547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakaki, X.; McCleary, P.; Techy, M.; Chiang, J.; Kuo, L.; Fonteh, A.N.; Armstrong, B.; Levy, D.; Harrington, M.G. Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat. Fluids Barriers CNS 2013, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapri-Pardes, E.; Katz, A.; Haviv, H.; Mahmmoud, Y.; Ilan, M.; Khalfin-Penigel, I.; Carmeli, S.; Yarden, O.; Karlish, S.J. Stabilization of the α2 isoform of Na,K-ATPase by mutations in a phospholipid binding pocket. J. Biol. Chem. 2011, 286, 42888–42899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toustrup-Jensen, M.S.; Einholm, A.P.; Schack, V.R.; Nielsen, H.N.; Holm, R.; Sobrido, M.J.; Andersen, J.P.; Clausen, T.; Vilsen, B. Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+,K+-ATPase mutants causing neurological disease. J. Biol. Chem. 2014, 289, 3186–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, R.; Klein, L.; Shyjan, A.W.; Rakic, P.; Levenson, R. Neurons and astroglia express distinct subsets of Na,K-ATPase alpha and beta subunits. Brain Res. Mol. Brain Res. 1994, 21, 333–343. [Google Scholar] [CrossRef]
- Edwards, I.J.; Bruce, G.; Lawrenson, C.; Howe, L.; Clapcote, S.J.; Deuchars, S.A.; Deuchars, J. Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J. Neurosci. 2013, 33, 9913–9919. [Google Scholar] [CrossRef]
- Sundaram, S.M.; Safina, D.; Ehrkamp, A.; Faissner, A.; Heumann, R.; Dietzel, I.D. Differential expression patterns of sodium potassium ATPase alpha and beta subunit isoforms in mouse brain during postnatal development. Neurochem. Int. 2019, 128, 163–174. [Google Scholar] [CrossRef]
- Niederkinkhaus, V.; Marx, R.; Hoffmann, G.; Dietzel, I.D. Thyroid Hormone (T3)-Induced Up-Regulation of Voltage-Activated Sodium Current in Cultured Postnatal Hippocampal Neurons Requires Secretion of Soluble Factors from Glial Cells. Mol. Endocrinol. 2009, 23, 1494–1504. [Google Scholar] [CrossRef]
- Rami, A.; Patel, A.J.; Rabié, A. Thyroid hormone and development of the rat hippocampus: Morphological alterations in granule and pyramidal cells. Neuroscience 1986, 19, 1217–1226. [Google Scholar] [CrossRef]
- Schmitt, C.A.; McDonough, A.A. Developmental and thyroid hormone regulation of two molecular forms of Na+-K+-ATPase in brain. J. Biol. Chem. 1986, 261, 10439–10444. [Google Scholar] [CrossRef]
- Horowitz, B.; Hensley, C.B.; Quintero, M.; Azuma, K.K.; Putnam, D.; McDonough, A.A. Differential regulation of Na,K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J. Biol. Chem. 1990, 265, 14308–14314. [Google Scholar] [CrossRef]
- Bajpai, M.; Chaudhury, S. Transcriptional and post-transcriptional regulation of Na+,K(+)-ATPase alpha isoforms by thyroid hormone in the developing rat brain. Neuroreport 1999, 10, 2325–2328. [Google Scholar] [CrossRef] [PubMed]
- Atterwill, C.K.; Atkinson, D.J.; Bermudez, I.; Balazs, R. Effect of thyroid hormone and serum on the development of Na+, K+-adenosine triphosphatase and associated ion fluxes in cultures from rat brain. Neuroscience 1985, 14, 361–373. [Google Scholar] [CrossRef]
- Igelhorst, B.A.; Niederkinkhaus, V.; Karus, C.; Lange, M.D.; Dietzel, I.D. Regulation of neuronal excitability by release of proteins from glial cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonkers, M.A.; Ribera, A.B. Sensory Neuron Sodium Current Requires Nongenomic Actions of Thyroid Hormone During Development. J. Neurophysiol. 2008, 100, 2719–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonkers, M.A.; Ribera, A.B. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural. Dev. 2009, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, L.; Sakaguchi, Y.; Cui, G. G protein modulates thyroid hormone-induced Na(+) channel activation in ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H2119–H2129. [Google Scholar] [CrossRef] [Green Version]
- Niederkinkhaus, V. Thyroid Hormone Regulates Voltage-Gated Sodium Currents in Postnatal Rat Hippocampal Neurons via a Secretion of Soluble Factors from Glial Cells. Ph.D. Thesis, Ruhr University, Bochum, Germany, 2007. [Google Scholar]
- Ruiz-Marcos, A.; Sánchez-Toscano, F.; Escobar del Rey, F.; Morreale de Escobar, G. Reversible morphological alterations of cortical neurons in juvenile and adult hypothyroidism in the rat. Brain Res. 1980, 185, 91–102. [Google Scholar] [CrossRef]
- Berbel, P.J.; Escobar del Rey, F.; Morreale de Escobar, G.; Ruiz-Marcos, A. Effect of hypothyroidism on the size of spines of pyramidal neurons of the cerebral cortex. Brain Res. 1985, 337, 217–223. [Google Scholar] [CrossRef]
- Madeira, M.D.; Cadete-Leite, A.; Andrade, J.P.; Paula-Barbosa, M.M. Effects of hypothyroidism upon the granular layer of the dentate gyrus in male and female adult rats: A morphometric study. J. Comp. Neurol. 1991, 314, 171–186. [Google Scholar] [CrossRef]
- Carbone, E. Removal of Na+ channels in squid giant axons by perfusion with trypsin. Biochim. Biophys. Acta 1982, 693, 188–194. [Google Scholar] [CrossRef]
- Huguenard, J.R.; Hamill, O.P.; Prince, D.A. Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component. J. Neurophysiol. 1988, 59, 778–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrail, K.M.; Phillips, J.M.; Sweadner, K.J. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. J. Neurosci. 1991, 11, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.G.; Sanchez-Watts, G.; Emanuel, J.R.; Levenson, R. Cell-specific expression of mRNAs encoding Na(+),K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc. Natl. Acad. Sci. USA 1991, 88, 7425–7429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilbers, F.; Kopec, W.; Isaksen, T.J.; Holm, T.H.; Lykke-Hartmann, K.; Nissen, P.; Khandelia, H.; Poulsen, H. Tuning of the Na,K-ATPase by the beta subunit. Sci. Rep. 2016, 6, 20442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, C.; Sampson, S.R. Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal myotubes. Endocrinology 1988, 123, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Skou, J.C.; Esmann, M. The Na,K-ATPase. J. Bioenerg. Biomembr. 1992, 24, 249–261. [Google Scholar] [CrossRef]
- Kaplan, J.H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 2002, 71, 511–535. [Google Scholar] [CrossRef]
- Liang, M.; Tian, J.; Liu, L.; Pierre, S.; Liu, J.; Shapiro, J.; Xie, Z.J. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 2007, 282, 10585–10593. [Google Scholar] [CrossRef] [Green Version]
- Efendiev, R.; Bertorello, A.M.; Zandomeni, R.; Cinelli, A.R.; Pedemonte, C.H. Agonist-dependent Regulation of Renal Na+, K+-ATPase Activity Is Modulated by Intracellular Sodium Concentration. J. Biol. Chem. 2002, 277, 11489–11496. [Google Scholar] [CrossRef]
- Antonenko, Y.N.; Rokitskaya, T.I.; Huczyński, A. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Biochim. Biophys. Acta (BBA) Biomembr. 2015, 1848, 995–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calò, M.; Lo Cascio, P.; Licata, P.; Richetti, A.; Zaccone, G.; Naccari, F. Effects of monensin on Na(+)/K(+)-ATPase and Ca(++)-AtPase activities in chick skeletal muscle and myocardium after subacute treatment. Eur. J. Histochem. 2002, 46, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senatorov, V.V.; Stys, P.K.; Hu, B. Regulation of Na+,K+-ATPase by persistent sodium accumulation in adult rat thalamic neurones. J. Physiol. 2000, 525 Pt 2, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Brewer, G.J.; Cotman, C.W. Survival and growth of hippocampal neurons in defined medium at low density: Advantages of a sandwich culture technique or low oxygen. Brain Res. 1989, 494, 65–74. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundaram, S.M.; Marx, R.; Lesslich, H.M.; Dietzel, I.D. Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus. Int. J. Mol. Sci. 2022, 23, 4133. https://doi.org/10.3390/ijms23084133
Sundaram SM, Marx R, Lesslich HM, Dietzel ID. Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus. International Journal of Molecular Sciences. 2022; 23(8):4133. https://doi.org/10.3390/ijms23084133
Chicago/Turabian StyleSundaram, Sivaraj Mohana, Romy Marx, Heiko M. Lesslich, and Irmgard D. Dietzel. 2022. "Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus" International Journal of Molecular Sciences 23, no. 8: 4133. https://doi.org/10.3390/ijms23084133
APA StyleSundaram, S. M., Marx, R., Lesslich, H. M., & Dietzel, I. D. (2022). Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus. International Journal of Molecular Sciences, 23(8), 4133. https://doi.org/10.3390/ijms23084133