Next Article in Journal
Cerebroventricular Injection of Pgk1 Attenuates MPTP-Induced Neuronal Toxicity in Dopaminergic Cells in Zebrafish Brain in a Glycolysis-Independent Manner
Next Article in Special Issue
A Novel NOX Inhibitor Treatment Attenuates Parkinson’s Disease-Related Pathology in Mouse Models
Previous Article in Journal
JAK-STAT1 Signaling Pathway Is an Early Response to Helicobacter pylori Infection and Contributes to Immune Escape and Gastric Carcinogenesis
Previous Article in Special Issue
Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Biomarker of Neuroinflammation in Parkinson’s Disease

1
Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan
2
School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2022, 23(8), 4148; https://doi.org/10.3390/ijms23084148
Submission received: 26 February 2022 / Revised: 2 April 2022 / Accepted: 5 April 2022 / Published: 8 April 2022

Abstract

:
Parkinson’s disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). Its main symptoms include resting tremors, rigidity, shuffling gait, and bradykinesia. The pathogenesis of neurodegeneration in PD is driven by the abnormal accumulation of misfolded α-synuclein in the central nervous system (CNS) [1]. The subsequent neurotoxic cascades involving genetic [2,3], environmental [4], and immunological factors [5] can further enhance the neurotoxicity of misfolded α-synuclein, causing neurodegeneration in the neighboring brain regions. Genome-wide association studies have identified many genetic variants associated with PD. Studies of animal models, neuroimages, and postmortem pathology have also provided substantial insights into the involvement of neuroinflammation in PD pathogenesis [6,7,8], and indicate that cytokine-induced inflammatory responses may play a vital role.
At present, no effective treatment exists to halt PD progression. Sensitive and practical biomarkers of PD are urgently required, and their efficacy for diagnosing PD in early or presymptomatic stages should be validated in clinical trials. Various molecules in the cerebrospinal fluid (CSF), such as α-synuclein, DJ-1, amyloid-β, tau, and lysosomal enzymes, may be biomarkers of PD [9,10]. Positron emission tomography, single-photon emission computed tomography, and magnetic resonance imaging are important imaging tools that reveal DAergic nerve projections in SN. Recently, studies involving neuroimaging, neuropathology, and cell and animal models further indicated an important interaction between neuroinflammation and neurodegeneration of DAergic neurons in PD [6,7,8]. Here, we review findings from key studies on the inflammatory biomarkers of PD and further examine the role of these biomarkers in systemic and brain inflammatory responses in PD pathogenesis.

2. Role of Neuroinflammation in PD

In the early 1980s, McGeer observed activated microglial infiltrations in the SN of the postmortem PD brain [6]. Numerous studies have since been conducted on the neuroinflammation associated with PD pathogenesis, such as increased proinflammatory cytokines in the blood [11] or CSF [10,12]. Activated microglia secrete several proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 [11,13,14,15,16]. They also express major histocompatibility complex (MHC) class II, and are associated with damaged neurons in patients with PD [17]. Furthermore, neuroimaging studies have used radiotracers specific to microglial activation to demonstrate ongoing neuroinflammation in PD [18,19]. A well-known example is [11C](R)PK11195 binding to several brain regions in patients with PD [7].
The aggregation of the abnormal, insoluble form of α-synuclein plays a key role in PD pathogenesis [20]. Misfolded α-synuclein is involved in the pathogen-associated molecular pattern- or damage-associated molecular patterns (DAMP)-mediated dysregulation of microglial toll-like receptor (TLR)2 or TLR4-mediated signaling pathway, which ultimately activates myeloid differentiation primary response 88 (MyD88) and nuclear factor kappa B (NFκB), triggering TNF-α and IL-1β production [21]. The treatment of BV2 mouse microglial cells or primary microglia with aggregated α-synuclein upregulates the production of TNF-α, IL-1β, monocyte chemoattractant protein (MCP)-1, and interferon (IFN)-γ [22,23,24]. Panicker et al. demonstrated that aggregated α-synuclein binds to the microglial surface cell membrane receptors TLR2 and CD36, then recruits Fyn kinase, thereby activating and subsequently phosphorylating protein kinase C-delta (PKCδ); this leads to increased PKCδ-dependent activation of the NFκB pathway, followed by increased IL-1β production [25]. Knockout of TLR2 reduces the uptake of α-synuclein in mouse microglia [26]. The activation of the TLR-4–NFκB pathway mediates the incorporation of α-synuclein into autophagosomes [27,28]. A functional block of TLR4 in BV2 mouse microglia or TLR4-knockout primary mouse microglia inhibits the uptake of α-synuclein and prevents TNF-α and IL-6 production [29]. α-Synuclein also increases the microglial expression of IFN-γ, thereby inducing neuronal MHC-I expression; thus, the neurons can be selectively targeted by CD8+ T cells [30]. α-Synuclein is encoded by SNCA. SNCA overexpression in rat SN decreases fiber density in DAergic neurons and increases the number of MHC-II+ microglial cells [31]. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, T cells from mice immunized to nitrated α-synuclein potentiate neurodegeneration in response to MPTP [22]. Both proinflammatory type 1 T helper (Th1) and type 17 T helper (Th17) subtypes can enhance MPTP-induced neurodegeneration, whereas the regulator T cell (Treg) subtype is protective against it [32]. These results support the role of T cell subsets activated by α-synuclein-induced immune responses in the pathogenesis of DAergic neurodegeneration.
Humoral adaptive immunity is also involved in PD pathogenesis. Numerous autoantibodies target CNS-specific proteins, such as tau, S100B, glial fibrillar acidic protein (GFAP) [33,34,35], neurofilament [36,37], GM1 [38], and neuronal calcium channels [39]; moreover, autoantibodies to α-synuclein [40,41] have also been discovered. Blood levels of anti-melanin antibody are elevated in the early stages of PD [42]. Together, these findings indicate that both innate and adaptive immune systems are activated in PD.
In addition to the brain, α-synuclein aggregation has also been discovered in the enteric nervous system (ENS) [43]. The expression of α-synuclein in enteric neurites is positively correlated with the degree of intestinal wall inflammation [44,45]. The expression of TNF-α, IFN-γ, IL-6, and IL-1β is upregulated in colon biopsy samples of patients with PD [46]. IL-1 and IL-8 are also elevated in stool specimens of patients with PD [47]. Altered gut metabolites and microbiomes are also involved in intestinal inflammation in patients with PD [48,49,50]. Notably, specific gut metabolites may increase neurodegeneration in PD. In SNCA transgenic mice, short-chain fatty acids produced by the intestinal microbiome lead to a higher degree of α-synuclein aggregation in the basal ganglia and SN, potentiating motor deficits [47]. Fecal microbiota transplantation in 11 PD patients with constipation increased the abundance of Blautia and Prevotella in feces and improved motor and nonmotor symptoms [51]. Therefore, PD pathogenesis likely involves an interplay among gut microbiota, metabolites, and cytokines.

3. Candidate Biomarkers of Inflammation in PDs

The clinical diagnosis of PD is made mostly based on clinical symptoms, which may appear only in advanced disease stages, thus precluding therapeutic intervention in early stages. Biomarkers are important for detecting PD in the early stage as well as for monitoring disease progression and treatment responses. Among molecular biomarkers of PD, α-synuclein, tau, and Aβ42 in the CSF, blood, and other body fluids have attracted considerable research interest [10,52,53,54,55,56,57]. Inflammatory molecules can be used as potential biomarkers to reflect the neuroinflammatory pathogenesis of PD [10,15,58]. Because obtaining live human neurons from patients with PD is challenging, the CSF is an acceptable source and can be used to detect molecular changes underlying the neurodegenerative pathogenesis. The leakage of inflammatory factors from degenerated brain regions can also be detected in the peripheral blood. The alterations of inflammatory biomarkers in the blood of patients with PD also indicate the peripheral involvement of PD pathogenesis, such as the gut–brain axis. Recent studies have described IL-1β, IL-2, IL-6, IL-10, high-sensitivity C-reactive protein (hsCRP), TNF-α/soluble TNF-receptors (sTNFRs), and regulated upon activation, normal T cell expressed and presumably secreted (RANTES), as potential peripheral biomarkers (Table 1).

3.1. IL-1β

IL-1β is a proinflammatory cytokine with pleiotropic biological actions in the peripheral blood and brain. Sustained IL-1β expression in the striatum causes DAergic neuronal death and motor disabilities in rats [59]. IL-1β levels are elevated in the striatum of patients with PD [60,61]. IL-1β levels in the CSF are elevated in patients with PD, particularly those with probable REM sleep behavior disorder (PRBD) [62]. Serum IL-1β levels are significantly elevated in patients with PD, and those who also exhibit high titers of antibodies against common pathogens [63,64]. A large multicenter study demonstrated higher serum IL-1β levels in patients with PD compared with control participants [11]. However, other studies did not observe alterations in IL-1β levels in the serum [65] and CSF [66] samples of patients with PD. A 2016 meta-analysis including six studies (623 patients) concluded that blood IL-1β levels are elevated in patients with PD [15].

3.2. IL-2

The gut microbiome composition may alter cytokine profiles and affect inflammatory processes in PD [67], whereas IL-2 can suppress chronic inflammation in the gastrointestinal tract [68,69,70]. IL-2 plays a critical role in T cell proliferation, Treg cell expansion, and mediation of inflammation-induced cell death [71]. Decreased blood IL-2 levels reduce the number and function of Treg cells, leading to lymphoproliferation and autoimmunity [71]. IL-2 levels are elevated in the striatum of patients with PD [72]. Patients with PD have higher serum IL-2 levels than control participants [11,73,74]; the higher serum IL-2 levels can be reduced by treatment with antiparkinsonian medications [74]. In addition, high serum levels of soluble IL-2 receptors (sIL-2R) are associated with severe symptoms of anxiety or depression in patients with PD [75]. The meta-analysis in 2016 including three studies (282 patients) revealed the elevation of IL-2 in the blood of patients with PD [15].

3.3. IL-6

IL-6 is a multifunctional cytokine mainly secreted by neurons and glial cells, and it plays a vital role in neuronal development and differentiation [76]. It triggers neuronal survival after injury but also causes neuronal death in neurodegenerative diseases [77]. IL-6 levels are elevated in the striatum, CSF, and serum of patients with PD [64,73,75,78,79,80,81,82,83]. Higher serum IL-6 levels are correlated with infection in patients with PD [63]. Serum IL-6 levels are inversely correlated with clinical parameters, including functional mobility, gait speed, and Mini-Mental Status Examination scores, in patients with PD [84,85]. Scalzo et al. reported that serum IL-6 levels cannot reflect PD severity because serum IL-6 levels were not correlated with the scores of Unified Parkinson’s Disease Rating Scale (UPDRS) part III and H&Y stage [84]. However, regarding the nonmotor symptoms of PD evaluated using UPDRS part I, plasma IL-6 levels were correlated with the severity of depression [85]. Another study reported no correlation of serum IL-6 levels with H&Y stages, disease duration, and UPDRS scores [81]. Elevated serum IL-6 levels are also associated with death in patients with PD [86]. The scores of the activity daily living scale in patients with PD are negatively correlated with serum IL-6 levels [13]. However, some studies have not detected an elevation of serum IL-6 levels in patients with PD [11,64,66,74], although a 2016 meta-analysis including 13 studies (898 patients) revealed higher peripheral IL-6 levels in patients with PD [15].

3.4. IL-10

IL-10 is an anti-inflammatory cytokine produced by lymphocytes and microglia [87]. It has neuroprotective effects against LPS-induced cell death [88]. Serum IL-10 levels are increased in patients with PD compared with control participants [11,73,89]. However, two studies have not indicated any changes in serum and CSF IL-10 levels in patients with PD [66,90], whereas the meta-analysis in 2016 including five studies (376 patients) demonstrated higher peripheral IL-10 levels in patients with PD [15].

3.5. TNF-α/sTNFRs

TNF-α is a proinflammatory cytokine that plays a key role in host defense [91]. TNF-α binds to sTNFR and regulates sTNFR expression; sTNFR expression may be an indicator of TNF-α activity [92]. TNF-α activates microglia to induce the progressive loss of DAergic neurons in the SN [93,94,95]. TNF-α is upregulated in the SN of patients with PD [96]. TNF-α levels in the CSF are elevated in PD patients [94], particularly those with PRBD [62]. Serum TNF-α levels are also elevated in patients with PD [11,66,73,75,82,83] and those with atypical parkinsonism [73]. Elevated plasma sTNFR1 is associated with poor executive function in patients with PD [97]. Plasma TNF-α levels are positively correlated with cognitive impairment, depression, and disability in patients with PD [75,98]. Serum TNF-α levels are not significantly elevated in PD patients with infectious burdens [63]. The meta-analysis in 2016 including nine studies (809 patients) demonstrated higher peripheral TNF-α levels in patients with PD [15].

3.6. RANTES

RANTES is a proinflammatory chemokine involved in the regulation of immunoreactions and the recruitment of immune cells such as monocytes, granulocytes, and T cells to sites of inflammation [99]. A study reported that serum RANTES levels in patients with PD were higher than those in control participants [100]. Serum RANTES levels are positively correlated with H&Y stages and disease duration [82,101], but are not associated with UPDRS scores [82]. However, Gangemi et al. noted that serum RANTES levels were comparable in patients with PD and control participants [102], whereas the meta-analysis in 2016 including five studies (171 patients) demonstrated higher blood RANTES levels in patients with PD [15].

3.7. High-Sensitivity C-Reactive Protein (hsCRP)

The circulating hsCRP level is a useful marker of ongoing inflammation or tissue damage [103]. hsCRP has potential as a marker of neuroinflammation in PD [104]. Elevated plasma hsCRP levels are present in patients with PD who underwent levodopa treatment [105]. Serum hsCRP levels are also higher in patients with PD than in control participants [106,107]. However, these elevations of hsCRP have not been recapitulated by other studies [11,75,108]. The meta-analysis in 2016 including six studies (696 patients) demonstrated higher blood hsCRP levels in patients with PD [15].

4. Genetic Mutations Involved in Neuroinflammation in PD

In addition to SNCA, the roles of other PD-causative genes such as PINK1, PRKN, DJ-1, and LRRK2 [109] have been demonstrated in neuroinflammation.

4.1. Leucine-Rich Repeat Kinase 2

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common monogenic genetic causes of both familial and sporadic PD [110,111], and they are also present in other inflammatory diseases such as Crohn’s disease and leprosy [112,113]. LRRK2 expression and kinase activity are upregulated in lipopolysaccharide (LPS)-activated rat microglia, whereas the inhibition of LRRK2 kinase reduces the secretion of TNF-α [114]. Increased secretion of IL-1β and IL-6 is also noted in LPS-activated microglia derived from LRRK (p.R1441G) transgenic mice [115]. These findings support the role of LRRK2 in neuroinflammation in PD [115]. LRRK2 (p.G2019S) transgenic rats demonstrate increased microglial activation in the SN and pronounced DAergic neurodegeneration in response to the overexpression of α-synuclein [116]. Neuroinflammation associated with the LRRK2 (p.G2019S) mutation could be diminished by LRRK2 kinase inhibition [116]. A study showed that microglia from LRRK2 (p.G2019S) transgenic mice demonstrate increased expression of IL-6 and TNFα, following injection with recombinant α-synuclein fibrils [117]. Chronic dextran sodium sulfate-induced colitis aggravates microglial activation, loss of DAergic neurons, and locomotor deficits in LRRK2 (p.G2019S) transgenic mice, whereas treatment with anti-TNF-α antibody attenuates neuroinflammation and neurodegeneration [118]. In LRRK2 (p.G2019S) knockin mice treated with LPS, depletion of microglia by PLX-3397 diminishes weight loss and increases home-cage activity [119], supporting the interaction between neuroinflammation and LRRK2-mediated neurodegeneration.

4.2. PTEN-Induced Putative Kinase 1

Mutations in PTEN-induced putative kinase 1 (PINK1) are linked to familial PD with autosomal recessive inheritance [120,121,122]. PINK1 senses mitochondrial dysfunction and phosphorylates parkin to degrade damaged mitochondria through mitophagy [123,124]. PINK1 is also involved in the regulation of proinflammatory cytokines. PINK1 knockout mice demonstrate increased striatal IL-1β levels, IL-12, and IL-10 after treatment with LPS [125]. In the cortical slices of PINK1 knockout mice, LPS also augments the upregulation of TNF-α, IL-1β, and IL-6 levels [126]. Moreover, mitochondrial stress leads to the release of DAMPs to activate inflammation, whereas mitophagy mitigates inflammation by removing the damaged mitochondria [127,128,129,130,131]. These results support the role of PINK1-mediated and parkin-mediated mitophagy in inhibiting neuroinflammation.

4.3. Parkin (PRKN)

Mutations in PRKN are commonly seen in patients with autosomal recessive early-onset PD [132,133,134]. PRKN encodes an E3 ubiquitin ligase (parkin), which plays a neuroprotective role against α-synuclein toxicity and oxidative stress [135,136]. Together with PINK1, parkin participates in mitophagy to degrade damaged mitochondria. The nigral DAergic neurons in PRKN knockout mice are vulnerable to LPS-induced inflammation [137]. LPS and TNF-α also downregulate parkin expression in BV2 mouse microglial cells [138], suggesting that chronic inflammation modulates PRKN expression.

4.4. DJ-1

Mutations in DJ-1 are found in the familial recessive form of PD [139]. These mutations disturb the function of the protein in the regulation of membrane receptor tracking and signal transduction [140], TLR3/4 mediated endocytosis [140], and production of IL-6 and IL-1β [140,141]. In BV2 mouse microglial cells, DJ-1 binds to the p65 subunit of NFκB, and DJ-1 knockdown promotes p65 nuclear translocation [142]. DJ-1 knockout mice exhibit profound microglial activation compared with wild-type littermate controls, especially in response to LPS treatment [142]. DJ-1 knockdown in N9 mouse microglial cells also reduces the expression of triggering receptors on myeloid cells 2 (TREM2), which is a pivotal regulator of proinflammatory cytokines such as IL-1β and IL-6 [143].

5. Radiotracers Targeting Microglial Activation

Microgliosis is the hallmark of neuroinflammation [144,145]. Postmortem studies have indicated that microglia mediate immunity and initiate neuroinflammation in PD [6]. Many researchers have been trying to identify imaging markers specific to activated microglia to detect PD at an early stage. Radiotracers targeting inflammatory cells can help monitor the neuroinflammatory process in patients with PD [19,146]. Translocator protein (TSPO) is a mitochondrial translocator protein that is highly expressed in activated microglia [19]. The binding levels of [11C]PK11195, the first TSPO ligand, are positively correlated with the severity of motor dysfunction and inversely correlated with dopamine transporter markers [11C] 2-B-carbomethoxy-3B-(4-fluorophenyl) tropane ([11C]CFT) [147]. However, its binding is not specific to the nigrostriatal regions, and such binding can also be found in the pons, basal ganglia, and frontal and temporal cortices [19]. A second-generation TSPO tracer, [18F]-FEPPA, was developed to detect neuroinflammation specific to the striatum [148]. It demonstrated superior specificity to [11C]PK11195 in the striatum in 6-hydroxdopamine (6-OHDA)-treated rats [149]. Large-scale human studies are warranted to validate these findings before their clinical application.

6. Anti-Inflammation Strategies for PDs

Molecular and neuroimaging studies have indicated the role of neuroinflammation in PD pathogenesis. Therefore, anti-inflammatory therapies may be a strategy against neurodegeneration in PD. Different anti-inflammatory strategies, including nonsteroid anti-inflammatory drugs (NSAIDs), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), and peroxisome proliferator-activated receptor (PPAR)-γ, have been studied for treating PD (Table 2).

6.1. NSAIDs

In addition to inhibiting cyclooxygenase, NSAIDs downregulate the expression of the deactivate nonsteroidal anti-inflammatory drug-activated gene-1 to suppress microglial activation [150]. In MPTP-treated mice, sodium salicylate decreases microglial activity and lymphocyte infiltrations, and reduces the death of DAergic neurons in SN [151,152,153]. Ibuprofen and piroxicam protect DAergic neurons in SN against rotenone-induced toxicity in rats [154]. Aspirin, acetaminophen, and ibuprofen protect DAergic neurons against glutamate-mediated excitotoxicity in a rat embryonic mesencephalon neuronal model [155]. These animal studies have indicated that NSAIDs may preserve neuronal integrity and survival [155]. However, epidemiological studies have shown no association between ibuprofen or acetaminophen and PD [156]. Neither meta-analysis nor observational studies have provided solid evidence that NSAIDs decrease the risk of PD or modify disease progression [157,158]. Further studies are required to verify the protective role of NSAIDs in patients with PD.

6.2. TNF-α Inhibitor

MPTP administration upregulates TNF-α expression in mouse striatum preceding the loss of DAergic neurons [151], suggesting the role of TNF-α in preclinical or early-stage PD. MPTP-induced loss of DAergic neurons is abolished in transgenic mice carrying homozygous mutant alleles for TNFRs [151]. Thalidomide, an inhibitor of TNF-α synthesis, and TNF-α knockout attenuate MPTP-induced neuronal damage in the mouse striatum [159]. A cohort study reported that early exposure to anti-TNF therapy is associated with reduced PD incidence [160]. In this study, patients with inflammatory bowel disease (IBD) were 28% more likely to develop PD than matched individuals without IBD. Patients who are exposed to anti-TNF therapy show a 78% reduction in PD incidence compared with unexposed patients [160]. Although the study has positive results, anti-TNF compounds may have limited CNS effects due to their poor penetration across the blood–brain barrier [161].

6.3. NLRP3 Inhibitor

α-Synuclein binds to TLR2 to activate the NLRP3 inflammasome and its downstream IL-1β pathway [162]. A pathological study showed the upregulation of NLRP3 colocalized with microglia in the SN of patients with PD [163]. The small-molecule NLRP3 inhibitor MCC950 decreases inflammasome activation and effectively mitigates motor deficits, nigrostriatal DAergic degeneration, and accumulation of α-synuclein aggregates in 6-hydroxydopa- and α-synuclein fibrils-treated mice [163]. These observations suggest that NLRP3 persistently promotes neuroinflammation, driving progressive DAergic neuropathology, highlighting its potential as a target for PD treatment [163].

6.4. NRF2 Enhancer

NRF2 is a transcription factor that regulates endogenous antioxidative and anti-inflammatory pathways [164]. Neuroinflammation is a prominent cause of oxidative stress in PD [165]. Therefore, the reduction of oxidative stress and neuroinflammation by NRF2 enhancers could be a therapeutic strategy for PD. Dimethyl fumarate, a well-known medication in multiple sclerosis, is a potent NRF2 enhancer that reduces the production of reactive oxygen species in the neurons of SNCA (p.A53T) transgenic mice [166]. Dimethyl fumarate also prevents nigral DAergic neuron damage and decreases microgliosis in MPTP- and α-synuclein-treated mice [167,168]. These findings suggest that NRF2 is a viable target for therapeutic interventions in PD.

6.5. PPAR-γ Agonist

PPAR-γ is a member of the nuclear receptor superfamily that regulates mitochondrial function and modulates lipid and glucose metabolism [169]. PPAR-γ agonists, such as pioglitazone, reduce inflammation by inhibiting the expression of IL-6 and TNF-α [170]. Pioglitazone attenuates inflammatory responses and preserves DAergic nigrostriatal function in the brain of MPTP-treated monkeys [171]. Furthermore, administration of pioglitazone attenuates MPTP-induced glial activation and prevents the loss of dopaminergic neurons in SN of MPTP-treated mice [172,173]. Another PPAR-γ agonist, rosiglitazone, also prevents the loss of DAergic neurons in the SN of MPTP-treated mice [174]. These results support the application of PPAR-γ agonists as putative anti-inflammatory therapies for halting PD progression.

6.6. Steroid Drugs

Dexamethasone, a well-known anti-inflammation agent, protects nigral DAergic neurons against LPS-induced toxicity [175]. Steroid precursors such as dehydroepiandrosterone (DHEA) and pregnenolone provide another treatment option for PD [176]. Pregnenolone alleviates synaptic defects and hyperdopaminergic activity in rats [177]. In MPTP-treated monkeys, DHEA improves parkinsonian phenotypes and potentiates the effect of L-dopa [178]. A recent cohort study indicated that dexamethasone was associated with decreased odds of PD, suggesting that corticosteroids are a potential disease-modifying drug in PD [179].
The aforementioned findings indicate the potential of anti-inflammatory therapies for treating PD. These results should be validated by large randomized controlled trials in patients with PD.

7. Conclusions

PD pathogenesis is complex and still not fully understood. Neuroinflammation exacerbates DAergic neurodegeneration. This inflammatory cascade involves microglial activation and marked secretion of proinflammatory cytokines. Tracing the alterations of proinflammatory biomarkers, such as IL-1β, IL-6, IL-10, TNF-α, RANTES, and hsCRP, in the CSF or blood can aid in the early diagnosis of PD and monitoring of disease progression. [11C]PK11195 and [18F]-FEPPA radiotracers can help detect neuroinflammation in the brain. Together, these findings further our understanding of how neuroinflammation participates in neurodegeneration, suggesting a basis for future drug discoveries. Further studies to validate the potential of proinflammatory biomarker candidates in large and prospective PD cohorts are warranted. Identification of composite biomarkers by machine learning may lead to the development of sensitive panels for the early detection of PD and monitoring disease progression. Randomized controlled trials investigating objective biomarkers should be conducted to determine the therapeutic potential of anti-inflammatory medications for PD.
Table 1. Potential biomarkers involved in neuroinflammation in Parkinson’s disease.
Table 1. Potential biomarkers involved in neuroinflammation in Parkinson’s disease.
Candidate BiomarkerOriginChangeCorrelated ParametersReference
IL-1βSerum↑PDUPDRS-III, MMSE[11]
Serum↑PD with IB [63]
Serum↑PD [64]
Serum≈PD [66]
CSF↑PD with PRBD [62]
CSF≈PD [65]
IL-2Serum↑PDMMSE[11]
Serum↑PD [73,74]
sIL-2-RSerum↑PD [75]
IL-6Serum↑PDUPDRS-III[11,78]
Serum↑PD [73,75,79,80,82,83]
Serum↑PD with IB [63]
Serum↑PDCGS, TUG[84]
Serum↑PD with depression [85]
Serum↑PD mortality [86]
Serum↓PD [64]
Serum≈PD [11,74,76,81]
CSF↑PD [78,80]
IL-10Serum↑PD [11,73,89]
Serum≈PD [66,90]
TNF-αSerum↑PD,UPDRS-III, MMSE[11]
Serum↑PD, [66,75,82]
Serum↑PD [73]
Serum↑PD,Body sway, Reaction time[83]
Serum≈PD with IB [63]
CSF↑PD, [94]
CSF↑PD with PRBD [62]
sTNFR1Serum↑PDMMSE, Programming task of FAB[97]
RANTESSerum↑PD [82,100,101,102]
Serum↑PDH&Y, disease duration[81]
hsCRPSerum↑PD [106,107]
Plasma↑PD [105]
Serum≈PDUPDRS-III, MMSE[11]
Serum≈PD [75,108]
↑: upregulation; ≈: no change; ↓: downregulation; CGS: Comfortable Gait Speed; FAB: Frontal Assessment Battery; hsCRP: high-sensitivity C-reactive protein; H&Y: Hohn and Yahr Stage; IB: infectious burden; IL: interleukin; sIL-2R: soluble IL-2 receptor; MMSE: Mini-Mental State Examination; PD: Parkinson disease; PRBD: probable REM sleep behavior disorder; RANTES: Regulated Upon Activation, Normal T Cell Expressed And Presumably Secreted; TNF-α: tumor necrosis factor α; sTNFR: soluble TNF receptor. TUG: timed up and go test; UPDRS-III: Unified Parkinson Disease Rating Scale-Part III.
Table 2. Therapeutic target of neuroinflammation in PD.
Table 2. Therapeutic target of neuroinflammation in PD.
TargetMedicationModelEffectReferences
COX-inhibitorSodium salicylateMPTP-treated miceBeneficial[151,152,153,155]
Ibuprofen, piroxicamRotenone-treated ratsBeneficial[154]
TNF-α inhibitorThalidomideMPTP-treated miceBeneficial[159]
NLRP3 inhibitorMCC9506-OHDA-treated miceBeneficial[163]
α-Synuclein fibrils-treated miceBeneficial[163]
NRF2 enhancerDimethyl fumarateSNCA (p.A53T) transgenic mice Beneficial[164]
MPTP-treated miceBeneficial[15]
Mice expressing α-synuclein in ventral midbrainBeneficial[167,168]
PPAR-γ agonistPioglitazoneMPTP-treated monkeyBeneficial[171]
MPTP-treated miceBeneficial[172,173]
RosiglitazoneMPTP-treated miceBeneficial[174]
Steroidal drugsDexamethasoneLPS-treated ratBeneficial[175]
COX: cyclooxygenase; LPS: lipopolysaccharide; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NLRP3: NLR family pyrin domain containing 3; NRF2: nuclear factor erythroid 2 related factor 2; 6-OHDA: 6-hydroxydopamine; PPAR-γ: peroxisome proliferator-activated receptor γ; TNF-α: tumor necrosis factor-α.

Author Contributions

Writing—Original Draft Preparation, T.-W.L. and K.-H.C.; Writing—Review & Editing, K.-H.C. and C.-M.C. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by Chang Gung Memorial Hospital (CMRPG3L0891), and Ministry of Science and Technology (110-2628-B-182-019), Taiwan.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

This manuscript was edited by Wallace Academic Editing.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
  2. Domingo, A.; Klein, C. Genetics of Parkinson disease. Handb. Clin. Neurol. 2018, 147, 211–227. [Google Scholar] [PubMed]
  3. Kim, C.Y.; Alcalay, R.N. Genetic forms of Parkinson’s disease. Semin Neurol. 2017, 37, 135–146. [Google Scholar] [CrossRef] [PubMed]
  4. Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
  5. De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Appiani, M.C.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016, 15, 1005–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38, 1285–1291. [Google Scholar] [CrossRef]
  7. Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 2006, 21, 404–412. [Google Scholar] [CrossRef]
  8. Theodore, S.; Cao, S.; McLean, P.J.; Standaert, D.G. Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 2008, 67, 1149–1158. [Google Scholar] [CrossRef] [Green Version]
  9. Hong, Z.; Shi, M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Leverenz, J.B.; Baird, G.; et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133, 713–726. [Google Scholar] [CrossRef] [Green Version]
  10. Parnetti, L.; Castrioto, A.; Chiasserini, D.; Persichetti, E.; Tambasco, N.; El-Agnaf, O.; Calabresi, P. Cerebrospinal fluid biomarkers in Parkinson disease. Nat. Rev. Neurol. 2013, 9, 131–140. [Google Scholar] [CrossRef]
  11. Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; et al. ICICLE-PD study group. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov. Disord. 2016, 31, 995–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural. Transm. Suppl. 2000, 60, 277–290. [Google Scholar]
  13. Hofmann, K.W.; Schuh, A.F.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.; Rieder, C.R. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res. 2009, 34, 1401–1404. [Google Scholar] [CrossRef] [Green Version]
  14. Scalzo, P.; Kummer, A.; Cardoso, F.; Teixeira, A.L. Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson’s disease. J. Neuroimmunol. 2009, 216, 122–125. [Google Scholar] [CrossRef] [PubMed]
  15. Qin, X.Y.; Zhang, S.P.; Cao, C.; Loh, Y.P.; Cheng, Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: A systematic review and meta-analysis. JAMA Neurol. 2016, 73, 1316–1324. [Google Scholar] [CrossRef]
  16. Ezcurra, A.L.d.L.; Chertoff, M.; Ferrari, C.; Graciarena, M.; Pitossi, F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol. Dis. 2010, 37, 630–640. [Google Scholar] [CrossRef] [PubMed]
  17. Imamura, K.; Hishikawa, N.; Sawada, M.; Nagatsu, T.; Yoshida, M.; Hashizume, Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003, 106, 518–526. [Google Scholar] [CrossRef]
  18. Loane, C.; Politis, M. Positron emission tomography neuroimaging in Parkinson’s disease. Am. J. Transl. Res. 2011, 3, 323–341. [Google Scholar]
  19. Papadopoulos, V.; Baraldi, M.; Guilarte, T.R.; Knudsen, T.B.; Lacapere, J.J.; Lindemann, P.; Norenberg, M.D.; Nutt, D.; Weizman, A.; Zhang, M.R.; et al. Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 2006, 27, 402–409. [Google Scholar] [CrossRef]
  20. Bennett, M.C. The role of alpha-synuclein in neurodegenerative diseases. Pharmacol. Ther. 2005, 105, 311–331. [Google Scholar] [CrossRef]
  21. Béraud, D.; Maguire-Zeiss, K.A. Misfolded α-synuclein and toll-like receptors: Therapeutic targets for Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, S17–S20. [Google Scholar] [CrossRef] [Green Version]
  22. Reynolds, A.D.; Glanzer, J.G.; Kadiu, I.; Ricardo-Dukelow, M.; Chaudhuri, A.; Ciborowski, P.; Cerny, R.; Gelman, B.; Thomas, M.P.; Mosley, R.L.; et al. Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J. Neurochem. 2008, 104, 1504–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Lee, E.J.; Woo, M.S.; Moon, P.G.; Baek, M.C.; Choi, I.Y.; Kim, W.K.; Junn, E.; Kim, H.S. Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J. Immunol. 2010, 185, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Couch, Y.; Alvarez-Erviti, L.; Sibson, N.R.; Wood, M.J.; Anthony, D.C. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J. Neuroinflammation 2011, 8, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Panicker, N.; Sarkar, S.; Harischandra, D.S.; Neal, M.; Kam, T.I.; Jin, H.; Saminathan, H.; Langley, M.; Charli, A.; Samidurai, M.; et al. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 2019, 216, 1411–1430. [Google Scholar] [CrossRef] [PubMed]
  26. Kim, C.; Ho, D.H.; Suk, J.E.; You, S.; Michael, S.; Kang, J.; Joong Lee, S.; Masliah, E.; Hwang, D.; Lee, H.J.; et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 2013, 4, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Choi, I.; Zhang, Y.; Seegobin, S.P.; Pruvost, M.; Wang, Q.; Purtell, K.; Zhang, B.; Yue, Z. Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 2020, 11, 1386. [Google Scholar] [CrossRef] [Green Version]
  28. Choi, I.; Seegobin, S.P.; Liang, D.; Yue, Z. Synucleinphagy: A microglial “community cleanup program” for neuroprotection. Autophagy 2020, 16, 1718–1720. [Google Scholar] [CrossRef] [PubMed]
  29. Fellner, L.; Irschick, R.; Schanda, K.; Reindl, M.; Klimaschewski, L.; Poewe, W.; Wenning, G.K.; Stefanova, N. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 2013, 61, 349–360. [Google Scholar] [CrossRef] [Green Version]
  30. Cebrián, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun. 2014, 5, 3633. [Google Scholar] [CrossRef]
  31. Sanchez-Guajardo, V.; Febbraro, F.; Kirik, D.; Romero-Ramos, M. Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS ONE 2010, 5, e8784. [Google Scholar] [CrossRef] [PubMed]
  32. Reynolds, A.D.; Stone, D.K.; Hutter, J.A.; Benner, E.J.; Mosley, R.L.; Gendelman, H.E. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J. Immunol. 2010, 184, 2261–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Terryberry, J.W.; Thor, G.; Peter, J.B. Autoantibodies in neurodegenerative diseases- antigen-specific frequencies and intrathecal analysis. Neurobiol. Aging 1998, 19, 205–216. [Google Scholar] [CrossRef]
  34. Poletaev, A.B.; Morozov, S.G.; Gnedenko, B.B.; Zlunikin, V.M.; Korzhenevskey, D.A. Serum anti-S100b, anti-GFAP and anti-NGF autoantibodies of IgG class in healthy persons and patients with mental and neurological disorders. Autoimmunity 2000, 32, 33–38. [Google Scholar] [CrossRef]
  35. Gruden, M.A.; Sewell, R.D.; Yanamandra, K.; Davidova, T.V.; Kucheryanu, V.G.; Bocharov, E.V.; Bocharova, O.A.; Polyschuk, V.V.; Sherstnev, V.V.; Morozova-Roche, L.A. Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J. Neuroimmunol. 2011, 233, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Karcher, D.; Federsppiel, B.S.; Lowenthal, F.D.; Frank, F.; Lowenthal, A. Anti-neurofilament antibodies in blood of patients with neurological diseases. Acta Neuropathol. 1986, 72, 82–85. [Google Scholar] [CrossRef]
  37. Elizan, T.S.; Casals, J.; Yahr, M.D. Antineurofilament antibodies in postencephalitic and idiopathic Parkinson’s disease. J. Neurol. Sci. 1983, 59, 341–347. [Google Scholar] [CrossRef]
  38. Zappia, M.; Crescibene, L.; Bosco, D.; Arabia, G.; Nicoletti, G.; Bagala, A.; Bastone, L.; Napoli, I.D.; Caracciolo, M.; Bonavita, S.; et al. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol. Scand. 2002, 106, 54–57. [Google Scholar] [CrossRef]
  39. Appel, S.H.; Smith, R.G.; Alexianu, M.; Engelhardt, J.; Mosier, D.; Colom, L.; Stefani, E. Neurodegenerative disease: Autoimmunity involving calcium channels. Ann. NY Acad Sci. 1994, 747, 183–194. [Google Scholar] [CrossRef]
  40. Yanamandra, K.; Gruden, M.A.; Casaite, V.; Meskys, R.; Forsgren, L.; Morozova-Roche, L.A. Alpha-synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PLoS ONE 2011, 6, e18513. [Google Scholar] [CrossRef]
  41. Papachroni, K.K.; Ninkina, N.; Papapanagiotou, A.; Hadjigeorgiou, G.M.; Xiromerisiou, G.; Papadimitriou, A.; Kalofoutis, A.; Buchman, V.L. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J. Neurochem. 2007, 101, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Double, K.L.; Rowe, D.B.; Carew-Jones, F.M.; Hayes, M.; Chan, D.K.; Blackie, J.; Corbett, A.; Joffe, R.; Fung, V.S.; Morris, J.; et al. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp. Neurol. 2009, 217, 297–301. [Google Scholar] [CrossRef] [PubMed]
  43. Goedert, M.; Spillantini, M.G.; Del Tredici, K.; Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 2013, 9, 13–24. [Google Scholar] [CrossRef]
  44. Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Stolzenberg, E.; Berry, D.; Yang, D.; Lee, E.Y.; Kroemer, A.; Kaufman, S.; Wong, G.C.L.; Oppenheim, J.J.; Sen, S.; Fishbein, T.; et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun. 2017, 9, 456–463. [Google Scholar] [CrossRef] [PubMed]
  46. Houser, M.C.; Chang, J.; Factor, S.A.; Molho, E.S.; Zabetian, C.P.; Hill-Burns, E.M.; Payami, H.; Hertzberg, V.S.; Tansey, M.G. Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Mov. Disord. 2018, 33, 793–804. [Google Scholar] [CrossRef]
  47. Challis, C.; Hori, A.; Sampson, T.R.; Yoo, B.B.; Challis, R.C.; Hamilton, A.M.; Mazmanian, S.K.; Volpicelli-Daley, L.A.; Gradinaru, V. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 2020, 23, 327–336. [Google Scholar] [CrossRef]
  48. Hasegawa, S.; Goto, S.; Tsuji, H.; Okuno, T.; Asahara, T.; Nomoto, K.; Shibata, A.; Fujisawa, Y.; Minato, T.; Okamoto, A.; et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 2015, 10, e0142164. [Google Scholar] [CrossRef] [Green Version]
  49. Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015, 30, 1351–1360. [Google Scholar] [CrossRef]
  50. Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Burmann, J.; Fassbender, K.; Schwiertz, A.; Schafer, K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 2016, 32, 66–72. [Google Scholar] [CrossRef]
  51. Kuai, X.Y.; Yao, X.H.; Xu, L.J.; Zhou, Y.Q.; Zhang, L.P.; Liu, Y.; Pei, S.F.; Zhou, C.L. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb. Cell Fact. 2021, 20, 98. [Google Scholar] [CrossRef] [PubMed]
  52. Parnetti, L.; Farotti, L.; Eusebi, P.; Chiasserini, D.; De Carlo, C.; Giannandrea, D.; Salvadori, N.; Lisetti, V.; Tambasco, N.; Rossi, A.; et al. Al. Differential role of CSF alpha-synuclein species, tau, and Abeta42 in Parkinson’s Disease. Front. Aging Neurosci. 2014, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci. 2015, 125, 645–654. [Google Scholar] [CrossRef] [PubMed]
  54. Hall, S.; Surova, Y.; Ohrfelt, A.; Zetterberg, H.; Lindqvist, D.; Hansson, O. CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015, 84, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Eusebi, P.; Giannandrea, D.; Biscetti, L.; Abraha, I.; Chiasserini, D.; Orso, M.; Calabresi, P.; Parnetti, L. Diagnostic utility of cerebrospinal fluid alpha-synuclein in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2017, 32, 1389–1400. [Google Scholar] [CrossRef]
  56. Mollenhauer, B.; Caspell-Garcia, C.J.; Coffey, C.S.; Taylor, P.; Shaw, L.M.; Trojanowski, J.Q.; Singleton, A.; Frasier, M.; Marek, K.; Galasko, D. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology 2017, 89, 1959–1969. [Google Scholar] [CrossRef] [Green Version]
  57. Sako, W.; Murakami, N.; Izumi, Y.; Kaji, R. Reduced alpha-synuclein in cerebrospinal fluid in synucleinopathies: Evidence from a meta-analysis. Mov. Disord. 2014, 29, 1599–1605. [Google Scholar] [CrossRef]
  58. Reale, M.; Iarlori, C.; Thomas, A.; Gambi, D.; Perfetti, B.; Di Nicola, M.; Onofrj, M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav. 2009, 23, 55–63. [Google Scholar] [CrossRef]
  59. Ferrari, C.C.; Pott Godoy, M.C.; Tarelli, R.; Chertoff, M.; Depino, A.M.; Pitossi, F.J. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol. Dis. 2006, 24, 183–193. [Google Scholar] [CrossRef]
  60. Mogi, M.; Harada, M.; Narabayashi, H.; Inagaki, H.; Minami, M.; Nagatsu, T. Interleukin (IL)-lβ, IL-2, IL-4, IL-6 and transforming growth factor-a levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett. 1996, 211, 13–16. [Google Scholar] [CrossRef]
  61. Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. Cytokines in Parkinson’s disease. J. Neural. Transm. Suppl. 2000, 10, 143–151. [Google Scholar]
  62. Hu, Y.; Yu, S.Y.; LJ, Z.; Cao, C.J.; Wang, F.; Chen, Z.J.; Du, Y.; Lian, T.H.; Wang, Y.J.; Chan, P.; et al. Parkinson disease with REM sleep behavior disorder: Features, α-synuclein, and inflammation. Neurology 2015, 84, 888–894. [Google Scholar] [CrossRef] [PubMed]
  63. Bu, X.L.; Wang, X.; Xiang, Y.; Shen, L.L.; Wang, Q.H.; Liu, Y.H.; Jiao, S.S.; Wang, Y.R.; Cao, H.Y.; Yi, X.; et al. The association between infectious burden and Parkinson’s disease: A case-control study. Parkinsonism Relat. Disord. 2015, 21, 877–881. [Google Scholar] [CrossRef] [PubMed]
  64. Dursun, E.; Gezen-Ak, D.; Hanagasi, H.; Bilgic, B.; Lohmann, E.; Ertan, S.; Atasoy, I.L.; Alaylioglu, M.; Araz, O.S.; Onal, B.; et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J. Neuroimmunol. 2015, 283, 50–57. [Google Scholar] [CrossRef] [PubMed]
  65. Pirttila, T.; Mehta, P.D.; Frey, H.; Wisniewski, H.M. Alpha 1-antichymotrypsin and IL-1 beta are not increased in CSF or serum in Alzheimer’s disease. Neurobiol. Aging 1994, 15, 313–317. [Google Scholar] [CrossRef]
  66. Koziorowski, D.; Tomasiuk, R.; Szlufik, S.; Friedman, A. Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine 2012, 60, 762–766. [Google Scholar] [CrossRef]
  67. Lin, C.H.; Chen, C.C.; Chiang, H.L.; Liou, J.M.; Chang, C.M.; Lu, T.P.; Chuang, E.Y.; Tai, Y.C.; Cheng, C.; Lin, H.Y.; et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflammation 2019, 16, 129. [Google Scholar] [CrossRef]
  68. Malek, T.R. The biology of interleukin-2. Annu Rev. Immunol. 2008, 26, 453–479. [Google Scholar] [CrossRef]
  69. Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 2012, 12, 180–190. [Google Scholar] [CrossRef]
  70. Sadlack, B.; Merz, H.; Schorle, H.; Schimpl, A.; Feller, A.C.; Horak, I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993, 75, 253–261. [Google Scholar] [CrossRef]
  71. Rochman, Y.; Spolski, R.; Leonard, W.J. New insights into the regulation of t cells by gamma(c) family cytokines. Nat. Rev. Immunol. 2009, 9, 480–490. [Google Scholar] [CrossRef] [PubMed]
  72. Mogi, M.; Harada, M.; Kondo, T.; Riederer, P.; Nagatsu, T. Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain. Short communication. J. Neural. Transm. 1996, 103, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
  73. Brodacki, B.; Staszewski, J.; Toczylowska, B.; Kozlowska, E.; Drela, N.; Chalimoniuk, M.; Stepien, A. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci. Lett. 2008, 441, 158–162. [Google Scholar] [CrossRef] [PubMed]
  74. Stypuła, G.; Kunert-Radek, J.; Stepień, H.; Zylińska, K.; Pawlikowski, M. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease. Neuroimmunomodulation 1996, 3, 131–134. [Google Scholar] [CrossRef]
  75. Lindqvist, D.; Kaufman, E.; Brundin, L.; Hall, S.; Surova, Y.; Hansson, O. Non-motor symptoms in patients with Parkinson’s disease—Correlations with inflammatory cytokines in serum. PLoS ONE 2012, 7, e47387. [Google Scholar] [CrossRef] [Green Version]
  76. Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 2012, 8, 1254–1266. [Google Scholar] [CrossRef]
  77. Gruol, D.L.; Nelson, T.E. Physiological and pathological roles of interleukin-6 in the central nervous system. Mol. Neurobiol. 1997, 15, 307–339. [Google Scholar] [CrossRef]
  78. Miiller, T.; Blum-Degen, D.; Przuntek, H.; Kuhn, W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol. Scand. 1998, 98, 142–144. [Google Scholar] [CrossRef]
  79. Mogi, M.; Harada, M.; Kondo, T.; Riederer, P.; Inagaki, H.; Minami, M.; Nagatsu, T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 1994, 180, 147–150. [Google Scholar] [CrossRef]
  80. Blum-Degen, D.; Müller, T.; Kuhn, W.; Gerlach, M.; Przuntek, H.; Riederer, P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 1995, 202, 17–20. [Google Scholar] [CrossRef]
  81. Tang, P.; Chong, L.; Li, X.; Liu, Y.; Liu, P.; Hou, C.; Li, R. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid. Med. Cell Longev. 2014, 2014, 208408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Gruden, M.A.; Yanamandra, K.; Kucheryanu, V.G.; Bocharova, O.R.; Sherstnev, V.V.; Morozova-Roche, L.A.; Sewell, R.D. Correlation between protective immunity to α-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 2012, 19, 334–342. [Google Scholar] [CrossRef] [PubMed]
  83. Dobbs, R.J.; Charlett, A.; Purkiss, A.G.; Dobbs, S.M.; Weller, C.; Peterson, D.W. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol. Scand. 1999, 100, 34–41. [Google Scholar] [CrossRef] [PubMed]
  84. Scalzo, P.; Kummer, A.; Cardoso, F.; Teixeira, A.L. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci. Lett. 2010, 468, 56–58. [Google Scholar] [CrossRef]
  85. Selikhova, M.V.; Kushlinskii, N.E.; Lyubimova, N.V.; Gusev, E.I. Impaired production of plasma interleukin-6 in patients with Parkinson’s disease. Bull. Exp. Biol Med. 2002, 133, 81–83. [Google Scholar] [CrossRef]
  86. Dufek, M.; Rektorova, I.; Thon, V.; Lokaj, J.; Rektor, I. Interleukin-6 may contribute to mortality in Parkinson’s disease patients: A 4-Year prospective study. Parkinsons Dis. 2015, 2015, 898192. [Google Scholar] [CrossRef] [Green Version]
  87. Moore, K.W.; O’Garra, A.; de Waal Malefyt, R.; Vieira, P.; Mosmann, T.R. Interleukin-10. Annu Rev. Immunol. 1993, 11, 165–190. [Google Scholar] [CrossRef]
  88. Molina-Holgado, F.; Grencis, R.; Rothwell, N.J. Actions of exogenous and endogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia 2001, 33, 97–106. [Google Scholar] [CrossRef]
  89. Rentzos, M.; Nikolaou, C.; Andreadou, E.; Paraskevas, G.P.; Rombos, A.; Zoga, M.; Tsoutsou, A.; Boufidou, F.; Kapaki, E.; Vassilopoulos, D. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol. Scand. 2009, 119, 332–337. [Google Scholar] [CrossRef]
  90. Rota, E.; Bellone, G.; Rocca, P.; Bergamasco, B.; Emanuelli, G.; Ferrero, P. Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurol. Sci. 2006, 27, 33–39. [Google Scholar] [CrossRef]
  91. Tracey, K.J.; Cerami, A. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu Rev. Med. 1994, 45, 491–503. [Google Scholar] [CrossRef] [PubMed]
  92. Aderka, D. The potential biological and clinical significance of the soluble tumor necrosis factor receptors. Cytokine Growth Factor Rev. 1996, 7, 231–240. [Google Scholar] [CrossRef]
  93. Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Mogi, M.; Harada, M.; Riederer, P.; Narabayashi, H.; Fujita, K.; Nagatsu, T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 1994, 165, 208–210. [Google Scholar] [CrossRef]
  95. Teismann, P.; Tieu, K.; Cohen, O.; Choi, D.K.; Wu, D.C.; Marks, D.; Vila, M.; Jackson-Lewis, V.; Przedborski, S. Pathogenic role of glial cells in Parkinson’s disease. Mov. Disord. 2003, 18, 121–129. [Google Scholar] [CrossRef] [PubMed]
  96. Boka, G.; Anglade, P.; Wallach, D.; Javoy-Agid, F.; Agid, Y.; Hirsch, E.C. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci. Lett. 1994, 172, 151–154. [Google Scholar] [CrossRef]
  97. Rocha, N.P.; Teixeira, A.L.; Scalzo, P.L.; Barbosa, I.G.; de Sousa, M.S.; Morato, I.B.; Vieira, E.L.; Christo, P.P.; Palotas, A.; Reis, H.J. Plasma levels of soluble tumor necrosis factor receptors are associated with cognitive performance in Parkinson’s disease. Mov. Disord. 2014, 29, 527–531. [Google Scholar] [CrossRef]
  98. Menza, M.; Dobkin, R.D.; Marin, H.; Mark, M.H.; Gara, M.; Bienfait, K.; Dicke, A.; Kusnekov, A. The role of inflammatory cytokines in cognition and oTher. non-motor symptoms of Parkinson’s disease. Psychosomatics 2010, 51, 474–479. [Google Scholar]
  99. Appay, V.; Rowland-Jones, S.L. RANTES: A versatile and controversial chemokine. Trends Immunol. 2001, 22, 83–87. [Google Scholar] [CrossRef]
  100. Mahlknecht, P.; Stemberger, S.; Sprenger, F.; Rainer, J.; Hametner, E.; Kirchmair, R.; Grabmer, C.; Scherfler, C.; Wenning, G.K.; Seppi, K.; et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci. 2012, 10, 71. [Google Scholar] [CrossRef] [Green Version]
  101. Rentzos, M.; Nikolaou, C.; Andreadou, E.; Paraskevas, G.P.; Rombos, A.; Zoga, M.; Tsoutsou, A.; Boufidou, F.; Kapaki, E.; Vassilopoulos, D. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol. Scand. 2007, 116, 374–937. [Google Scholar] [CrossRef] [PubMed]
  102. Gangemi, S.; Basile, G.; Merendino, R.A.; Epifanio, A.; Di Pasquale, G.; Ferlazzo, B.; Nicita-Mauro, V.; Morgante, L. Effect of levodopa on interleukin-15 and RANTES circulating levels in patients affected by Parkinson’s disease. Mediat. Inflamm. 2003, 12, 251–253. [Google Scholar] [CrossRef] [PubMed]
  103. Palasik, W.; Fiszer, U.; Lechowicz, W.; Czartoryska, B.; Krzesiewicz, M.; Lugowska, A. Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. Eur. Neurol. 2005, 53, 188–193. [Google Scholar] [CrossRef] [PubMed]
  104. Song, I.U.; Chung, S.W.; Kim, J.S.; Lee, K.S. Association between high-sensitivity C-reactive protein and risk of early idiopathic Parkinson’s disease. Neurol. Sci. 2011, 32, 31–34. [Google Scholar] [CrossRef]
  105. Andican, G.; Konukoglu, D.; Bozluolcay, M.; Bayulkem, K.; Firtiina, S.; Burcak, G. Plasma oxidative and inflammatory markers in patients with idiopathic Parkinson’s disease. Acta Neurol. Belg. 2012, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
  106. Akil, E.; Bulut, A.; Kaplan, I.; Ozdemir, H.H.; Arslan, D.; Aluclu, M.U. The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol. Sci. 2015, 36, 423–428. [Google Scholar] [CrossRef]
  107. Song, I.U.; Kim, Y.D.; Cho, H.J.; Chung, S.W. Is neuroinflammation involved in the development of dementia in patients with Parkinson’s disease? Intern. Med. 2013, 52, 1787–1792. [Google Scholar] [CrossRef] [Green Version]
  108. Song, I.U.; Kim, J.S.; Chung, S.W.; Lee, K.S. Is there an association between the level of high-sensitivity C-reactive protein and idiopathic Parkinson’s disease? A comparison of Parkinson’s disease patients, disease controls and healthy individuals. Eur Neurol. 2009, 62, 99–104. [Google Scholar] [CrossRef]
  109. Trinh, J.; Farrer, M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 2013, 9, 445–454. [Google Scholar] [CrossRef]
  110. Paisan-Ruiz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simon, J.; van der Brug, M.; de Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004, 44, 595–600. [Google Scholar] [CrossRef] [Green Version]
  111. Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Zhang, F.R.; Huang, W.; Chen, S.M.; Sun, L.D.; Liu, H.; Li, Y.; Cui, Y.; Yan, X.X.; Yang, H.T.; Yang, R.D.; et al. Genomewide association study of leprosy. N. Engl. J. Med. 2009, 361, 2609–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  113. Umeno, J.; Asano, K.; Matsushita, T.; Matsumoto, T.; Kiyohara, Y.; Iida, M.; Nakamura, Y.; Kamatani, N.; Kubo, M. Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 2011, 17, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
  114. Moehle, M.S.; Webber, P.J.; Tse, T.; Sukar, N.; Standaert, D.G.; DeSilva, T.M.; Cowell, R.M.; West, A.B. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 2012, 32, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
  115. Gillardon, F.; Schmid, R.; Draheim, H. Parkinson’s disease-linked leucine-rich repeat kinase 2 (R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 2012, 208, 41–48. [Google Scholar] [CrossRef]
  116. Daher, J.P.; Abdelmotilib, H.A.; Hu, X.; Volpicelli-Daley, L.A.; Moehle, M.S.; Fraser, K.B.; Needle, E.; Chen, Y.; Steyn, S.J.; Galatsis, P.; et al. Leucine-rich repeat kinase 2 (LRRK2) Pharmacol. ogical inhibition abates alpha-synuclein gene-induced neurodegeneration. J. Biol. Chem 2015, 290, 19433–19444. [Google Scholar] [CrossRef] [Green Version]
  117. Berwick, D.C.; Heaton, G.R.; Azeggagh, S.; Harvey, K. LRRK2 Biology from structure to dysfunction: Research progresses, but the themes remain the same. Mol. Neurodegener. 2019, 14, 49. [Google Scholar] [CrossRef]
  118. Lin, C.H.; Lin, H.Y.; Ho, E.P.; Ke, Y.C.; Cheng, M.F.; Shiue, C.Y.; Wu, C.H.; Liao, P.H.; Hsu, A.Y.; Chu, L.A.; et al. Mild chronic colitis triggers parkinsonism in LRRK2 mutant mice through activating TNF-alpha pathway. Mov. Disord. 2021. Online ahead of print. [Google Scholar] [CrossRef]
  119. Dwyer, Z.; Rudyk, C.; Situt, D.; Beauchamp, S.; Abdali, J.; Dinesh, A.; Legancher, N.; Sun, H.; Schlossmacher, M.; Hayley, S. CLINT (Canadian LRRK2 in inflammation team). Microglia depletion prior to lipopolysaccharide and paraquat treatment differentially modulates behavioral and neuronal outcomes in wild type and G2019S LRRK2 knock-in mice. Brain Behav. Immun. Health 2020, 5, 100079. [Google Scholar] [CrossRef]
  120. Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004, 304, 1158–1160. [Google Scholar] [CrossRef] [Green Version]
  121. Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect Med. 2012, 2, a009415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Yonova-Doing, E.; Atadzhanov, M.; Quadri, M.; Kelly, P.; Shawa, N.; Musonda, S.T.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Bonifati, V. Analysis of LRRK2, SNCA, Parkin, PINK1, and DJ-1 in Zambian patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 567–571. [Google Scholar] [CrossRef] [PubMed]
  123. Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e1000298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Ziviani, E.; Tao, R.N.; Whitworth, A.J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA 2010, 107, 5018–5023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Akundi, R.S.; Huang, Z.; Eason, J.; Pandya, J.D.; Zhi, L.; Cass, W.A.; Sullivan, P.G.; Bueler, H. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 2011, 6, e16038. [Google Scholar] [CrossRef] [Green Version]
  126. Kim, J.; Byun, J.W.; Choi, I.; Kim, B.; Jeong, H.K.; Jou, I.; Joe, E. PINK1 Deficiency Enhances Inflammatory Cytokine release from acutely prepared brain slices. Exp. Neurobiol. 2013, 22, 38–44. [Google Scholar] [CrossRef] [Green Version]
  127. Rongvaux, A.; Jackson, R.; Harman, C.C.; Li, T.; West, A.P.; de Zoete, M.R.; Wu, Y.; Yordy, B.; Lakhani, S.A.; Kuan, C.Y.; et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014, 159, 1563–1577. [Google Scholar] [CrossRef] [Green Version]
  128. Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469, 221–225. [Google Scholar] [CrossRef]
  129. White, M.J.; McArthur, K.; Metcalf, D.; Lane, R.M.; Cambier, J.C.; Herold, M.J.; van Delft, M.F.; Bedoui, S.; Lessene, G.; Ritchie, M.E.; et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014, 159, 1549–1562. [Google Scholar] [CrossRef] [Green Version]
  130. Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef] [Green Version]
  131. West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015, 520, 553–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
  133. Shimura, H.; Hattori, N.; Kubo, S.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K.; et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25, 302–305. [Google Scholar] [CrossRef] [PubMed]
  134. Zhang, Y.; Gao, J.; Chung, K.K.; Huang, H.; Dawson, V.L.; Dawson, T.M. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad Sci. USA 2000, 97, 13354–13359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Bellosta, S.; Paoletti, R.; Corsini, A. Safety of statins: Focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109, III50–III57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Feany, M.B.; Pallanck, L.J. Parkin: A multipurpose neuroprotective agent? Neuron 2003, 38, 13–16. [Google Scholar] [CrossRef] [Green Version]
  137. Frank-Cannon, T.C.; Tran, T.; Ruhn, K.A.; Martinez, T.N.; Hong, J.; Marvin, M.; Hartley, M.; Trevino, I.; O’Brien, D.E.; Casey, B.; et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci. 2008, 28, 10825–10834. [Google Scholar] [CrossRef]
  138. Tran, T.A.; Nguyen, A.D.; Chang, J.; Goldberg, M.S.; Lee, J.K.; Tansey, M.G. Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B. PLoS ONE 2011, 6, e23660. [Google Scholar] [CrossRef]
  139. Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299, 256–259. [Google Scholar] [CrossRef] [Green Version]
  140. Kim, K.S.; Kim, J.S.; Park, J.Y.; Suh, Y.H.; Jou, I.; Joe, E.H.; Park, S.M. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum. Mol. Genet. 2013, 22, 4805–4817. [Google Scholar] [CrossRef] [Green Version]
  141. Ashley, A.K.; Hinds, A.I.; Hanneman, W.H.; Tjalkens, R.B.; Legare, M.E. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 2016, 52, 198–203. [Google Scholar] [CrossRef] [PubMed]
  142. Lin, Z.; Chen, C.; Yang, D.; Ding, J.; Wang, G.; Ren, H. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 2021, 12, 715. [Google Scholar] [CrossRef] [PubMed]
  143. Trudler, D.; Weinreb, O.; Mandel, S.A.; Youdim, M.B.; Frenkel, D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J. Neurochem. 2014, 129, 434–447. [Google Scholar] [CrossRef]
  144. McGeer, P.L.; McGeer, E.G. Glial reactions in Parkinson’s disease. Mov. Disord. 2008, 23, 474–483. [Google Scholar] [CrossRef] [PubMed]
  145. Xu, L.; He, D.; Bai, Y. Microglia-mediated inflammation and neurodegenerative disease. Mol. Neurobiol. 2016, 53, 6709–6715. [Google Scholar] [CrossRef] [PubMed]
  146. Banati, R.B. Visualising microglial activation in vivo. Glia 2002, 40, 206–217. [Google Scholar] [CrossRef]
  147. Ouchi, Y.; Yoshikawa, E.; Sekine, Y.; Futatsubashi, M.; Kanno, T.; Ogusu, T.; Torizuka, T. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 2005, 57, 168–175. [Google Scholar] [CrossRef]
  148. Koshimori, Y.; Ko, J.H.; Mizrahi, R.; Rusjan, P.; Mabrouk, R.; Jacobs, M.F.; Christopher, L.; Hamani, C.; Lang, A.E.; Wilson, A.A.; et al. Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS ONE 2015, 10, e0138721. [Google Scholar] [CrossRef]
  149. Hatano, K.; Yamada, T.; Toyama, H.; Kudo, G.; Nomura, M.; Suzuki, H.; Ichise, M.; Wilson, A.A.; Sawada, M.; Kato, T.; et al. Correlation between FEPPA uptake and microglia activation in 6-OHDA injured rat brain. NeuroImage 2010, 52, s138. [Google Scholar] [CrossRef]
  150. Ajmone-Cat, M.A.; Bernardo, A.; Greco, A.; Minghetti, L. Non-steroidal anti-Inflammatory drugs and brain inflammation: Effects on microglial functions. Pharmaceuticals 2010, 3, 1949–1965. [Google Scholar] [CrossRef]
  151. Sairam, K.; Saravanan, K.S.; Banerjee, R.; Mohanakumar, K.P. Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res. 2003, 966, 245–252. [Google Scholar] [CrossRef]
  152. Kurkowska-Jastrzębska, I.; Babiuch, M.; Joniec, I.; Przybyłkowski, A.; Członkowski, A.; Członkowska, A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol. 2002, 2, 1213–1218. [Google Scholar] [CrossRef]
  153. Maharaj, D.S.; Saravanan, K.S.; Maharaj, H.; Mohanakumar, K.P.; Daya, S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem. Int. 2004, 44, 355–360. [Google Scholar] [CrossRef]
  154. Teema, A.M.; Zaitone, S.A.; Moustafa, Y.M. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology 2016, 107, 432–450. [Google Scholar] [CrossRef] [PubMed]
  155. Casper, D.; Yaparpalvi, U.; Rempel, N.; Werner, P. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci. Lett. 2000, 289, 201–204. [Google Scholar] [CrossRef]
  156. Manthripragada, A.D.; Schernhammer, E.S.; Qiu, J.; Friis, S.; Wermuth, L.; Olsen, J.H.; Ritz, B. Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology 2011, 36, 155–161. [Google Scholar] [CrossRef] [Green Version]
  157. Rees, K.; Stowe, R.; Patel, S.; Ives, N.; Breen, K.; Clarke, C.E.; Ben-Shlomo, Y. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: Evidence from observational stud. Cochrane Database Syst. Rev. 2011, 11, CD008454. [Google Scholar] [CrossRef]
  158. Poly, T.N.; Islam, M.M.R.; Yang, H.C.; Li, Y.J. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: A meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 99–108. [Google Scholar] [CrossRef]
  159. Ferger, B.; Leng, A.; Mura, A.; Hengerer, B.; Feldon, J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and Pharmacol. ogical inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 2004, 89, 822–833. [Google Scholar] [CrossRef]
  160. Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 2018, 75, 939–946. [Google Scholar] [CrossRef]
  161. Pardridge, W.M. Biologic TNFα-inhibitors that cross the human blood-brain barrier. Bioeng. Bugs 2010, 1, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  162. Li, Y.; Xia, Y.; Yin, S.; Wan, F.; Hu, J.; Kou, L.; Sun, Y.; Wu, J.; Zhou, Q.; Huang, J.; et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front. Immunol. 2021, 12, 719807. [Google Scholar] [CrossRef] [PubMed]
  163. Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018, 10, eaah4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Esteras, N.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 activation in the treatment of neurodegenerative diseases: A focus on its role in mitochondrial bioenergetics and function. Biol Chem 2016, 397, 383–400. [Google Scholar] [CrossRef]
  165. Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell Physiol. 2018, 234, 23–32. [Google Scholar] [CrossRef] [Green Version]
  166. Brandes, M.S.; Zweig, J.A.; Tang, A.; Gray, N.E. NRF2 activation ameliorates oxidative stress and improves mitochondrial function and synaptic plasticity, and in A53T α-synuclein hippocampal neurons. Antioxidants 2021, 11, 26. [Google Scholar] [CrossRef]
  167. Lastres-Becker, I.; Garcia-Yague, A.J.; Scannevin, R.H.; Casarejos, M.J.; Kugler, S.; Rabano, A.; Cuadrado, A. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid. Redox Signal. 2016, 25, 61–77. [Google Scholar] [CrossRef] [Green Version]
  168. Campolo, M.; Casili, G.; Biundo, F.; Crupi, R.; Cordaro, M.; Cuzzocrea, S.; Esposito, E. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: Involvement of reactive oxygen species/nuclear factor-kappaB/nuclear transcription factor related to NF-E2. Antioxid. Redox Signal. 2017, 27, 453–471. [Google Scholar] [CrossRef] [Green Version]
  169. Delerive, P.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol 2001, 169, 453–459. [Google Scholar] [CrossRef] [Green Version]
  170. Chaturvedi, R.K.; Beal, M.F. PPAR: A therapeutic target in Parkinson’s disease. J. Neurochem. 2008, 106, 506–518. [Google Scholar] [CrossRef]
  171. Swanson, C.R.; Joers, V.; Bondarenko, V.; Brunner, K.; Simmons, H.A.; Ziegler, T.E.; Kemnitz, J.W.; Johnson, J.A.; Emborg, M.E. The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J. Neuroinflammation 2011, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Breidert, T.; Callebert, J.; Heneka, M.T.; Landreth, G.; Launay, J.M.; Hirsch, E.C. Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 2002, 82, 615–624. [Google Scholar] [CrossRef] [PubMed]
  173. Dehmer, T.; Heneka, M.T.; Sastre, M.; Dichgans, J.; Schulz, J.B. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J. Neurochem. 2004, 88, 494–501. [Google Scholar] [CrossRef] [PubMed]
  174. Schintu, N.; Frau, L.; Ibba, M.; Caboni, P.; Garau, A.; Carboni, E.; Carta, A.R. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci. 2009, 29, 954–963. [Google Scholar] [CrossRef]
  175. Castano, A.; Herrera, A.J.; Cano, J.; Machado, A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-a, IL-1b and IFN-c. J. Neurochem. 2002, 81, 150–157. [Google Scholar] [CrossRef]
  176. Bourque, M.; Di Paolo, T. Neuroactive steroids and Parkinson’s disease. Curr. Opin. Endocr. Metab. Res. 2022, 22, 100312. [Google Scholar] [CrossRef]
  177. Frau, R.; Miczán, V.; Traccis, F.; Aroni, S.; Pongor, C.I.; Saba, P.; Serra, V.; Sagheddu, C.; Fanni, S.; Congiu, M.; et al. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat. Neurosci. 2019, 22, 1975–1985. [Google Scholar] [CrossRef] [Green Version]
  178. Belanger, N.; Gregoire, L.; Bedard, P.J.; Di Paolo, T. DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol. Aging 2006, 27, 1684–1693. [Google Scholar] [CrossRef]
  179. Maclagan, L.C.; Visanji, N.P.; Cheng, Y.; Tadrous, M.; Lacoste, A.M.B.; Kalia, L.V.; Bronskill, S.E.; Marras, C. Identifying drugs with disease-modifying potential in Parkinson’s disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 2020, 29, 864–872. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liu, T.-W.; Chen, C.-M.; Chang, K.-H. Biomarker of Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 4148. https://doi.org/10.3390/ijms23084148

AMA Style

Liu T-W, Chen C-M, Chang K-H. Biomarker of Neuroinflammation in Parkinson’s Disease. International Journal of Molecular Sciences. 2022; 23(8):4148. https://doi.org/10.3390/ijms23084148

Chicago/Turabian Style

Liu, Tsai-Wei, Chiung-Mei Chen, and Kuo-Hsuan Chang. 2022. "Biomarker of Neuroinflammation in Parkinson’s Disease" International Journal of Molecular Sciences 23, no. 8: 4148. https://doi.org/10.3390/ijms23084148

APA Style

Liu, T. -W., Chen, C. -M., & Chang, K. -H. (2022). Biomarker of Neuroinflammation in Parkinson’s Disease. International Journal of Molecular Sciences, 23(8), 4148. https://doi.org/10.3390/ijms23084148

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop