Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models?
Abstract
:1. Introduction
2. Respiratory Dysfunction in PD
3. Pulmonary Function and Respiratory Muscle Strength
3.1. Human Studies
3.2. Animal Studies
4. Obstructive Sleep Apnea (OSA)
5. Central Respiratory Control
5.1. Human Studies
5.2. Animal Studies
6. Dyspnea
7. Chemical Regulation of Breathing in PD
7.1. Normoxic Breathing Pattern
7.2. Hypercapnia
7.3. Hypoxia
7.4. Normoxia, Hypoxia, and Hypercapnia in Animal Studies
Model of PD | Normoxia | Hypoxia | Hypercapnia | References | |
---|---|---|---|---|---|
6-OHDA with desipramine pretreatment | unilateral MFB | unhanged | increased VT, decreased f, increased VE | increased VT; decreased f; increased VE | [150,157] |
6-OHDA with desipramine pretreatment | bilateral ICV | increased VT, decreased f, | increased VT, | not studied | [117] |
6-OHDA | bilateral striatum | decreased f; decreased VE | unchanged | decreased f, | [119] |
Reserpine with α-ethyl-tyrosine | Intraperitoneal | decreased f; increased VT; decreased VE | decreased f; increased VT; decreased VE | not studied | [154] |
6-OHDA | bilateral striatum and locus coeruleus | decreased f, decreased VE | unchanged | decreased f; decreased VT; decreased VE | [156] |
Transgenic Pink1−/− | increased f | unchanged | decreased f (hypercapnia with hypoxia) | [158] |
8. Effects of PD Therapy on Respiratory Distress
L-DOPA Positive Effect | L-DOPA Negative Effect |
---|---|
Improvement of FVC, VC, FEV1, and PEF (FEV1%, VC%, FVC%) [37,159,161] | Respiratory dyspnea, peak-dose irregular tachypnea alternating with brief periods of apnea, and respiratory dyskinesias [167,168,169] |
Increase in respiratory muscle strength parameters [160] | Mild shortness of breath at baseline [175] |
Increase in hypoxic ventilatory response [148] | Increased risk of sleep-disordered breathing of central origin [171] |
Reduced apnea–hypopnea index (AHI) [164] | In the “off state” of L-DOPA therapy, laryngeal dystonia, stridor, and emergence of chest wall muscle bradykinesia and rigidity [37,61,172,176] |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009, 373, 2055–2066, Erratum in: Lancet 2009, 374, 684. [Google Scholar] [CrossRef]
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Thomas, B.; Beal, M.F. Parkinson’s disease. Hum. Mol. Genet. 2007, 16, R183–R194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blesa, J.; Foffani, G.; Dehay, B.; Bezard, E.; Obeso, J.A. Motor and non-motor circuit disturbances in early Parkinson disease: Which happens first? Nat. Rev. Neurosci. 2021, 23, 115–128. [Google Scholar] [CrossRef]
- Politis, M.; Wu, K.; Molloy, S.; Bain, G.P.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov, Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef]
- Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef]
- Todorova, A.; Jenner, P.; Ray Chaudhuri, K. Non-motor Parkinson’s: Integral to motor Parkinson’s, yet often neglected. Pract. Neurol. 2014, 14, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Eccles, F.J.R.; Sowter, N.; Spokes, T.; Zarotti, N.; Simpson, J. Stigma, self-compassion, and psychological distress among people with Parkinson’s. Disabil. Rehabil. 2022, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Yates, L.; Martinez-Martin, P. The non-motor symptom complex of Parkinson’s disease: A comprehensive assessment is essential. Curr. Neurol. Neurosci. Rep. 2005, 5, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Logemann, J.A.; Fisher, H.B.; Boshes, B.; Blonsky, E.R. Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients. J. Speech Hear. Disord. 1978, 43, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Streifler, M.; Hofman, S. Disorders of verbal expression in parkinsonism. Adv. Neurol. 1984, 40, 385–393. [Google Scholar] [PubMed]
- Ramig, L.O.; Fox, C.; Sapir, S. Speech treatment for Parkinson’s disease. Expert. Rev. Neurother. 2008, 8, 297–309. [Google Scholar] [CrossRef]
- Stegemöller, E.L.; Radig, H.; Hibbing, P.; Wingate, J.; Sapienza, C. Effects of singing on voice, respiratory control and quality of life in persons with Parkinson’s disease. Disabil. Rehabil. 2017, 39, 594–600. [Google Scholar] [CrossRef]
- Baille, G.; De Jesus, A.M.; Perez, T.; Devos, D.; Dujardin, K.; Charley, C.M.; Defebvre, L.; Moreau, C. Ventilatory dysfunction in Parkinson’s disease. J. Parkinsons Dis. 2016, 6, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Aquino, Y.C.; Cabral, L.M.; Miranda, N.C.; Naccarato, M.C.; Falquetto, B.; Moreira, T.S.; Takakura, A.C. Respiratory disorders of Parkinson’s disease. J. Neurophysiol. 2022, 127, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, L.; Zhou, N.; Huang, E.; Li, Q.; Wang, T.; Ma, C.; Li, B.; Li, C.; Du, Y.; et al. Dysregulation of respiratory center drive (P0.1) and muscle strength in patients with early stage idiopathic Parkinson’s disease. Front. Neurol. 2019, 10, 724. [Google Scholar] [CrossRef] [Green Version]
- Pokusa, M.; Hajduchova, D.; Buday, T.; Kralova Trancikova, A. Respiratory function and dysfunction in Parkinson-type neurodegeneration. Physiol. Res. 2020, 69 (Suppl. 1), S69–S79. [Google Scholar] [CrossRef] [PubMed]
- Shill, H.; Stacy, M. Respiratory complications of Parkinson’s disease. Semin. Respir. Crit. Care Med. 2002, 23, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Guedes, L.U.; Rodrigues, J.M.; Fernandes, A.A.; Cardoso, F.E.; Parreira, V.F. Respiratory changes in Parkinson’s disease may be unrelated to dopaminergic dysfunction. Arq. Neuropsiquiatr. 2012, 70, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Frazão, M.; Cabral, E.; Lima, I.; Resqueti, V.; Florêncio, R.; Aliverti, A.; Fregonezi, G. Assessment of the acute effects of different PEP levels on respiratory pattern and operational volumes in patients with Parkinson’s disease. Respir. Physiol. Neurobiol. 2014, 198, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shao, W.B.; Gao, L.; Lu, J.; Gu, H.; Sun, L.H.; Tan, Y.; Zhang, Y.D. Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy comparison with normal elderly. PLoS ONE 2014, 9, e116123. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; Walker, R. A review of pulmonary function in Parkinson’s disease. J. Parkinsonism Restless Legs Syndr. 2018, 8, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, S.; Singh, B.; Ghosh, S.; Stell, R.; Mastaglia, F.L. Dyspnea in Parkinson’s disease: An approach to diagnosis and management. Expert. Rev. Neurother. 2020, 20, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, A.C.; Lafontaine, A.L.; Kimoff, R.J.; Kaminska, M. Obstructive sleep apnea in neurodegenerative disorders: Current evidence in support of benefit from sleep apnea treatment. J. Clin. Med. 2020, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Torsney, K.M.; Forsyth, D. Respiratory dysfunction in Parkinson’s disease. J. R. Coll Physicians Edinb. 2017, 47, 35–39. [Google Scholar] [CrossRef]
- Vincken, W.G.; Gauthier, S.G.; Dollfuss, R.E.; Hanson, R.E.; Darauay, C.M.; Cosio, M.G. Involvement of upper-airway muscles in extrapyramidal disorders. A cause of airflow limitation. N. Engl. J. Med. 1984, 311, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.; Souza-Machado, A.; Pinho, P.; Sampaio, M.; Nóbrega, A.C.; Melo, A. Swallowing impairment and pulmonary dysfunction in Parkinson’s disease: The silent threats. J. Neurol. Sci. 2014, 339, 149–152. [Google Scholar] [CrossRef]
- Baille, G.; Perez, T.; Devos, D.; Deken, V.; Defebvre, L.; Moreau, C. Early occurrence of inspiratory muscle weakness in Parkinson’s disease. PLoS ONE 2018, 13, e0190400. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.K. Respiratory dysfunction in Parkinson’s disease. Clin. Chest Med. 1994, 15, 715–727. [Google Scholar] [CrossRef]
- Fall, P.A.; Saleh, A.; Fredrickson, M.; Olsson, J.E.; Granérus, A.K. Survival time, mortality, and cause of death in elderly patients with Parkinson’s disease: A 9-year follow-up. Mov. Disord. 2003, 18, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, A.C.; Rodrigues, B.; Melo, A. Is silent aspiration a risk factor for respiratory infection in Parkinson’s disease patients? Parkinsonism Relat. Disord. 2008, 14, 646–648. [Google Scholar] [CrossRef]
- Suttrup, I.; Warnecke, T. Dysphagia in Parkinson’s disease. Dysphagia 2016, 31, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.P.; Carnaby, G.; Singletary, F.; Hoffman-Ruddy, B.; Yeager, J.; Sapienza, C. Measurement of voluntary cough production and airway protection in Parkinson disease. Arch. Phys. Med. Rehabil. 2016, 97, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathyaprabha, T.N.; Kapavarapu, P.K.; Pall, P.K.; Thennarasu, K.; Raju, T.R. Pulmonary functions in Parkinson’s disease. Indian J. Chest Dis Allied Sci. 2005, 47, 251–257. [Google Scholar] [PubMed]
- Santos, R.B.D.; Fraga, A.S.; Coriolano, M.D.G.W.S.; Tiburtino, B.F.; Lins, O.G.; Esteves, A.C.F.; Asano, N.M.J. Respiratory muscle strength and lung function in the stages of Parkinson’s disease. J. Bras. Pneumol. 2019, 45, e20180148. [Google Scholar] [CrossRef]
- Izquierdo-Alonso, J.L.; Jimenez-Jimenez, F.J.; Cabrera-Valdivia, F.; Mansilla-Lesmes, M. Airway dysfunction in patients with Parkinson’s disease. Lung 1994, 172, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Hovestadt, A.; Bogaard, J.M.; Meerwaldt, J.D.; Van der Meché, F.G.; Stigt, J. Pulmonary function in Parkinson’s disease. J. Neural. Neurosurg. Psychiatry 1989, 52, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabaté, M.; González, I.; Ruperez, F.; Rodríguez, M. Obstructive and restrictive pulmonary dysfunctions in Parkinson’s disease. J. Neurol. Sci. 1996, 138, 114–119. [Google Scholar] [CrossRef]
- Herer, B.; Arnulf, I.; Housset, B. Effects of levodopa on pulmonary function in Parkinson’s disease. Chest 2001, 119, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, R.; Jankovic, J. Respiratory problems in neurologic movement disorders. Parkinsonism Relat. Disord. 2010, 16, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Estenne, M.; Hubert, M.; De Troyer, A. Respiratory-muscle involvement in Parkinson’s disease. N. Engl. J. Med. 1984, 311, 1516–1517. [Google Scholar] [PubMed]
- Vercueil, L.; Linard, J.P.; Wuyam, B.; Pollak, P.; Benchetrit, G. Breathing pattern in patients with Parkinson’s disease. Respir. Physiol. 1999, 118, 163–172. [Google Scholar] [CrossRef]
- Haas, B.M.; Trew, M.; Castle, P.C. Effects of respiratory muscle weakness on daily living function, quality of life, activity levels, and exercise capacity in mild to moderate Parkinson’s disease. Am. J. Phys. Med. Rehabil. 2004, 83, 601–607. [Google Scholar] [CrossRef]
- De Bruin, P.F.; de Bruin, V.M.; Lees, A.J.; Pride, N.B. Effects of treatment on airway dynamics and respiratory muscle strength in Parkinson’s disease. Am. Rev. Respir. Dis. 1993, 148, 1576–1580. [Google Scholar] [CrossRef]
- Reyes, A.; Castillo, A.; Castillo, J.; Cornejo, I. The effects of respiratory muscle training on peak cough flow in patients with Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 2018, 32, 1317–1327. [Google Scholar] [CrossRef]
- Alves, W.M.; Alves, T.G.; Ferreira, R.M.; Lima, T.A.; Pimentel, C.P.; Sousa, E.C.; Abrahin, O.; Alves, E.A. Strength training improves the respiratory muscle strength and quality of life of elderly with Parkinson disease. J. Sports Med. Phys. Fitness. 2019, 59, 1756–1762. [Google Scholar] [CrossRef]
- McMahon, L.; Blake, C.; Lennon, O. Nonpharmacological interventions for respiratory health in Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 1022–1040. [Google Scholar] [CrossRef]
- Rodríguez, M.Á.; Crespo, I.; Del Valle, M.; Olmedillas, H. Should respiratory muscle training be part of the treatment of Parkinson’s disease? A systematic review of randomized controlled trials. Clin. Rehabil. 2020, 34, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Tzelepis, G.E.; McCool, F.D.; Friedman, J.H.; Hoppin, F.G., Jr. Respiratory muscle dysfunction in Parkinson’s disease. Am. Rev. Respir. Dis. 1988, 138, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, L.F.; Nagoda, M.; Babashani, M. Pulmonary function tests in patients with Parkinson’s disease: A case-control study. Niger. J. Clin. Pract. 2016, 19, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Polatli, M.; Akyol, A.; Cildag, O.; Bayülkem, K. Pulmonary function tests in Parkinson’s disease. Eur. J. Neurol. 2001, 8, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, D.A.; Grosset, D.G.; Kegler-Ebo, D.M.; Cangiamilla, S.; Klingler, M.; Zhao, P.; Oh, C. Natural history of lung function over one year in patients with Parkinson’s disease. Respir. Med. 2021, 182, 106396. [Google Scholar] [CrossRef]
- D’Arrigo, A.; Floro, S.; Bartesaghi, F.; Casellato, C.; Sferrazza Papa, G.F.; Centanni, S.; Priori, A.; Bocci, T. Respiratory dysfunction in Parkinson’s disease: A narrative review. ERJ Open Res. 2020, 6, 00165–02020. [Google Scholar] [CrossRef]
- Shaheen, H.A.; Ali, M.A.; Abd Elzaher, M.A. Parkinson’s disease and pulmonary dysfunction. Egypt J. Neurol. Psychiat. Neurosurg. 2009, 46, 129–140. [Google Scholar]
- Pal, P.K.; Sathyaprabha, T.N.; Tuhina, P.; Thennarasu, K. Pattern of subclinical pulmonary dysfunctions in Parkinson’s disease and the effect of levodopa. Mov. Disord. 2007, 22, 420–424. [Google Scholar] [CrossRef]
- Florêncio, R.B.; da Nobrega, A.J.S.; Lima, Í.N.D.F.; Gualdi, L.P.; Cabral, E.E.; Fagundes, M.L.L.C.; Aliverti, A.; Resqueti, V.R.; Fregonezi, G.A.F. Chest wall volume and asynchrony in stroke and Parkinson’s disease subjects: A case-control study. PLoS ONE 2019, 14, e0216641. [Google Scholar] [CrossRef] [Green Version]
- Axelerad, A.D.; Stroe, A.Z.; Arghir, O.C.; Axelerad, D.D.; Gogu, A.E. Respiratory dysfunctions in Parkinson’s disease patients. Brain Sci. 2021, 11, 595. [Google Scholar] [CrossRef]
- De Pandis, M.F.; Starace, A.; Stefanelli, F.; Marruzzo, P.; Meoli, I.; De Simone, G.; Prati, R.; Stocchi, F. Modification of respiratory function parameters in patients with severe Parkinson’s disease. Neurol. Sci. 2002, 23 (Suppl. 2), S69–S70. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.L.; Stacy, M.; Simuni, T.; Miyasaki, J.; Oertel, W.H.; Sethi, K.; Fernandez, H.H.; Stocchi, F. The spectrum of “off” in Parkinson’s disease: What have we learned over 40 years? Parkinsonism Relat. Disord. 2018, 51, 9–16. [Google Scholar] [CrossRef] [PubMed]
- De Campos, P.S.; Kawamura, L.R.S.M.; Hasegawa, K.; Kumei, Y.; Zeredo, J.L. Analysis of respiratory movements in a mouse model of late Parkinson’s disease submitted to stress. Respir. Physiol. Neurobiol. 2018, 251, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.C.; Oliveira, L.M.; Botelho, M.T.; Moreira, T.S.; Takakura, A.C. The involvement of the pathway connecting the substantia nigra, the periaqueductal gray matter and the retrotrapezoid nucleus in breathing control in a rat model of Parkinson’s disease. Exp. Neurol. 2018, 302, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.M.; Delhez, L. Electrical activity of the diaphragm in Parkinson’s disease.Arch. Int. Physiol. Biochim. 1961, 69, 413–417. [Google Scholar]
- Cardoso, S.R.X.; Pereira, J.S. Análise da função respiratória na doença de Parkinson. Arq. Neuropsiquiatr. 2002, 60, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K. Current update on clinically relevant sleep issues in Parkinson’s disease: A narrative review. J. Parkinsons Dis. 2021, 11, 971–992. [Google Scholar] [CrossRef]
- Zeng, J.; Wei, M.; Li, T.; Chen, W.; Feng, Y.; Shi, R.; Song, Y.; Zheng, W.; Ma, W. Risk of obstructive sleep apnea in Parkinson’s disease: A meta-analysis. PLoS ONE 2013, 8, e82091. [Google Scholar] [CrossRef]
- Cochen De Cock, V.; Abouda, M.; Leu, S.; Oudiette, D.; Roze, E.; Vidailhet, M.; Similowski, T.; Arnulf, I. Is obstructive sleep apnea a problem in Parkinson’s disease? Sleep Med. 2010, 11, 247–252. [Google Scholar] [CrossRef]
- Trotti, L.M.; Bliwise, D.L. No increased risk of obstructive sleep apnea in Parkinson’s disease. Mov. Disord. 2010, 25, 2246–2249. [Google Scholar] [CrossRef]
- Nomura, T.; Inoue, Y.; Kobayashi, M.; Namba, K.; Nakashima, K. Characteristics of obstructive sleep apnea in patients with Parkinson’s disease. J. Neurol. Sci. 2013, 327, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Da Silva-Júnior, F.P.; do Prado, G.F.; Barbosa, E.R.; Tufik, S.; Togeiro, S.M. Sleep disordered breathing in Parkinson’s disease: A critical appraisal. Sleep Med. Rev. 2014, 18, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Maria, B.; Sophia, S.; Michalis, M.; Charalampos, L.; Andreas, P.; John, M.E.; Nikolaos, S.M. Sleep breathing disorders in patients with idiopathic Parkinson’s disease. Respir. Med. 2003, 97, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Crosta, F.; Desideri, G.; Marini, C. Obstructive sleep apnea syndrome in Parkinson’s disease and other parkinsonisms. Funct. Neurol. 2017, 32, 137–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, R.; Sanford, L.D.; Yang, L.; Zhou, J.; Tan, L.; Li, T.; Zhang, J.; Wing, Y.K.; Shi, J.; et al. Sleep in Parkinson’s disease: A systematic review and meta-analysis of polysomnographic findings. Sleep Med. Rev. 2020, 51, 101281. [Google Scholar] [CrossRef]
- Joy, S.P.; Sinha, S.; Pal, P.K.; Panda, S.; Philip, M.; Taly, A.B. Alterations in Polysomnographic (PSG) profile in drug-naïve Parkinson’s disease. Ann. Indian Acad. Neurol. 2014, 17, 287–291. [Google Scholar]
- Jasti, D.B.; Mallipeddi, S.; Apparao, A.; Vengamma, B.; Kolli, S.; Mohan, A. Quality of sleep and sleep disorders in patients with parkinsonism: A polysomnography based study from rural south India. J. Neurosci. Rural. Pract. 2018, 9, 92–99. [Google Scholar] [CrossRef]
- Sobreira-Neto, M.A.; Pena-Pereira, M.A.; Sobreira, E.S.T.; Chagas, M.H.N.; Fernandes, R.M.F.; Tumas, V.; Eckeli, A.L. High frequency of sleep disorders in Parkinson’s disease and its relationship with quality of life. Eur. Neurol. 2017, 78, 330–337. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Dong, Z.F.; Pan, P.L.; Shi, H.C.; Liu, C.F. Obstructive sleep apnea in Parkinson’s disease: A study in 239 Chinese patients. Sleep Med. 2020, 67, 237–243. [Google Scholar] [CrossRef]
- Mantovani, S.; Smith, S.S.; Gordon, R.; O’Sullivan, J.D. An overview of sleep and circadian dysfunction in Parkinson’s disease. J. Sleep Res. 2018, 27, e12673. [Google Scholar] [CrossRef] [Green Version]
- Sheu, J.J.; Lee, H.C.; Lin, H.C.; Kao, L.T.; Chung, S.D. A 5-year follow-up study on the relationship between obstructive sleep apnea and Parkinson disease. J. Clin. Sleep Med. 2015, 11, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Yeh, N.C.; Tien, K.J.; Yang, C.M.; Wang, J.J.; Weng, S.F. Increased risk of Parkinson’s disease in patients with obstructive sleep apnea: A population-based, propensity score-matched, longitudinal follow-up study. Medicine 2016, 95, e2293. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.S.; Lai, C.L.; Chou, Y.H.; Chang, W.P. Sleep apnea and the subsequent risk of Parkinson’s disease: A 3-year nationwide population-based study. Neuropsychiatr. Dis. Treat. 2017, 13, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.L.; Sun, B.L.; Chen, D.W.; Chen, Y.; Li, W.W.; Xu, M.Y.; Shen, Y.Y.; Xu, Z.Q.; Wang, Y.J.; Bu, X.L. Plasma α-synuclein levels are increased in patients with obstructive sleep apnea syndrome. Ann. Clin. Transl. Neurol. 2019, 6, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Telias, I.; Damiani, F.; Brochard, L. The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: Increasing awareness of a not-so-new problem. Intensive Care Med. 2018, 44, 1532–1535. [Google Scholar] [CrossRef]
- Whitelaw, W.A.; Derenne, J.P.; Milic-Emili, J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir. Physiol. 1975, 23, 181–199. [Google Scholar] [CrossRef]
- Purdy, A.; Hahn, A.; Barnett, H.J.; Bratty, P.; Ahmad, D.; Lloyd, K.G.; McGeer, E.G.; Perry, T.L. Familial fatal Parkinsonism with alveolar hypoventilation and mental depression. Ann. Neurol. 1979, 6, 523–531. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Dickson, D.W.; Nabeshima, K.; Schmeichel, A.M.; Wszolek, Z.K.; Yamada, T.; Benarroch, E.E. Neurodegeneration involving putative respiratory neurons in Perry syndrome. Acta Neuropathol. 2008, 115, 263–268. [Google Scholar] [CrossRef]
- Benarroch, E.E.; Schmeichel, A.M.; Low, P.A.; Parisi, J.E. Depletion of ventromedullary NK-1 receptor-immunoreactive neurons in multiple system atrophy. Brain 2003, 126, 2183–2190. [Google Scholar] [CrossRef]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef]
- Gray, P.A.; Janczewski, W.A.; Mellen, N.; McCrimmon, D.R.; Feldman, J.L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci. 2001, 4, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.W.; Bennett, J.A.; Kidd, C.; McWilliam, P.N. Neurones in the dorsal motor vagal nucleus of the cat with non-myelinated axons projecting to the heart and lungs. Exp. Physiol. 1990, 75, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Fontán, J.J.; Diec, C.T.; Velloff, C.R. Bilateral distribution of vagal motor and sensory nerve fibers in the rat’s lungs and airways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R713–R728. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W.; Fujishiro, H.; DelleDonne, A.; Menke, J.; Ahmed, Z.; Klos, K.J.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Parisi, J.E.; et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol. 2008, 115, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Biancardi, V.; Bícego, K.C.; Almeida, M.C.; Gargaglioni, L.H. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflug. Arch. 2008, 455, 1119–1128. [Google Scholar] [CrossRef]
- Benarroch, E.E. The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology 2009, 73, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; LeWitt, P.A.; Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: The case for noradrenergic enhancement. Mov. Disord. 2014, 29, 1710–1719. [Google Scholar] [CrossRef]
- Politis, M.; Niccolini, F. Serotonin in Parkinson’s disease. Behav. Brain Res. 2015, 277, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Hilaire, G.; Voituron, N.; Menuet, C.; Ichiyama, R.M.; Subramanian, H.H.; Dutschmann, M. The role of serotonin in respiratory function and dysfunction. Respir. Physiol. Neurobiol. 2010, 174, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Szereda-Przestaszewska, M.; Kaczyńska, K. Serotonin and substance P: Synergy or competition in the control of breathing. Auton. Neurosci. 2020, 225, 102658. [Google Scholar] [CrossRef]
- Lelieveld, I.M.; Müller, M.L.; Bohnen, N.I.; Koeppe, R.A.; Chervin, R.D.; Frey, K.A.; Albin, R.L. The role of serotonin in sleep disordered breathing associated with Parkinson disease: A correlative [11C]DASB PET imaging study. PLoS ONE 2012, 7, e40166. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.I.; Sambataro, F.; Boess, F.; Bertolino, A.; Dukart, J. Progressive decline in gray and white matter integrity in de novo parkinson’s disease: An analysis of longitudinal Parkinson progression markers initiative diffusion tensor imaging data. Front. Aging Neurosci. 2018, 10, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Chen, M.H.; Chiang, P.L.; Chen, H.L.; Chou, K.H.; Chen, Y.C.; Yu, C.C.; Tsai, N.W.; Li, S.H.; Lu, C.H.; et al. Reduced gray matter volume and respiratory dysfunction in Parkinson’s disease: A voxel-based morphometry study. BMC Neurol. 2018, 18, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuskey, D.; Tinaz, S.; Wilcox, K.C.; Naganawa, M.; Toyonaga, T.; Dias, M.; Henry, S.; Pittman, B.; Ropchan, J.; Nabulsi, N.; et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann. Neurol. 2020, 87, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzakis, M.E.; Graeber, M.B.; Gentleman, S.M.; Pearce, R.K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: A critical analysis of alpha-synuclein staging. Neuropathol. Appl. Neurobiol. 2008, 34, 284–295. [Google Scholar] [CrossRef]
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Hasegawa, M.; Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.A.; Mari, Z.; Bakker, C.; Johnson, V.; Pontone, G.M.; Pantelyat, A.; Troncoso, J.C.; Pletnikova, O.; Dawson, T.M.; Rosenthal, L.S. Gait function and locus coeruleus Lewy body pathology in 51 Parkinson’s disease patients. Parkinsonism Relat. Disord. 2016, 33, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Vermeiren, Y.; De Deyn, P.P. Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: The locus coeruleus story. Neurochem. Int. 2017, 102, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018, 46 (Suppl. 1), S30–S33. [Google Scholar] [CrossRef] [PubMed]
- Kingsbury, A.E.; Bandopadhyay, R.; Silveira-Moriyama, L.; Ayling, H.; Kallis, C.; Sterlacci, W.; Maeir, H.; Poewe, W.; Lees, A.J. Brain stem pathology in Parkinson’s disease: An evaluation of the Braak staging model. Mov. Disord. 2010, 25, 2508–2515. [Google Scholar] [CrossRef] [PubMed]
- Greene, J.G. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson’s disease. Antioxid. Redox Signal. 2014, 21, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Borghammer, P.; Van Den Berge, N. Brain-first versus gut-first Parkinson’s disease: A hypothesis. J. Parkinsons Dis. 2019, 9, S281–S295. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Sobotka, S.; Chen, J.; Su, H.; Sanders, I.; Adler, C.H.; Shill, H.A.; Caviness, J.N.; Samanta, J.E.; Beach, T.G.; et al. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease. J. Neuropathol. Exp. Neurol. 2013, 72, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Sobotka, S.; Chen, J.; Su, H.; Sanders, I.; Nyirenda, T.; Adler, C.H.; Shill, H.A.; Caviness, J.N.; Samanta, J.E.; et al. Arizona Parkinson’s Disease Consortium. Parkinson disease affects peripheral sensory nerves in the pharynx. J. Neuropathol. Exp. Neurol. 2013, 72, 614–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrzejewski, K.; Budzińska, K.; Kaczyńska, K. Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson’s disease. Life Sci. 2017, 180, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, K.; Jampolska, M.; Zaremba, M.; Joniec-Maciejak, I.; Boguszewski, P.M.; Kaczyńska, K. Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson’s disease. J. Physiol. Sci. 2020, 70, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrzejewski, K.; Kaczyńska, K.; Zaremba, M. Serotonergic system in hypoxic ventilatory response in unilateral rat model of Parkinson’s disease. J. Biomed. Sci. 2017, 24, 24. [Google Scholar] [CrossRef] [Green Version]
- Tuppy, M.; Barna, B.F.; Alves-Dos-Santos, L.; Britto, L.R.; Chiavegatto, S.; Moreira, T.S.; Takakura, A.C. Respiratory deficits in a rat model of Parkinson’s disease. Neuroscience 2015, 297, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Junior, S.A.; Carvalho, K.S.; Moreira, T.S.; Takakura, A.C. Correlation between neuroanatomical and functional respiratory changes observed in an experimental model of Parkinson’s disease. Exp. Physiol. 2018, 103, 1377–1389. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.M.; Oliveira, M.A.; Moriya, H.T.; Moreira, T.S.; Takakura, A.C. Respiratory disturbances in a mouse model of Parkinson’s disease. Exp. Physiol. 2019, 104, 729–739. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Baertsch, N.A.; Moreira, T.S.; Ramirez, J.M.; Takakura, A.C. Unraveling the mechanisms underlying irregularities in inspiratory rhythm generation in a mouse model of Parkinson’s disease. J. Neurosci. 2021, 41, 4732–4747. [Google Scholar] [CrossRef]
- Angelova, P.R.; Kasymov, V.; Christie, I.; Sheikhbahaei, S.; Turovsky, E.; Marina, N.; Korsak, A.; Zwicker, J.; Teschemacher, A.G.; Ackland, G.L.; et al. Functional oxygen sensitivity of astrocytes. J. Neurosci. 2015, 35, 10460–10473. [Google Scholar] [CrossRef] [Green Version]
- Wenker, I.C.; Kréneisz, O.; Nishiyama, A.; Mulkey, D.K. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J. Neurophysiol. 2010, 104, 3042–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storch, A.; Schneider, C.B.; Wolz, M.; Stürwald, Y.; Nebe, A.; Odin, P.; Mahler, A.; Fuchs, G.; Jost, W.H.; Chaudhuri, K.R.; et al. Nonmotor fluctuations in Parkinson disease: Severity and correlation with motor complications. Neurology 2013, 80, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.; Antonini, A.; Colosimo, C.; Marconi, R.; Morgante, L.; Avarello, T.P.; Bottacchi, E.; Cannas, A.; Ceravolo, G.; Ceravolo, R.; et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 2009, 24, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Witjas, T.; Kaphan, E.; Azulay, J.P.; Blin, O.; Ceccaldi, M.; Pouget, J.; Poncet, M.; Chérif, A.A. Nonmotor fluctuations in Parkinson’s disease: Frequent and disabling. Neurology 2002, 59, 408–413. [Google Scholar] [CrossRef]
- Baille, G.; Perez, T.; Devos, D.; Machuron, F.; Dujardin, K.; Chenivesse, C.; Defebvre, L.; Moreau, C. Dyspnea is a specific symptom in Parkinson’s disease. J. Parkinsons Dis. 2019, 9, 785–791. [Google Scholar] [CrossRef]
- Baille, G.; Chenivesse, C.; Perez, T.; Machuron, F.; Dujardin, K.; Devos, D.; Defebvre, L.; Moreau, C. Dyspnea: An underestimated symptom in Parkinson’s disease. Parkinsonism Relat. Disord. 2019, 60, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Zarotti, N.; Eccles, F.J.R.; Foley, J.A.; Paget, A.; Gunn, S.; Leroi, I.; Simpson, J. Psychological interventions for people with Parkinson’s disease in the early 2020s: Where do we stand? Psychol. Psychother. 2021, 94, 760–797. [Google Scholar] [CrossRef] [PubMed]
- Feinsilver, S.H.; Friedman, J.H.; Rosen, J.M. Respiration and sleep in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1986, 49, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onodera, H.; Okabe, S.; Kikuchi, Y.; Tsuda, T.; Itoyama, Y. Impaired chemosensitivity and perception of dyspnoea in Parkinson’s disease. Lancet 2000, 356, 739–740. [Google Scholar] [CrossRef]
- Seccombe, L.M.; Giddings, H.L.; Rogers, P.G.; Corbett, A.J.; Hayes, M.W.; Peters, M.J.; Veitch, E.M. Abnormal ventilatory control in Parkinson’s disease-further evidence for non-motor dysfunction. Respir. Physiol. Neurobiol. 2011, 179, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Seccombe, L.M.; Rogers, P.G.; Hayes, M.W.; Farah, C.S.; Veitch, E.M.; Peters, M.J. Reduced hypoxic sympathetic response in mild Parkinson’s disease: Further evidence of early autonomic dysfunction. Parkinsonism Relat. Disord. 2013, 19, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Serebrovskaya, T.; Karaban, I.; Mankovskaya, I.; Bernardi, L.; Passino, C.; Appenzeller, O. Hypoxic ventilatory responses and gas exchange in patients with Parkinson’s disease. Respiration 1998, 65, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.M.; Feinsilver, S.H.; Friedman, J.H. Increased CO2 responsiveness in Parkinson’s disease: Evidence for a role of CNS dopamine in ventilatory control. Am. Rev. Respirat. Dis. 1985, 131, A297. [Google Scholar]
- Spyer, K.M.; Thomas, T. Sensing arterial CO2 levels: A role for medullary P2X receptors. J. Auton. Nerv. Syst. 2000, 81, 228–235. [Google Scholar] [CrossRef]
- Guyenet, P.G.; Stornetta, R.L.; Bayliss, D.A. Retrotrapezoid nucleus and central chemoreception. J. Physiol. 2008, 586, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Teran, F.A.; Massey, C.A.; Richerson, G.B. Serotonin neurons and central respiratory chemoreception: Where are we now? Prog. Brain Res. 2014, 209, 207–233. [Google Scholar] [PubMed] [Green Version]
- Guyenet, P.G.; Bayliss, D.A. Neural control of breathing and CO2 homeostasis. Neuron 2015, 87, 946–961. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.B.; Lawing, W.L.; Millhorn, D.E. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp. Brain Res. 1989, 76, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.; Forster, R.E., 2nd. CO2/H(+) sensing: Peripheral and central chemoreception. Int. J. Biochem. Cell Biol. 2003, 35, 1413–1435. [Google Scholar] [CrossRef]
- Forster, H.V.; Martino, P.; Hodges, M.; Krause, K.; Bonis, J.; Davis, S.; Pan, L. The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. Adv. Exp. Med. Biol. 2008, 605, 322–326. [Google Scholar] [PubMed]
- Spyer, K.M.; Gourine, A.V. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos. Trans. R. Soc. Lond B Biol. Sci. 2009, 364, 2603–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurse, C.A.; Piskuric, N.A. Signal processing at mammalian carotid body chemoreceptors. Semin. Cell Dev. Biol. 2013, 24, 22–30. [Google Scholar] [CrossRef]
- Jordan, D. Central integration of chemoreceptor afferent activity. Adv. Exp. Med. Biol. 1994, 360, 87–98. [Google Scholar] [PubMed]
- Zera, T.; Moraes, D.J.A.; da Silva, M.P.; Fisher, J.P.; Paton, J.F.R. The logic of carotid body connectivity to the brain. Physiology 2019, 34, 264–282. [Google Scholar] [CrossRef] [PubMed]
- Serebrovs’ka, T.V.; Kolesnikova, I.E.; Karaban, I.M. Osoblyvosti rehuliatsiï dykhannia pry adaptatsiï do periodychnoï hipoksiï u patsiientiv z khvoroboiu Parkinsona [Respiratory regulation during adaptation to intermittent hypoxia in patients with Parkinson disease]. Fiziol. Zh. 2003, 49, 95–103. [Google Scholar] [PubMed]
- Gonzalez, C.; Almaraz, L.; Obeso, A.; Rigual, R. Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol. Rev. 1994, 74, 829–898. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, K.; Budzińska, K.; Zaremba, M.; Kaczyńska, K. Hypoxic ventilatory response after dopamine D2 receptor blockade in unilateral rat model of Parkinson’s disease. Neuroscience 2016, 316, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Díaz, M.; Abdala, P.; Barroso-Chinea, P.; Obeso, J.; González-Hernández, T. Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: An animal model of Parkinson’s disease. Behav. Brain Res. 2001, 122, 79–92. [Google Scholar] [CrossRef]
- Fallert, M.; Böhmer, G.; Dinse, H.R.; Sommer, T.J.; Bittner, A. Microelectrophoretic application of putative neurotransmitters onto various types of bulbar respiratory neurons. Arch. Ital. Biol. 1979, 117, 1–12. [Google Scholar] [PubMed]
- Güner, I.; Yelmen, N.; Sahin, G.; Oruç, T. The effect of intracerebroventricular dopamine administration on the respiratory response to hypoxia. Tohoku J. Exp. Med. 2002, 196, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Bialkowska, M.; Boguszewski, P.; Pokorski, M. Breathing in Parkinsonism in the rat. Adv. Exp. Med. Biol. 2016, 884, 1–11. [Google Scholar]
- Betarbet, R.; Sherer, T.B.; Greenamyre, J.T. Animal models of Parkinson’s disease. Bioessays 2002, 24, 308–318. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Tuppy, M.; Moreira, T.S.; Takakura, A.C. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson’s disease model. Exp. Neurol. 2017, 293, 172–180. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Budzińska, K.; Kaczyńska, K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson’s disease. Physiol. Res. 2019, 68, 285–293. [Google Scholar] [CrossRef]
- Johnson, R.A.; Kelm-Nelson, C.A.; Ciucci, M.R. Changes to ventilation; vocalization; and thermal nociception in the Pink1−/−rat model of Parkinson’s disease. J. Parkinsons Dis. 2020, 10, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.; Souza-Machado, A.; Valderramas, S.; Melo, A. The effect of levodopa on pulmonary function in Parkinson’s disease: A systematic review and meta-analysis. Clin. Ther. 2012, 34, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Gülsen, A.; Uslu, B. Effect of levodopa treatment on respiratory muscle power in a patient with newly diagnosed Parkinson’s disease. J. Clin. Diagn. Res. 2020, 14, OD01–OD02. [Google Scholar] [CrossRef]
- Tambasco, N.; Murgia, N.; Nigro, P.; Paoletti, F.P.; Romoli, M.; Brahimi, E.; Filidei, M.; Simoni, S.; Muzi, G.; Calabresi, P. Levodopa-responsive breathing discomfort in Parkinson’s disease patients. J. Neural. Transm. 2018, 125, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Van de Wetering-van Dongen, V.A.; Espay, A.J.; Marsili, L.; Sturchio, A.; Holter, S.T.; Bloem, B.R.; Nijkrake, M.J. Biphasic (Subtherapeutic) levodopa-induced respiratory Dysfunction in Parkinson Disease. Neurol. Clin. Pract. 2021, 11, e402–e406. [Google Scholar] [CrossRef] [PubMed]
- Aubier, M.; Murciano, D.; Menu, Y.; Boczkowski, J.; Mal, H.; Pariente, R. Dopamine effects on diaphragmatic strength during acute respiratory failure in chronic obstructive pulmonary disease. Ann. Intern. Med. 1989, 110, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Gros, P.; Mery, V.P.; Lafontaine, A.L.; Robinson, A.; Benedetti, A.; Kimoff, R.J.; Kaminska, M. Obstructive sleep apnea in Parkinson’s disease patients: Effect of Sinemet CR taken at bedtime. Sleep Breath. 2016, 20, 205–212. [Google Scholar] [CrossRef]
- De Keyser, J.; Vincken, W. L-dopa-induced respiratory disturbance in Parkinson’s disease suppressed by tiapride. Neurology 1985, 35, 235–237. [Google Scholar] [CrossRef]
- Zupnick, H.M.; Brown, L.K.; Miller, A.; Moros, D.A. Respiratory dysfunction due to L-dopa therapy for parkinsonism: Diagnosis using serial pulmonary function tests and respiratory inductive plethysmography. Am. J. Med. 1990, 89, 109–114. [Google Scholar] [CrossRef]
- Ko, P.W.; Kang, K.; Lee, H.W. Levodopa-induced respiratory dysfunction confirmed by levodopa challenge test: A case report. Medicine 2018, 97, e12488. [Google Scholar] [CrossRef]
- Rice, J.E.; Antic, R.; Thompson, P.D. Disordered respiration as a levodopa-induced dyskinesia in Parkinson’s disease. Mov. Disord. 2002, 17, 524–527. [Google Scholar] [CrossRef]
- Hattori, A.; Tsunemi, T.; Shimada, T.; Nakagawa, E.; Hattori, N. Levodopa-induced hyperventilation observed in a Parkinson’s disease patient. Can. J. Neurol. Sci. 2020, 47, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Guan, R.; Staisch, J.; Towle, V.L.; Warnke, P. Respiratory dyskinesia in a patient with Parkinson disease successfully treated with STN DBS. Neurology 2015, 85, 479–480. [Google Scholar] [CrossRef] [Green Version]
- Valko, P.O.; Hauser, S.; Sommerauer, M.; Werth, E.; Baumann, C.R. Observations on sleep-disordered breathing in idiopathic Parkinson’s disease. PLoS ONE 2014, 9, e100828. [Google Scholar]
- Shill, H.; Stacy, M. Respiratory function in Parkinson’s disease. Clin. Neurosci. 1998, 5, 131–135. [Google Scholar] [PubMed]
- Chalif, J.I.; Sitsapesan, H.A.; Pattinson, K.T.; Herigstad, M.; Aziz, T.Z.; Green, A.L. Dyspnea as a side effect of subthalamic nucleus deep brain stimulation for Parkinson’s disease. Respir. Physiol. Neurobiol. 2014, 192, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Komiya, H.; Kimura, K.; Kishida, H.; Kawasaki, T.; Hamada, K.; Koizumi, H.; Ueda, N.; Tanaka, F. Adjustment of subthalamic deep brain stimulation parameters improves wheeze and dyspnea in Parkinson’s disease. Front. Neurol. 2019, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Paroxysmal dyspnea in Parkinson’s disease: Respiratory dyskinesias and autonomic hyperventilation are not the same. Parkinsonism Relat. Disord. 2021, 89, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Hartman, D.E. Stridor during dystonia phases of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988, 51, 161. [Google Scholar] [CrossRef] [Green Version]
Treatment | Hoehn & Yahr Scale | Normoxia | Hypoxia | Hypercapnia | References |
---|---|---|---|---|---|
no data | no data | no data | stimulated | stimulated | [136] |
no data | III–IV | unchanged | stimulated | stimulated | [131] |
during treatment | I–III | reduced alveolar ventilation | reduced alveolar ventilation | not studied | [135] |
during treatment | II–III | no data | reduced | unchanged | [132] |
during treatment | I–III | no data | unchanged | reduced | [133] |
during treatment | I–II | unchanged | unchanged | unchanged | [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczyńska, K.; Orłowska, M.E.; Andrzejewski, K. Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models? Int. J. Mol. Sci. 2022, 23, 3499. https://doi.org/10.3390/ijms23073499
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models? International Journal of Molecular Sciences. 2022; 23(7):3499. https://doi.org/10.3390/ijms23073499
Chicago/Turabian StyleKaczyńska, Katarzyna, Magdalena Ewa Orłowska, and Kryspin Andrzejewski. 2022. "Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models?" International Journal of Molecular Sciences 23, no. 7: 3499. https://doi.org/10.3390/ijms23073499
APA StyleKaczyńska, K., Orłowska, M. E., & Andrzejewski, K. (2022). Respiratory Abnormalities in Parkinson’s Disease: What Do We Know from Studies in Humans and Animal Models? International Journal of Molecular Sciences, 23(7), 3499. https://doi.org/10.3390/ijms23073499