A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine
Abstract
:1. Introduction
2. Adult Mesenchymal Stem Cells
3. Oral Mesenchymal Stem Cells
4. Anti-Inflammatory and Immunomodulatory Properties of hGMSCs
5. Extracellular Vesicles (EVs) and Secretome Derived from hGMSCs
6. hGMSCs and Regenerative Medicine
7. Disadvantages and Limitations on hGMSCs Practical Use
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, F.; Liu, Z.M.; Zheng, S.G. Updates on GMSCs Treatment for Autoimmune Diseases. Curr. Stem Cell Res. Ther. 2018, 13, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J. Stromal mechanisms of bone marrow: Cloning in vitro and retransplantation in vivo. Haematol. Blood Transfus. 1980, 25, 19–29. [Google Scholar] [CrossRef]
- Marconi, G.D.; Porcheri, C.; Trubiani, O.; Mitsiadis, T.A. Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int. J. Mol. Sci. 2021, 22, 2473. [Google Scholar] [CrossRef] [PubMed]
- Hass, R.; Kasper, C.; Bohm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. CCS 2011, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isobe, Y.; Koyama, N.; Nakao, K.; Osawa, K.; Ikeno, M.; Yamanaka, S.; Okubo, Y.; Fujimura, K.; Bessho, K. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int. J. Oral Maxillofac. Surg. 2016, 45, 124–131. [Google Scholar] [CrossRef]
- Trubiani, O.; Pizzicannella, J.; Caputi, S.; Marchisio, M.; Mazzon, E.; Paganelli, R.; Paganelli, A.; Diomede, F. Periodontal Ligament Stem Cells: Current Knowledge and Future Perspectives. Stem Cells Dev. 2019, 28, 995–1003. [Google Scholar] [CrossRef]
- Diomede, F.; Marconi, G.D.; Cavalcanti, M.; Pizzicannella, J.; Pierdomenico, S.D.; Fonticoli, L.; Piattelli, A.; Trubiani, O. VEGF/VEGF-R/RUNX2 Upregulation in Human Periodontal Ligament Stem Cells Seeded on Dual Acid Etched Titanium Disk. Materials 2020, 13, 706. [Google Scholar] [CrossRef] [Green Version]
- Al-Qadhi, G.; Aboushady, I.; Al-Sharabi, N. The Gingiva from the Tissue Surrounding the Bone to the Tissue Regenerating the Bone: A Systematic Review of the Osteogenic Capacity of Gingival Mesenchymal Stem Cells in Preclinical Studies. Stem Cells Int. 2021, 2021, 6698100. [Google Scholar] [CrossRef]
- Grawish, M.E. Gingival-derived mesenchymal stem cells: An endless resource for regenerative dentistry. World J. Stem Cells 2018, 10, 116–118. [Google Scholar] [CrossRef]
- Gorski, B. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies. Postep Hig. Med. Dosw. 2016, 70, 858–871. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, S.; Liu, Y.; Uyanne, J.; Shi, Y.; Shi, S.; Le, A.D. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J. Immunol. 2009, 183, 7787–7798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.Q.; Yang, P.S.; Ge, S.H. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. J. Dent. Sci. 2016, 11, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diomede, F.; Zini, N.; Pizzicannella, J.; Merciaro, I.; Pizzicannella, G.; D’Orazio, M.; Piattelli, A.; Trubiani, O. 5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells. Front. Genet. 2018, 9, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, T.S.; Scionti, D.; Diomede, F.; Grassi, G.; Pollastro, F.; Piattelli, A.; Cocco, L.; Bramanti, P.; Mazzon, E.; Trubiani, O. Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis. J. Cell. Biochem. 2017, 118, 819–828. [Google Scholar] [CrossRef]
- Pizzicannella, J.; Fonticoli, L.; Guarnieri, S.; Marconi, G.D.; Rajan, T.S.; Trubiani, O.; Diomede, F. Antioxidant Ascorbic Acid Modulates NLRP3 Inflammasome in LPS-G Treated Oral Stem Cells through NFkappaB/Caspase-1/IL-1beta Pathway. Antioxidants 2021, 10, 797. [Google Scholar] [CrossRef]
- Rao, S.R.; Subbarayan, R.; Dinesh, M.G.; Arumugam, G.; Raja, S.T. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp. Mol. Med. 2016, 48, e209. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yu, M.; Yan, X.; Wen, Y.; Zeng, Q.; Yue, W.; Yang, P.; Pei, X. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev. 2011, 20, 2093–2102. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, G.; Li, D.; Chen, X.; Pang, J.; Ke, J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 20982–20996. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Xin, C.; Zhang, Y.; Yan, J.; Chen, Z.; Xu, H.; Liang, M.; Wu, B.; Fang, F.; Qiu, W. Characterization of Odontogenic Differentiation from Human Dental Pulp Stem Cells Using TMT-Based Proteomic Analysis. BioMed Res. Int. 2020, 2020, 3871496. [Google Scholar] [CrossRef]
- Ansari, S.; Chen, C.; Xu, X.; Annabi, N.; Zadeh, H.H.; Wu, B.M.; Khademhosseini, A.; Shi, S.; Moshaverinia, A. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann. Biomed. Eng. 2016, 44, 1908–1920. [Google Scholar] [CrossRef] [Green Version]
- Pizzicannella, J.; Diomede, F.; Gugliandolo, A.; Chiricosta, L.; Bramanti, P.; Merciaro, I.; Orsini, T.; Mazzon, E.; Trubiani, O. 3D Printing PLA/Gingival Stem Cells/ EVs Upregulate miR-2861 and -210 during Osteoangiogenesis Commitment. Int. J. Mol. Sci. 2019, 20, 3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Nakamura-Yamada, S.; Konoki, R.; Baba, S. Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem Cell Res. Ther. 2020, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.K.; Shih, H.H.; Parveen, F.; Lenzen, D.; Ito, E.; Chan, T.F.; Ke, L.Y. Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Marconi, G.D.; Fonticoli, L.; Guarnieri, S.; Cavalcanti, M.F.X.B.; Franchi, S.; Gatta, V.; Trubiani, O.; Pizzicannella, J.; Diomede, F. Ascorbic Acid: A New Player of Epigenetic Regulation in LPS-gingivalis Treated Human Periodontal Ligament Stem Cells. Oxidative Med. Cell. Longev. 2021, 2021, 6679708. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, Y.; Xie, L.; Liu, X.; Huang, Z.; Su, W. Mesenchymal stem cells in allergic diseases: Current status. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2020, 69, 35–45. [Google Scholar] [CrossRef]
- Silvestro, S.; Bramanti, P.; Trubiani, O.; Mazzon, E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. Int. J. Mol. Sci. 2020, 21, 659. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.T.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Avinash, K.; Malaippan, S.; Dooraiswamy, J.N. Methods of Isolation and Characterization of Stem Cells from Different Regions of Oral Cavity Using Markers: A Systematic Review. Int. J. Stem Cells 2017, 10, 12–20. [Google Scholar] [CrossRef]
- Nada, O.A.; El Backly, R.M. Stem Cells From the Apical Papilla (SCAP) as a Tool for Endogenous Tissue Regeneration. Front. Bioeng. Biotechnol. 2018, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Gugliandolo, A.; Fonticoli, L.; Trubiani, O.; Rajan, T.S.; Marconi, G.D.; Bramanti, P.; Mazzon, E.; Pizzicannella, J.; Diomede, F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int. J. Mol. Sci. 2021, 22, 5236. [Google Scholar] [CrossRef] [PubMed]
- Kadkhoda, Z.; Rafiei, S.C.; Azizi, B.; Khoshzaban, A. Assessment of Surface Markers Derived from Human Periodontal Ligament Stem Cells: An In Vitro Study. J. Dent. 2016, 13, 325–332. [Google Scholar]
- Mitsiadis, T.A.; Feki, A.; Papaccio, G.; Caton, J. Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv. Dent. Res. 2011, 23, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Sanz, A.R.; Carrion, F.S.; Chaparro, A.P. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontology 2000 2015, 67, 251–267. [Google Scholar] [CrossRef]
- Jin, S.H.; Lee, J.E.; Yun, J.H.; Kim, I.; Ko, Y.; Park, J.B. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J. Periodontal. Res. 2015, 50, 461–467. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Y.; Cui, D.; Pan, Y.; Zheng, L.; Wan, M. Dental Tissue-Derived Human Mesenchymal Stem Cells and Their Potential in Therapeutic Application. Stem Cells Int. 2020, 2020, 8864572. [Google Scholar] [CrossRef]
- Kang, J.; Fan, W.; Deng, Q.; He, H.; Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Res. Int. 2019, 2019, 6104738. [Google Scholar] [CrossRef] [Green Version]
- Lucaciu, O.; Soritau, O.; Gheban, D.; Ciuca, D.R.; Virtic, O.; Vulpoi, A.; Dirzu, N.; Campian, R.; Baciut, G.; Popa, C.; et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lee, A.E.; Xu, Q.L.; Zhang, Q.Z.; Le, A.D. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine2-A Comprehensive Review. Front. Immunol. 2021, 12, 1282. [Google Scholar] [CrossRef]
- Zhou, L.L.; Liu, W.; Wu, Y.M.; Sun, W.L.; Dorfer, C.E.; El-Sayed, K.M.F. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int. 2020, 2020, 1327405. [Google Scholar] [CrossRef] [Green Version]
- Boddupally, K.; Wang, G.; Chen, Y.; Kobielak, A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016, 34, 720–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Chen, C.; Akiyama, K.; Chai, Y.; Le, A.D.; Wang, Z.; Shi, S. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J. Dent. Res. 2013, 92, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawzy El-Sayed, K.M.; Dorfer, C.E. Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int. 2016, 2016, 7154327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.H.; Mrozik, K.M.; Menicanin, D.; Gronthos, S.; Bartold, P.M. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy. Regen. Med. 2012, 7, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ji, Q.; Meng, C.; Liu, H.; Fan, C.; Lipkind, S.; Wang, Z.; Xu, Q. Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. Int. Immunopharmacol. 2020, 81, 106030. [Google Scholar] [CrossRef] [PubMed]
- Su, W.R.; Zhang, Q.Z.; Shi, S.H.; Nguyen, A.L.; Le, A.D. Human Gingiva-Derived Mesenchymal Stromal Cells Attenuate Contact Hypersensitivity via Prostaglandin E-2-Dependent Mechanisms. Stem Cells 2011, 29, 1849–1860. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, B.; Wang, D.; Ji, Y.; Kong, Q.; Wang, G.; Wang, J.; Zhao, W.; Jin, L.; Li, H. Murine Bone Marrow Mesenchymal Stem Cells Cause Mature Dendritic Cells to Promote T-Cell Tolerance. Scand. J. Immunol. 2008, 68, 607–615. [Google Scholar] [CrossRef]
- De la Rosa-Ruiz, M.D.; Alvarez-Perez, M.A.; Cortes-Morales, V.A.; Monroy-Garcia, A.; Mayani, H.; Fragoso-Gonzalez, G.; Caballero-Chacon, S.; Diaz, D.; Candanedo-Gonzalez, F.; Montesinos, J.J. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues: A Comparative In Vitro Evaluation of Their Immunoregulatory Properties Against T cells. Cells 2019, 8, 1491. [Google Scholar] [CrossRef] [Green Version]
- Dang, J.L.; Xu, Z.J.; Xu, A.P.; Liu, Y.; Fu, Q.L.; Wang, J.L.; Huang, F.; Zheng, Y.J.; Qi, G.Y.; Sun, B.Q.; et al. Human gingiva-derived mesenchymal stem cells are therapeutic in lupus nephritis through targeting of CD39(-)CD73 signaling pathway. J. Autoimmun. 2020, 113, 102491. [Google Scholar] [CrossRef]
- Mekhemar, M.K.; Adam-Klages, S.; Kabelitz, D.; Dorfer, C.E.; El-Sayed, K.M.F. TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells. Cell. Immunol. 2018, 326, 60–67. [Google Scholar] [CrossRef]
- Al-Qadhi, G.; Al-Rai, S.; Hafed, L. The Therapeutic Potential of Inflamed Gingiva-Derived Mesenchymal Stem Cells in Preclinical Studies: A Scoping Review of a Unique Biomedical Waste. Stem Cells Int. 2021, 2021, 6619170. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, G.; Li, J.; Ding, M.; Zhou, N.; Dong, H.; Mou, Y. Stem cell therapies for periodontal tissue regeneration: A network meta-analysis of preclinical studies. Stem Cell Res. Ther. 2020, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhao, L.; Zhang, L.; Bao, Q.; Li, L. Mesenchymal stem cell-based cell-free strategies: Safe and effective treatments for liver injury. Stem Cell Res. Ther. 2020, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Maacha, S.; Sidahmed, H.; Jacob, S.; Gentilcore, G.; Calzone, R.; Grivel, J.C.; Cugno, C. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020, 2020, 4356359. [Google Scholar] [CrossRef]
- Diomede, F.; Gugliandolo, A.; Scionti, D.; Merciaro, I.; Cavalcanti, M.F.; Mazzon, E.; Trubiani, O. Biotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration. Int. J. Mol. Sci. 2018, 19, 329. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wang, X.; Zhou, H.; Zhang, C.; Wang, Y.; Huang, J.; Liu, M.; Yang, P.; Song, A. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: A comparative study in rats. Stem Cell Res. Ther. 2020, 11, 42. [Google Scholar] [CrossRef]
- Rajan, T.S.; Diomede, F.; Bramanti, P.; Trubiani, O.; Mazzon, E. Conditioned medium from human gingival mesenchymal stem cells protects motor-neuron-like NSC-34 cells against scratch-injury-induced cell death. Int. J. Immunopathol. Pharmacol. 2017, 30, 383–394. [Google Scholar] [CrossRef]
- Diomede, F.; D’Aurora, M.; Gugliandolo, A.; Merciaro, I.; Orsini, T.; Gatta, V.; Piattelli, A.; Trubiani, O.; Mazzon, E. Biofunctionalized Scaffold in Bone Tissue Repair. Int. J. Mol. Sci. 2018, 19, 1022. [Google Scholar] [CrossRef] [Green Version]
- Trubiani, O.; Marconi, G.D.; Pierdomenico, S.D.; Piattelli, A.; Diomede, F.; Pizzicannella, J. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair. Int. J. Mol. Sci. 2019, 20, 4987. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, S.; Chiricosta, L.; Gugliandolo, A.; Pizzicannella, J.; Diomede, F.; Bramanti, P.; Trubiani, O.; Mazzon, E. Extracellular Vesicles Derived from Human Gingival Mesenchymal Stem Cells: A Transcriptomic Analysis. Genes 2020, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A.; et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res. Ther. 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.Z.; Zeng, J.C.; Shi, S.H.; Giannakopoulos, H.; Zhang, Q.Z.; Le, A.D. Extracellular Vesicles of GMSCs Alleviate Aging-Related Cell Senescence. J. Dent. Res. 2021, 100, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Shi, B.; Li, Y.; Wang, R.; Sun, J.; Hu, Y.; Yuan, C.; Xu, Q. Effect of gingival mesenchymal stem cell-derived exosomes on inflammatory macrophages in a high-lipid microenvironment. Int. Immunopharmacol. 2021, 94, 107455. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wei, W.; Cao, Y.; Ao, T.; Huang, F.; Javed, R.; Wang, X.; Fan, J.; Zhang, Y.; Liu, Y.; et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J. Cell. Mol. Med. 2022, 26, 693–708. [Google Scholar] [CrossRef]
- Soundara Rajan, T.; Giacoppo, S.; Scionti, D.; Diomede, F.; Grassi, G.; Pollastro, F.; Piattelli, A.; Bramanti, P.; Mazzon, E.; Trubiani, O. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells. J. Cell. Biochem. 2017, 118, 1531–1546. [Google Scholar] [CrossRef]
- Ercal, P.; Pekozer, G.G. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Adv. Exp. Med. Biol. 2020, 1288, 61–85. [Google Scholar] [CrossRef]
- Berberi, A.; Fayyad-Kazan, M.; Ayoub, S.; Bou Assaf, R.; Sabbagh, J.; Ghassibe-Sabbagh, M.; Badran, B. Osteogenic potential of dental and oral derived stem cells in bone tissue engineering among animal models: An update. Tissue Cell 2021, 71, 101515. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Gou, W.; Lu, Q.; Peng, J.; Lu, S. Role of mesenchymal stem cells in bone regeneration and fracture repair: A review. Int. Orthop. 2013, 37, 2491–2498. [Google Scholar] [CrossRef]
- Cristaldi, M.; Mauceri, R.; Campisi, G.; Pizzo, G.; Alessandro, R.; Tomasello, L.; Pitrone, M.; Pizzolanti, G.; Giordano, C. Growth and Osteogenic Differentiation of Discarded Gingiva-Derived Mesenchymal Stem Cells on a Commercial Scaffold. Front. Cell Dev. Biol. 2020, 8, 292. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Song, W.; Sun, W.; Hong, R.; Pothukuchi, A.; Xu, Q. Systematically transplanted human gingiva-derived mesenchymal stem cells regulate lipid metabolism and inflammation in hyperlipidemic mice with periodontitis. Exp. Ther. Med. 2020, 19, 672–682. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Sarrion, P.; Pouraghaei, S.; Chau, Y.; Ansari, S.; Li, S.; Aghaloo, T.; Moshaverinia, A. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci. Transl. Med. 2020, 12, eaay6853. [Google Scholar] [CrossRef] [PubMed]
- Al Bahrawy, M.; Ghaffar, K.; Gamal, A.; El-Sayed, K.; Iacono, V. Effect of Inflammation on Gingival Mesenchymal Stem/Progenitor Cells’ Proliferation and Migration through Microperforated Membranes: An In Vitro Study. Stem Cells Int. 2020, 2020, 5373418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandalam, U.; Kawai, T.; Ravindran, G.; Brockman, R.; Romero, J.; Munro, M.; Ortiz, J.; Heidari, A.; Thomas, R.; Kuriakose, S.; et al. Predifferentiated Gingival Stem Cell-Induced Bone Regeneration in Rat Alveolar Bone Defect Model. Tissue Eng. Part A 2021, 27, 424–436. [Google Scholar] [CrossRef]
- Shafiee, A.; Cavalcanti, A.S.; Saidy, N.T.; Schneidereit, D.; Friedrich, O.; Ravichandran, A.; De-Juan-Pardo, E.M.; Hutmacher, D.W. Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy. Biomaterials 2021, 268, 120558. [Google Scholar] [CrossRef] [PubMed]
- Magne, B.; Dedier, M.; Nivet, M.; Coulomb, B.; Banzet, S.; Lataillade, J.J.; Trouillas, M. IL-1beta-Primed Mesenchymal Stromal Cells Improve Epidermal Substitute Engraftment and Wound Healing via Matrix Metalloproteinases and Transforming Growth Factor-beta1. J. Invest. Dermatol. 2020, 140, 688–698 e621. [Google Scholar] [CrossRef] [PubMed]
- Pizzicannella, J.; Marconi, G.D.; Pierdomenico, S.D.; Cavalcanti, M.; Diomede, F.; Trubiani, O. Bovine pericardium membrane, gingival stem cells, and ascorbic acid: A novel team in regenerative medicine. Eur. J. Histochem. 2019, 63, 3064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Qadhi, G.; Soliman, M.; Abou-Shady, I.; Rashed, L. Gingival mesenchymal stem cells as an alternative source to bone marrow mesenchymal stem cells in regeneration of bone defects: In vivo study. Tissue Cell 2020, 63, 101325. [Google Scholar] [CrossRef]
- Mao, Q.; Nguyen, P.D.; Shanti, R.M.; Shi, S.; Shakoori, P.; Zhang, Q.; Le, A.D. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration. Tissue Eng. Part A 2019, 25, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Mammana, S.; Gugliandolo, A.; Cavalli, E.; Diomede, F.; Iori, R.; Zappacosta, R.; Bramanti, P.; Conti, P.; Fontana, A.; Pizzicannella, J.; et al. Human gingival mesenchymal stem cells pretreated with vesicular moringin nanostructures as a new therapeutic approach in a mouse model of spinal cord injury. J. Tissue Eng. Regen. Med. 2019, 13, 1109–1121. [Google Scholar] [CrossRef] [Green Version]
- Rao, F.; Zhang, D.; Fang, T.; Lu, C.; Wang, B.; Ding, X.; Wei, S.; Zhang, Y.; Pi, W.; Xu, H.; et al. Exosomes from Human Gingiva-Derived Mesenchymal Stem Cells Combined with Biodegradable Chitin Conduits Promote Rat Sciatic Nerve Regeneration. Stem Cells Int. 2019, 2019, 2546367. [Google Scholar] [CrossRef]
- Cai, S.; Lei, T.; Bi, W.; Sun, S.; Deng, S.; Zhang, X.; Yang, Y.; Xiao, Z.; Du, H. Chitosan Hydrogel Supplemented with Metformin Promotes Neuron-like Cell Differentiation of Gingival Mesenchymal Stem Cells. Int. J. Mol. Sci. 2022, 23, 3276. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, Y.; Zhang, S.; Gao, J.; Gan, X.; Zheng, J.; Lu, L.; Zeng, W.; Gu, J. Human gingiva-derived mesenchymal stem cells alleviate inflammatory bowel disease via IL-10 signalling-dependent modulation of immune cells. Scand. J. Immunol. 2019, 90, e12751. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Xia, Y.; Zhou, S.; Peng, H.; Wu, X.; Lu, H.; Wang, H.; Liu, R.; Blazar, B.R.; Gu, J.; et al. Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways. Cell Death Dis. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshaverinia, A.; Chen, C.; Xu, X.; Akiyama, K.; Ansari, S.; Zadeh, H.H.; Shi, S. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng. Part A 2014, 20, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Shanti, R.M.; Zhang, Q.; Cannady, S.B.; O’Malley, B.W., Jr.; Le, A.D. A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue. Tissue Eng. Part A 2017, 23, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zhao, Y.; Ge, L. Therapeutic effects of human gingiva-derived mesenchymal stromal cells on murine contact hypersensitivity via prostaglandin E2-EP3 signaling. Stem Cell Res. Ther. 2016, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Z.; Su, W.R.; Shi, S.H.; Wilder-Smith, P.; Xiang, A.P.; Wong, A.; Nguyen, A.L.; Kwon, C.W.; Le, A.D. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 2010, 28, 1856–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diomede, F.; Rajan, T.S.; Gatta, V.; D’Aurora, M.; Merciaro, I.; Marchisio, M.; Muttini, A.; Caputi, S.; Bramanti, P.; Mazzon, E.; et al. Stemness Maintenance Properties in Human Oral Stem Cells after Long-Term Passage. Stem Cells Int. 2017, 2017, 5651287. [Google Scholar] [CrossRef]
- Sun, Q.; Nakata, H.; Yamamoto, M.; Kasugai, S.; Kuroda, S. Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis. J. Cell. Mol. Med. 2019, 23, 7592–7601. [Google Scholar] [CrossRef] [Green Version]
- Gaubys, A.; Papeckys, V.; Pranskunas, M. Use of Autologous Stem Cells for the Regeneration of Periodontal Defects in Animal Studies: A Systematic Review and Meta-Analysis. J. Oral Maxillofac. Res. 2018, 9, e3. [Google Scholar] [CrossRef]
- Shi, A.; Heinayati, A.; Bao, D.; Liu, H.; Ding, X.; Tong, X.; Wang, L.; Wang, B.; Qin, H. Small molecule inhibitor of TGF-beta signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res. Ther. 2019, 10, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Gao, L.N.; An, Y.; Hu, C.H.; Jin, F.; Zhou, J.; Jin, Y.; Chen, F.M. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013, 34, 7033–7047. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, J.L.; Dang, J.L.; Zhu, W.Y.; Chen, Y.Q.; Zhang, X.M.; Xie, J.L.; Hu, B.; Huang, F.; Sun, B.Q.; et al. A preclinical studysystemic evaluation of safety on mesenchymal stem cells derived from human gingiva tissue. Stem Cell Res. Ther. 2019, 10, 189763533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelopoulos, I.; Brizuela, C.; Khoury, M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018, 27, 967–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Differentiation | Differentiation Markers | Differentiation Medium | Differentiation Time | Ref. |
---|---|---|---|---|
Adipogenic | PPARγ2, FABP4 | DMEM + 10% FBS, 10 µmol/L dexamethasone, 10 nmol/L 3-isobutyl-1-methylxanthine, 5 µg/mL insulin and 60 µmol/L indomethacin | 28 days | [13,14] |
Osteogenic | RUNX2, OCN, OPN | DMEM + 15% FBS, 10 nM dexamethasone, 10 mM glycerophosphate and 0.05 mM ascorbic acid | 21 days | [15] |
Endothelial | CD31 | Endothelial growth medium + 2%FBS and 50 ng/mL of VEGF | 7 days | [11] |
Neurogenic | GFAP, MAP2, S100, nestin, β-tubulin III | Medium 1: DMEM + 5 ng/mL FGF-2, 5 ng/ ml−1 nerve growth factor, 2 ng/mL epidermal growth factor, 10 μM hydrocortisone and 0.1 mM 3-isobutl-1-methylxanthine Medium 2: DMEM + 0.5 μM retinoic acid in 3% FBS | 4 days Medium 1 3 days Medium 2 | [16] |
Chondrogenic | COL2A1, ACAN | Chondrogenic Induction medium supplemented with α-MEM +1% FCS, 50 nM ascorbate-2-phosphate, 10 ng/mL TGF-b1, 6.25 mg/mL insulin and 1% antibiotic/antimycotic. | 35–42 days | [17] |
Odontogenic | ALP, OPN, BSP, DMP-1 | Odontogenic differentiation medium + 100 nmol/L dexamethasone, 50 mg/mL ascorbic acid, and 10 mmol/L β-glycerophosphate | 14 days | [18,19] |
Myogenic | MF20, Myf5, MyoD | α- MEM + 15% FBS, 2 mM L-gluta, 100 nM Dex, 100 µM ascorbic acid, 2 mM sodium pyruvate, 100 U/mL penicillin, 100 µg/mL streptomycin and a cocktail of 10 µM forskolin (FSK), MeBIO, and 10 ng/mL recombinant h bFGF | 28 days | [20] |
Name | Tissue Origin | Lineage Differentiation | Cell Surface Markers | Ref. |
---|---|---|---|---|
hPDLSCs | Periodontal ligament | Osteoblasts, adipocytes, chondrocytes, and cementoblasts | Positive: STRO-1, STRO-3, CD13,CD29, CD44,CD90, CD146, CD105, CD106, and CD166 Negative: CD14, CD34, CD45, CD38, CD54, and HLA-DR | [32] |
hDPSCs | Dental Pulp | Osteoblasts, chondrocytes, myocytes, neuronal cells, adipocytes, and cardiomyocytes | Positive: CD29, CD44, CD73, CD105. Negative: CD14, CD34, and CD45 | [33] |
hSHEDs | Exfoliated deciduos teeth | Odontoblasts, endothelial cells, neural cells, osteoblasts, chondrocytes, adipocytes, and myocytes | Positive: Oct4, CD13, CD29, CD44, CD73, CD90, CD105, CD146, and CD166. Negative: CD14, CD34, or CD45 | [34] |
hGMSCs | Gingiva | Adipocytes, chondrocytes, osteocytes, endothelial cells, neurons, odontoblasts, and myocytes | Positive: CD44, CD73, CD90, CD105, SSEA-4, STRO-1, CD146, CD166, and CD271. Negative: CD14, CD19, CD34, and CD45. | [20,35,36] |
hSCAPs | Apical papilla | Osteoblasts, odontoblasts, neural cells, adipocytes, chondrocytes, and hepatocytes | Positive: STRO-1 and CD146, CD13, CD24, CD29, CD44, CD49, CD51, CD56, CD61, CD73, CD90, CD105, CD106, CD166, NOTCH3, and vimentin. Negative:CD14, CD18, CD34, CD45, CD117, and CD150. | [37] |
hDFSCs | Dental Follicle | Osteoblasts, cementoblasts, adipocytes, and neuron-like cells | Positive STRO-1, CD44, CD29, CD 90, CD73 and CD105, and negative CD34, CD45 and CD117. | [38] |
Target | Mechanism of Action | Effects | Ref. |
---|---|---|---|
Monocytes/ macrophages | Promotion of macrophage polarization toward the M2 type. | Increment of anti-inflammatory cytokines IL-6, IL-10 and arginase-1. Reduction in pro-inflammatory cytokines TNF-α, IL-12, and IL-1β. | [45] |
Dendritic cells (DCs) | Inhibition of DCs differentiation, maturation and functionality. Reduction in DCs’ ability to activate T cells. | Increment of PD-L1 and pro-inflammatory cytokines as IL-12. Reduction in DCs markers CD11c and CD80. | [46] |
T cells | Inhibition of T cell proliferation by apoptosis and cell-cycle arrest. | Increment of PGE2 and IL-10. Reduction in proinflammatory cytokines IFN-γ, IL-17. | [47,48] |
B cells | Arrest of B cells in the G0/G1 phase of the cell cycle by inhibiting cyclin D2 and upregulating p27. (the effect of hGMSCs on B-cell viability and proliferation is related to the proliferative state of B cells) | Block gene expression involved in chemokine signaling and reduce total IgG and IgM autoantibodies. | [49] |
Mast cells (MC) | Inhibition of MC degranulation and release of pro-inflammatory cytokines. | Reduction in MC markers such as CD 117 and reduction in pro-inflammatory cytokines TNF-α and IL-4. | [46] |
Application | Scaffold | Aim | Model | Spp. | Exp. | Finding | Ref. |
---|---|---|---|---|---|---|---|
Oral craniofacial disordes | Matriderm collagen scaffold seeded with hGMSCs | Evaluate the osteoconductive activity of Matriderm collagen scaffolds with hGMSCs | Periodontal patients with jawbone resorption | Hu | in vitro | Matriderm improves hGMSCs cell growth and osteo-differentiation | [69] |
Oral craniofacial disordes | 3D printing biomaterials poly(lactide) (3D-PLA) seeded with hGMSCs and/or EVs | Evaluate the role of 3D printing PLA scaffold seeded with hGMSCs and/or EVs in bone regeneration | Calvaria defect | Rt | In vitro In vivo | 3D printed PLA enriched with hGMSCs and EVs promote the Osteo- angiogenesis | [21] |
Oral craniofacial disordes | Collagen membranes loaded with hGMSCs- CM or hPDLSC- CM | Compared the effects of hGMSCs-CM and hPDLSCs-CM on periodontal regeneration | Periodontal defect | Rt | In vitro In vivo | hGMSCs- CM and hPDLSCs- CM transplant improve periodontal regeneration | [56] |
Oral craniofacial disorders | hGMSCs injection | Evaluate the role of transplanted hGMSCs in the regulation of lipid metabolism and inflammation in hyperlipidemic mice with periodontitis | Periodontal defect | Mu | in vivo | hGMSCs injections led reduce hyper- lipidemia, inflammation and promote periodontal tissue restoration in hyperlipidemic mice with periodontitis | [70] |
Oral craniofacial disorders | Alginate-based adhesive hydrogel encapsulating hGMSCs | Evaluate the effect, the functionality and the ability of Alginate-based adhesive hydrogel seeded with hGMSCs, to promote bone tissue regeneration | Peri-implantitis diseases | Mu | in vivo | Alginate-based adhesive hydrogel /hGMSCs, promotes bone regeneration in craniofacial tissue | [71] |
Application | Scaffold | Aim | Model | Spp. | Exp. | Finding | Ref. |
---|---|---|---|---|---|---|---|
Oral craniofacial disorders | hGMSCs from inflamed and healthy gingival tissue seeded into perforated collagen-coated polytetra-floro-ethylene (PTFE) | Compare the in vitro ability of hGMSCs, isolated from healthy and inflamed gingiva, to grow and migrate through microperforated membranes | Periodontal defect | Hu | In vitro | No significant differences in grow and migration ability of hGMSCs isolated from heathy and inflamed gingiva | [72] |
Oral craniofacial disorders | Pre differentiated hGMSCs (dGMSCs) combinated with hydrogel scaffold PuraMatrix (PM) and/or BMP2 | Evaluate the ability of dGMSCs to differentiate into osteocytes when combinated with PM and/or BMP2 | Maxillary alveolar bone defect | Rt | in vivo | dGMSCs with PM and low doses of BMP2 promote bone regeneration | [73] |
Skin disorders | 3D-printed medical-grade poly- caprolactone (mPCL) dressing seeded with hGMSCs | Evaluate the effect of the construct mPCL/hGMSCs in the wound closure. | Splinted excisional wound | Rt | In vitro In vivo | mPCL/hGMSCs accelerates the wound closure and reduces scar formation | [74] |
Skin disorders | IL-1β–primed hGMSCs engraft | Compare the role of 1L-1β-primed hGMSCs and naive MSCs (NV-MSCs) in wound healing and epidermal engraftment | Full- thickness excisional wound | Mu | In vivo In vitro | IL-1β-primed hGMSCs promotes cell migration, generates dermal- epidermal junctions and drecreases inflammation in vitro.IL-1β-primed hGMSCs promotes epidermal substitute engraftment in vivo. | [75] |
Application | Scaffold | Aim | Model | Spp. | Exp. | Finding | Ref. |
---|---|---|---|---|---|---|---|
Bone regeneration | bovine pericardium collagen membranes (BioRipar, BioR) seeded with hGMSCs | Evaluate the role of ascorbic acid (AS) addition to BioR/hGMSCS | Bone diseases | Hu | In vitro | The addition of AS to BioR/hGMSCs improves osteogenesis | [76] |
Bone regeneration | hBMSCs or hGMSCs loaded in a NanoBone scaffold | Compare the regenerative potential of hBMSCs and hGMSCs seeded in a NanoBone scaffold | Critical- sized tibial bone defects | Rb | in vivo | The application of hGMSCs and hBMSCs loaded on the NanoBone scaffold improves bone regeneration | [77] |
Bone regeneration | hGMSCs/ hGMSCs-Exo injection | Compare the immunomodulatory effects of hGMSCs-Exo and hGMSCs | Collagen-induced arthritis (CIA) | Mu | In vitro In vivo | Both hGMSCs-Exo and hGMSCs reduce inflammation and bone erosion | [64] |
Nerve regeneration | Gelfom embedded with hGMSCs-EVs | Evaluate the effects of hGMSCs-EVs on peripheral nerve regeneration | Crush- injured sciatic nerves | Mu | in vivo | hGMSCs- EVs support peripheral nerve regeneration through the activation of c-JUN- governed repair phenotype of Schwann cells | [78] |
Nerve regeneration | hGMSCs–Moringin (MOR) treatment | Evaluate the role of hGMSCs, pretreated with nanostructured liposomes enriched with MOR, in regeneration, inflammation and apoptosis processes | Spinal cord injury (SCI) | Mu | In vitro | MOR-treated hGMSCs reduce the expression of pro- inflammatory cytokines and restore the morphology of spinal cord. | [79] |
Application | Scaffold | Aim | Model | Spp. | Exp. | Finding | Ref. |
---|---|---|---|---|---|---|---|
Nerve regeneration | hGMSC-EVs combined with biodegradable chitin conduits | Evaluate the effects of Chitin conduits/hGMSC-EVs on peripheral nerve regeneration | Sciatic nerve defect | Rt | In vitro In vivo | Chitin conduits/ hGMSC-EVs enhance the amount and the size of nerve fibers and improves myelin formation | [80] |
Nerve regeneration | hGMSC seeded into chitosan/βglycero- phosphate hydrogel in addition with growth factor and metformin | Evaluate the metformin ability to promote hGMSCs differentiation towards the neuronal lineage, in a growth environment of chitosan hydrogel | Neurological diseases | Hu | In vitro | Metformin has no effect on multi- directional differentiation potential of hGMSCs | [81] |
Inflammatory diseases | hGMSC injection | Evaluate the anti- inflammatory effetcs of hGMSCs and their therapeutic effect on inflammatory diseases | Inflam. bowel disease (IBD) | Mu | in vivo | hGMSC treatment increases the numbers of anti- inflammatory cytokines and reduces the production of pro- inflammatory cytokines | [82] |
Inflammatory diseases | hGMSC injection | Evaluate the role of CD39 in the attenuation of hGMSCs- mediated acute graft-versus-host disease | Acute graft- versus-host disease (GVHD) | Mu | in vivo | hGMSCs ability to attenuate GVHD is related to the upregulation and differentiaiton of Tregs mediated by CD39 pathway | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonticoli, L.; Della Rocca, Y.; Rajan, T.S.; Murmura, G.; Trubiani, O.; Oliva, S.; Pizzicannella, J.; Marconi, G.D.; Diomede, F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 4135. https://doi.org/10.3390/ijms23084135
Fonticoli L, Della Rocca Y, Rajan TS, Murmura G, Trubiani O, Oliva S, Pizzicannella J, Marconi GD, Diomede F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. International Journal of Molecular Sciences. 2022; 23(8):4135. https://doi.org/10.3390/ijms23084135
Chicago/Turabian StyleFonticoli, Luigia, Ylenia Della Rocca, Thangavelu Soundara Rajan, Giovanna Murmura, Oriana Trubiani, Stefano Oliva, Jacopo Pizzicannella, Guya Diletta Marconi, and Francesca Diomede. 2022. "A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine" International Journal of Molecular Sciences 23, no. 8: 4135. https://doi.org/10.3390/ijms23084135
APA StyleFonticoli, L., Della Rocca, Y., Rajan, T. S., Murmura, G., Trubiani, O., Oliva, S., Pizzicannella, J., Marconi, G. D., & Diomede, F. (2022). A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. International Journal of Molecular Sciences, 23(8), 4135. https://doi.org/10.3390/ijms23084135