Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome
Abstract
:1. Introduction
2. Current Challenges of Lynch Syndrome Diagnosis and Follow-Up
3. Liquid Biopsy as a Source of Cell-Free Nucleic Acids
4. Cell-Free DNA
5. Cell-Free RNA
5.1. mRNA
5.2. Non-Coding RNA
6. Exosomes
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, H.T.; Shaw, M.W.; Magnuson, C.W.; Larsen, A.L.; Krush, A.J. Hereditary Factors in Cancer. Study of Two Large Midwestern Kindreds. Arch. Intern. Med. 1966, 117, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer Risk and Survival in Carriers by Gene and Gender up to 75 Years of Age: A Report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurgelun, M.B.; Goel, A.; Hornick, J.L.; Sen, A.; Turgeon, D.K.; Ruffin, M.T., 4th; Marcon, N.E.; Baron, J.A.; Bresalier, R.S.; Syngal, S.; et al. Microsatellite Instability and DNA Mismatch Repair Protein Deficiency in Lynch Syndrome Colorectal Polyps. Cancer Prev. Res. 2012, 5, 574–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.; Taggart, M.W.; Reyes-Uribe, L.; Borras, E.; Riquelme, E.; Barnett, R.M.; Leoni, G.; San Lucas, F.A.; Catanese, M.T.; Mori, F.; et al. Immune Profiling of Premalignant Lesions in Patients With Lynch Syndrome. JAMA Oncol. 2018, 4, 1085–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. American College of Gastroenterology ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. Am. J. Gastroenterol. 2015, 110, 223–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, H.T.; de la Chapelle, A. Hereditary Colorectal Cancer. N. Engl. J. Med. 2003, 348, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, E.M.; Mangu, P.B.; Gruber, S.B.; Hamilton, S.R.; Kalady, M.F.; Lau, M.W.Y.; Lu, K.H.; Roach, N.; Limburg, P.J.; American Society of Clinical Oncology; et al. Hereditary Colorectal Cancer Syndromes: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the Familial Risk-Colorectal Cancer: European Society for Medical Oncology Clinical Practice Guidelines. J. Clin. Oncol. 2015, 33, 209–217. [Google Scholar] [CrossRef]
- Tognetto, A.; Michelazzo, M.B.; Calabró, G.E.; Unim, B.; Di Marco, M.; Ricciardi, W.; Pastorino, R.; Boccia, S. A Systematic Review on the Existing Screening Pathways for Lynch Syndrome Identification. Front. Public Health 2017, 5, 243. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.T.; Snyder, C.L.; Shaw, T.G.; Heinen, C.D.; Hitchins, M.P. Milestones of Lynch Syndrome: 1895–2015. Nat. Rev. Cancer 2015, 15, 181–194. [Google Scholar] [CrossRef]
- Dong, L.; Zou, S.; Jin, X.; Lu, H.; Zhang, Y.; Guo, L.; Cai, J.; Ying, J. Cytoplasmic MSH2 Related to Genomic Deletions in the Genes in Colorectal Cancer Patients With Suspected Lynch Syndrome. Front. Oncol. 2021, 11, 627460. [Google Scholar] [CrossRef]
- Natsume, S.; Yamaguchi, T.; Eguchi, H.; Okazaki, Y.; Horiguchi, S.-I.; Ishida, H. Germline Deletion of Chromosome 2p16-21 Associated with Lynch Syndrome. Hum. Genome Var. 2021, 8, 19. [Google Scholar] [CrossRef]
- Cini, G.; Quaia, M.; Canzonieri, V.; Fornasarig, M.; Maestro, R.; Morabito, A.; D’Elia, A.V.; Urso, E.D.; Mammi, I.; Viel, A. Toward a Better Definition of EPCAM Deletions in Lynch Syndrome: Report of New Variants in Italy and the Associated Molecular Phenotype. Mol. Genet. Genom. Med. 2019, 7, e587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasen, H.F.A.; Blanco, I.; Aktan-Collan, K.; Gopie, J.P.; Alonso, A.; Aretz, S.; Bernstein, I.; Bertario, L.; Burn, J.; Capella, G.; et al. Revised Guidelines for the Clinical Management of Lynch Syndrome (HNPCC): Recommendations by a Group of European Experts. Gut 2013, 62, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Giardiello, F.M.; Allen, J.I.; Axilbund, J.E.; Boland, C.R.; Burke, C.A.; Burt, R.W.; Church, J.M.; Dominitz, J.A.; Johnson, D.A.; Kaltenbach, T.; et al. Guidelines on Genetic Evaluation and Management of Lynch Syndrome: A Consensus Statement by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2014, 147, 502–526. [Google Scholar] [CrossRef] [Green Version]
- Biller, L.H.; Syngal, S.; Yurgelun, M.B. Recent Advances in Lynch Syndrome. Fam. Cancer 2019, 18, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.; Menon, P.; Malik, D. A Case of Muir-Torre Syndrome. Cureus 2021, 13, e14582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Bhate, C.; Cai, D. Genetic Heterogeneity in a Patient with Muir-Torre Syndrome. JAAD Case Rep. 2020, 6, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Schon, K.; Rytina, E.; Drummond, J.; Simmonds, J.; Abbs, S.; Sandford, R.; Tischkowitz, M. Evaluation of Universal Immunohistochemical Screening of Sebaceous Neoplasms in a Service Setting. Clin. Exp. Dermatol. 2018, 43, 410–415. [Google Scholar] [CrossRef]
- Porkka, N.; Lahtinen, L.; Ahtiainen, M.; Böhm, J.P.; Kuopio, T.; Eldfors, S.; Mecklin, J.-P.; Seppälä, T.T.; Peltomäki, P. Epidemiological, Clinical and Molecular Characterization of Lynch-like Syndrome: A Population-Based Study. Int. J. Cancer 2019, 145, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Møller, P. The Prospective Lynch Syndrome Database Reports Enable Evidence-Based Personal Precision Health Care. Hered. Cancer Clin. Pract. 2020, 18, 6. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.-P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer Risks by Gene, Age, and Gender in 6350 Carriers of Pathogenic Mismatch Repair Variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Ten Broeke, S.W.; Brohet, R.M.; Tops, C.M.; van der Klift, H.M.; Velthuizen, M.E.; Bernstein, I.; Capellá Munar, G.; Gomez Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.W.; et al. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk. J. Clin. Oncol. 2015, 33, 319–325. [Google Scholar] [CrossRef]
- Haraldsdottir, S.; Rafnar, T.; Frankel, W.L.; Einarsdottir, S.; Sigurdsson, A.; Hampel, H.; Snaebjornsson, P.; Masson, G.; Weng, D.; Arngrimsson, R.; et al. Comprehensive Population-Wide Analysis of Lynch Syndrome in Iceland Reveals Founder Mutations in MSH6 and PMS2. Nat. Commun. 2017, 8, 14755. [Google Scholar] [CrossRef]
- Cerretelli, G.; Ager, A.; Arends, M.J.; Frayling, I.M. Molecular Pathology of Lynch Syndrome. J. Pathol. 2020, 250, 518–531. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; de la Chapelle, A. The Search for Unaffected Individuals with Lynch Syndrome: Do the Ends Justify the Means? Cancer Prev. Res. 2011, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Stormorken, A.T.; Clark, N.; Grindedal, E.; Maehle, L.; Møller, P. Prevention of Colorectal Cancer by Colonoscopic Surveillance in Families with Hereditary Colorectal Cancer. Scand. J. Gastroenterol. 2007, 42, 611–617. [Google Scholar] [CrossRef]
- Järvinen, H.J.; Renkonen-Sinisalo, L.; Aktán-Collán, K.; Peltomäki, P.; Aaltonen, L.A.; Mecklin, J.-P. Ten Years after Mutation Testing for Lynch Syndrome: Cancer Incidence and Outcome in Mutation-Positive and Mutation-Negative Family Members. J. Clin. Oncol. 2009, 27, 4793–4797. [Google Scholar] [CrossRef]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J.; et al. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Ponti, G.; Castellsagué, E.; Ruini, C.; Percesepe, A.; Tomasi, A. Mismatch Repair Genes Founder Mutations and Cancer Susceptibility in Lynch Syndrome. Clin. Genet. 2015, 87, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Tafe, L.J. Targeted Next-Generation Sequencing for Hereditary Cancer Syndromes: A Focus on Lynch Syndrome and Associated Endometrial Cancer. J. Mol. Diagn. 2015, 17, 472–482. [Google Scholar] [CrossRef]
- Sahin, I.H.; Akce, M.; Alese, O.; Shaib, W.; Lesinski, G.B.; El-Rayes, B.; Wu, C. Immune Checkpoint Inhibitors for the Treatment of MSI-H/MMR-D Colorectal Cancer and a Perspective on Resistance Mechanisms. Br. J. Cancer 2019, 121, 809–818. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Gallego, C.J.; Shirts, B.H.; Bennette, C.S.; Guzauskas, G.; Amendola, L.M.; Horike-Pyne, M.; Hisama, F.M.; Pritchard, C.C.; Grady, W.M.; Burke, W.; et al. Next-Generation Sequencing Panels for the Diagnosis of Colorectal Cancer and Polyposis Syndromes: A Cost-Effectiveness Analysis. J. Clin. Oncol. 2015, 33, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
- Dabir, P.D.; Bruggeling, C.E.; van der Post, R.S.; Dutilh, B.E.; Hoogerbrugge, N.; Ligtenberg, M.J.L.; Boleij, A.; Nagtegaal, I.D. Microsatellite Instability Screening in Colorectal Adenomas to Detect Lynch Syndrome Patients? A Systematic Review and Meta-Analysis. Eur. J. Hum. Genet. 2020, 28, 277–286. [Google Scholar] [CrossRef]
- Tieng, F.Y.F.; Abu, N.; Lee, L.-H.; Ab Mutalib, N.-S. Microsatellite Instability in Colorectal Cancer Liquid Biopsy-Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker. Diagnostics 2021, 11, 544. [Google Scholar] [CrossRef]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr. Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Y.; Fang, X.; Liu, C.; Deng, W.; Zhong, C.; Xu, J.; Xu, D.; Yuan, Y. A Novel and Reliable Method to Detect Microsatellite Instability in Colorectal Cancer by Next-Generation Sequencing. J. Mol. Diagn. 2018, 20, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Gilson, P.; Merlin, J.-L.; Harlé, A. Detection of Microsatellite Instability: State of the Art and Future Applications in Circulating Tumour DNA (ctDNA). Cancers 2021, 13, 1491. [Google Scholar] [CrossRef]
- Baudrin, L.G.; Deleuze, J.-F.; How-Kit, A. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front. Oncol. 2018, 8, 621. [Google Scholar] [CrossRef]
- Kucharik, M.; Gnip, A.; Hyblova, M.; Budis, J.; Strieskova, L.; Harsanyova, M.; Pös, O.; Kubiritova, Z.; Radvanszky, J.; Minarik, G.; et al. Non-Invasive Prenatal Testing (NIPT) by Low Coverage Genomic Sequencing: Detection Limits of Screened Chromosomal Microdeletions. PLoS ONE 2020, 15, e0238245. [Google Scholar] [CrossRef]
- Middha, S.; Zhang, L.; Nafa, K.; Jayakumaran, G.; Wong, D.; Kim, H.R.; Sadowska, J.; Berger, M.F.; Delair, D.F.; Shia, J.; et al. Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data. JCO Precis Oncol. 2017, 2017, PO.17.00084. [Google Scholar] [CrossRef]
- Cortes-Ciriano, I.; Lee, S.; Park, W.-Y.; Kim, T.-M.; Park, P.J. A Molecular Portrait of Microsatellite Instability across Multiple Cancers. Nat. Commun. 2017, 8, 15180. [Google Scholar] [CrossRef] [Green Version]
- Hause, R.J.; Pritchard, C.C.; Shendure, J.; Salipante, S.J. Classification and Characterization of Microsatellite Instability across 18 Cancer Types. Nat. Med. 2016, 22, 1342–1350. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-Web: A Web Server for Microsatellite Prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lu, P.; Luo, Z. GMATo: A Novel Tool for the Identification and Analysis of Microsatellites in Large Genomes. Bioinformation 2013, 9, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Arora, V.; Jaiswal, S.; Iquebal, M.A.; Angadi, U.B.; Fatma, S.; Singh, R.; Shil, S.; Rai, A.; Kumar, D. PolyMorphPredict: A Universal Web-Tool for Rapid Polymorphic Microsatellite Marker Discovery From Whole Genome and Transcriptome Data. Front. Plant Sci. 2019, 9, 1966. [Google Scholar] [CrossRef] [Green Version]
- Dietmaier, W.; Wallinger, S.; Bocker, T.; Kullmann, F.; Fishel, R.; Rüschoff, J. Diagnostic Microsatellite Instability: Definition and Correlation with Mismatch Repair Protein Expression. Cancer Res. 1997, 57, 4749–4756. [Google Scholar]
- Yurgelun, M.B.; Hampel, H. Recent Advances in Lynch Syndrome: Diagnosis, Treatment, and Cancer Prevention. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 101–109. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.A.; et al. Feasibility of Screening for Lynch Syndrome among Patients with Colorectal Cancer. J. Clin. Oncol. 2008, 26, 5783–5788. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.W.; Westman, J.; et al. Screening for the Lynch Syndrome (hereditary Nonpolyposis Colorectal Cancer). N. Engl. J. Med. 2005, 352, 1851–1860. [Google Scholar] [CrossRef] [Green Version]
- Payandeh, Z.; Khalili, S.; Somi, M.H.; Mard-Soltani, M.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Samadi, N.; Baradaran, B. PD-1/PD-L1-Dependent Immune Response in Colorectal Cancer. J. Cell. Physiol. 2020, 235, 5461–5475. [Google Scholar] [CrossRef]
- Toh, J.W.T.; de Souza, P.; Lim, S.H.; Singh, P.; Chua, W.; Ng, W.; Spring, K.J. The Potential Value of Immunotherapy in Colorectal Cancers: Review of the Evidence for Programmed Death-1 Inhibitor Therapy. Clin. Colorectal Cancer 2016, 15, 285–291. [Google Scholar] [CrossRef]
- Marginean, E.C.; Melosky, B. Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer With Microsatellite Instability? Part II-The Challenge of Programmed Death Ligand-1 Testing and Its Role in Microsatellite Instability-High Colorectal Cancer. Arch. Pathol. Lab. Med. 2018, 142, 26–34. [Google Scholar] [CrossRef]
- Cohen, R.; Hain, E.; Buhard, O.; Guilloux, A.; Bardier, A.; Kaci, R.; Bertheau, P.; Renaud, F.; Bibeau, F.; Fléjou, J.-F.; et al. Association of Primary Resistance to Immune Checkpoint Inhibitors in Metastatic Colorectal Cancer With Misdiagnosis of Microsatellite Instability or Mismatch Repair Deficiency Status. JAMA Oncol. 2019, 5, 551–555. [Google Scholar] [CrossRef]
- Zhang, L. Immunohistochemistry versus Microsatellite Instability Testing for Screening Colorectal Cancer Patients at Risk for Hereditary Nonpolyposis Colorectal Cancer Syndrome. Part II. The Utility of Microsatellite Instability Testing. J. Mol. Diagn. 2008, 10, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Hemminger, J.A.; Pearlman, R.; Haraldsdottir, S.; Knight, D.; Jonasson, J.G.; Pritchard, C.C.; Hampel, H.; Frankel, W.L. Histology of Colorectal Adenocarcinoma with Double Somatic Mismatch-Repair Mutations Is Indistinguishable from Those Caused by Lynch Syndrome. Hum. Pathol. 2018, 78, 125–130. [Google Scholar] [CrossRef]
- Deng, G.; Bell, I.; Crawley, S.; Gum, J.; Terdiman, J.P.; Allen, B.A.; Truta, B.; Sleisenger, M.H.; Kim, Y.S. BRAF Mutation Is Frequently Present in Sporadic Colorectal Cancer with Methylated hMLH1, but Not in Hereditary Nonpolyposis Colorectal Cancer. Clin. Cancer Res. 2004, 10, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.T.; Buchanan, D.D.; Thompson, B.; Young, J.P.; Spurdle, A.B. Correlation of Tumour BRAF Mutations and MLH1 Methylation with Germline Mismatch Repair (MMR) Gene Mutation Status: A Literature Review Assessing Utility of Tumour Features for MMR Variant Classification. J. Med. Genet. 2012, 49, 151–157. [Google Scholar] [CrossRef]
- Adar, T.; Rodgers, L.H.; Shannon, K.M.; Yoshida, M.; Ma, T.; Mattia, A.; Lauwers, G.Y.; Iafrate, A.J.; Chung, D.C. A Tailored Approach to BRAF and MLH1 Methylation Testing in a Universal Screening Program for Lynch Syndrome. Mod. Pathol. 2017, 30, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Colorectal Cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar] [PubMed]
- Vasen, H.F.; Watson, P.; Mecklin, J.P.; Lynch, H.T. New Clinical Criteria for Hereditary Nonpolyposis Colorectal Cancer (HNPCC, Lynch Syndrome) Proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Sjursen, W.; Haukanes, B.I.; Grindedal, E.M.; Aarset, H.; Stormorken, A.; Engebretsen, L.F.; Jonsrud, C.; Bjørnevoll, I.; Andresen, P.A.; Ariansen, S.; et al. Current Clinical Criteria for Lynch Syndrome Are Not Sensitive Enough to Identify MSH6 Mutation Carriers. J. Med. Genet. 2010, 47, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglietto, L.; Lindor, N.M.; Dowty, J.G.; White, D.M.; Wagner, A.; Gomez Garcia, E.B.; Vriends, A.H.J.T.; Dutch Lynch Syndrome Study Group; Cartwright, N.R.; Barnetson, R.A.; et al. Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. J. Natl. Cancer Inst. 2010, 102, 193–201. [Google Scholar] [CrossRef]
- Hendriks, Y.M.C.; Wagner, A.; Morreau, H.; Menko, F.; Stormorken, A.; Quehenberger, F.; Sandkuijl, L.; Møller, P.; Genuardi, M.; Van Houwelingen, H.; et al. Cancer Risk in Hereditary Nonpolyposis Colorectal Cancer due to MSH6 Mutations: Impact on Counseling and Surveillance. Gastroenterology 2004, 127, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Berends, M.J.W.; Wu, Y.; Sijmons, R.H.; Mensink, R.G.J.; van der Sluis, T.; Hordijk-Hos, J.M.; de Vries, E.G.E.; Hollema, H.; Karrenbeld, A.; Buys, C.H.C.M.; et al. Molecular and Clinical Characteristics of MSH6 Variants: An Analysis of 25 Index Carriers of a Germline Variant. Am. J. Hum. Genet. 2002, 70, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Boland, C.R.; Shike, M. Report from the Jerusalem Workshop on Lynch Syndrome-Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 2010, 138, 2197.e1–2197.e7. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Provenzale, D.; Llor, X.; Halverson, A.L.; Grady, W.; Chung, D.C.; Haraldsdottir, S.; Markowitz, A.J.; Slavin, T.P., Jr.; Hampel, H.; et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 2.2019. J. Natl. Compr. Cancer Netw. 2019, 17, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Monzon, J.G.; Cremin, C.; Armstrong, L.; Nuk, J.; Young, S.; Horsman, D.E.; Garbutt, K.; Bajdik, C.D.; Gill, S. Validation of Predictive Models for Germline Mutations in DNA Mismatch Repair Genes in Colorectal Cancer. Int. J. Cancer 2010, 126, 930–939. [Google Scholar] [CrossRef]
- Kastrinos, F.; Uno, H.; Ukaegbu, C.; Alvero, C.; McFarland, A.; Yurgelun, M.B.; Kulke, M.H.; Schrag, D.; Meyerhardt, J.A.; Fuchs, C.S.; et al. Development and Validation of the PREMM Model for Comprehensive Risk Assessment of Lynch Syndrome. J. Clin. Oncol. 2017, 35, 2165–2172. [Google Scholar] [CrossRef] [Green Version]
- Green, R.C.; Parfrey, P.S.; Woods, M.O.; Younghusband, H.B. Prediction of Lynch Syndrome in Consecutive Patients with Colorectal Cancer. J. Natl. Cancer Inst. 2009, 101, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idigoras, I.; Arrospide, A.; Portillo, I.; Arana-Arri, E.; Martínez-Indart, L.; Mar, J.; de Koning, H.J.; Lastra, R.; Soto-Gordoa, M.; van der Meulen, M.; et al. Evaluation of the Colorectal Cancer Screening Programme in the Basque Country (Spain) and Its Effectiveness Based on the Miscan-Colon Model. BMC Public Health 2017, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Arana-Arri, E.; Imaz-Ayo, N.; Fernández, M.J.; Idigoras, I.; Bilbao, I.; Bujanda, L.; Bao, F.; Ojembarrena, E.; Gil, I.; Gutiérrez-Ibarluzea, I.; et al. Screening Colonoscopy and Risk of Adverse Events among Individuals Undergoing Fecal Immunochemical Testing in a Population-Based Program: A Nested Case-Control Study. United Eur. Gastroenterol. J. 2018, 6, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Latchford, A. How Should Colonoscopy Surveillance in Lynch Syndrome Be Performed? Gastroenterology 2020, 158, 818–819. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Ching, J.Y.L.; Chan, V.; Wong, M.C.S.; Suen, B.Y.; Hirai, H.W.; Lam, T.Y.T.; Lau, J.Y.W.; Ng, S.S.M.; Wu, J.C.Y.; et al. Diagnostic Accuracy of Faecal Immunochemical Test for Screening Individuals with a Family History of Colorectal Cancer. Aliment. Pharmacol. Ther. 2013, 38, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Roos, V.H.; Kallenberg, F.G.J.; van der Vlugt, M.; Bongers, E.J.C.; Aalfs, C.M.; Bossuyt, P.M.M.; Dekker, E. Addition of an Online, Validated Family History Questionnaire to the Dutch FIT-Based Screening Programme Did Not Improve Its Diagnostic Yield. Br. J. Cancer 2020, 122, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.M.; Lee, J.I.; Joo, K.R.; Shin, H.P.; Park, J.J.; Jeun, J.W.; Lim, J.U. First-Degree Relatives of Colorectal Cancer Patients Are Likely to Show Advanced Colorectal Neoplasia despite a Negative Fecal Immunochemical Test. Digestion 2012, 86, 283–287. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and Localization of Surgically Resectable Cancers with a Multi-Analyte Blood Test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Smania, M.A. Liquid Biopsy for Cancer Screening, Diagnosis, and Treatment. J. Am. Assoc. Nurse Pract. 2020, 32, 5–7. [Google Scholar] [CrossRef]
- Pös, O.; Biró, O.; Szemes, T.; Nagy, B. Circulating Cell-Free Nucleic Acids: Characteristics and Applications. Eur. J. Hum. Genet. 2018, 26, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Soltész, B.; Urbancsek, R.; Pös, O.; Hajas, O.; Forgács, I.N.; Szilágyi, E.; Nagy-Baló, E.; Szemes, T.; Csanádi, Z.; Nagy, B. Quantification of Peripheral Whole Blood, Cell-Free Plasma and Exosome Encapsulated Mitochondrial DNA Copy Numbers in Patients with Atrial Fibrillation. J. Biotechnol. 2019, 299, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Szilágyi, M.; Pös, O.; Márton, É.; Buglyó, G.; Soltész, B.; Keserű, J.; Penyige, A.; Szemes, T.; Nagy, B. Circulating Cell-Free Nucleic Acids: Main Characteristics and Clinical Application. Int. J. Mol. Sci. 2020, 21, 6827. [Google Scholar] [CrossRef]
- Márton, É.; Lukács, J.; Penyige, A.; Janka, E.; Hegedüs, L.; Soltész, B.; Méhes, G.; Póka, R.; Nagy, B.; Szilágyi, M. Circulating Epithelial-Mesenchymal Transition-Associated miRNAs Are Promising Biomarkers in Ovarian Cancer. J. Biotechnol. 2019, 297, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kang, G.H. Molecular and Prognostic Heterogeneity of Microsatellite-Unstable Colorectal Cancer. World J. Gastroenterol. 2014, 20, 4230–4243. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huang, Y.-S.; Wu, H.-X.; Wang, Z.-X.; Jin, Y.; Yao, Y.-C.; Chen, Y.-X.; Zhao, Q.; Chen, S.; He, M.-M.; et al. Genomic Temporal Heterogeneity of Circulating Tumour DNA in Unresectable Metastatic Colorectal Cancer under First-Line Treatment. Gut 2021, 2021, gutjnl-2021-324852. [Google Scholar] [CrossRef]
- Pös, Z.; Pös, O.; Styk, J.; Mocova, A.; Strieskova, L.; Budis, J.; Kadasi, L.; Radvanszky, J.; Szemes, T. Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes. Int. J. Mol. Sci. 2020, 21, 8634. [Google Scholar] [CrossRef]
- Salvianti, F.; Gelmini, S.; Costanza, F.; Mancini, I.; Sonnati, G.; Simi, L.; Pazzagli, M.; Pinzani, P. The Pre-Analytical Phase of the Liquid Biopsy. N. Biotechnol. 2020, 55, 19–29. [Google Scholar] [CrossRef]
- Yu, F.; Leong, K.W.; Makrigiorgos, A.; Adalsteinsson, V.A.; Ladas, I.; Ng, K.; Mamon, H.; Makrigiorgos, G.M. NGS-Based Identification and Tracing of Microsatellite Instability from Minute Amounts DNA Using Inter-Alu-PCR. Nucleic Acids Res. 2021, 49, e24. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Zhou, D.C.; Wang, D.; He, X.; Yuan, D.; Li, R.; He, J.; Duan, X.; Wendl, M.C.; et al. MSIsensor-Ct: Microsatellite Instability Detection Using cfDNA Sequencing Data. Brief. Bioinform. 2021, 22, bbaa402. [Google Scholar] [CrossRef]
- Silveira, A.B.; Bidard, F.-C.; Kasperek, A.; Melaabi, S.; Tanguy, M.-L.; Rodrigues, M.; Bataillon, G.; Cabel, L.; Buecher, B.; Pierga, J.-Y.; et al. High-Accuracy Determination of Microsatellite Instability Compatible with Liquid Biopsies. Clin. Chem. 2020, 66, 606–613. [Google Scholar] [CrossRef]
- Wang, D.; O’Rourke, D.; Sanchez-Garcia, J.F.; Cai, T.; Scheuenpflug, J.; Feng, Z. Development of a Liquid Biopsy Based Purely Quantitative Digital Droplet PCR Assay for Detection of MLH1 Promoter Methylation in Colorectal Cancer Patients. BMC Cancer 2021, 21, 797. [Google Scholar] [CrossRef] [PubMed]
- Gilson, P.; Levy, J.; Rouyer, M.; Demange, J.; Husson, M.; Bonnet, C.; Salleron, J.; Leroux, A.; Merlin, J.-L.; Harlé, A. Evaluation of 3 Molecular-Based Assays for Microsatellite Instability Detection in Formalin-Fixed Tissues of Patients with Endometrial and Colorectal Cancers. Sci. Rep. 2020, 10, 16386. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Fujita, K. A New Era in the Detection of Urothelial Carcinoma by Sequencing Cell-Free DNA. Transl. Androl. Urol. 2019, 8, S497–S501. [Google Scholar] [CrossRef]
- Thyagarajan, B.; Guan, W.; Fedirko, V.; Barcelo, H.; Tu, H.; Gross, M.; Goodman, M.; Bostick, R.M. No Association between Mitochondrial DNA Copy Number and Colorectal Adenomas. Mol. Carcinog. 2016, 55, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Li, H.; Cui, Y.; Xiao, W.; Dai, G.; Huang, J.; Wang, C. The mRNA Level of MLH1 in Peripheral Blood Is a Biomarker for the Diagnosis of Hereditary Nonpolyposis Colorectal Cancer. Am. J. Cancer Res. 2016, 6, 1135–1140. [Google Scholar] [PubMed]
- ZiaSarabi, P.; Sorayayi, S.; Hesari, A.; Ghasemi, F. Circulating microRNA-133, microRNA-17 and microRNA-25 in Serum and Its Potential Diagnostic Value in Gastric Cancer. J. Cell. Biochem. 2019, 120, 12376–12381. [Google Scholar] [CrossRef]
- Cai, X.; Qu, L.; Yang, J.; Xu, J.; Sun, L.; Wei, X.; Qu, X.; Bai, T.; Guo, Z.; Zhu, Y. Exosome-Transmitted microRNA-133b Inhibited Bladder Cancer Proliferation by Upregulating Dual-Specificity Protein Phosphatase 1. Cancer Med. 2020, 9, 6009–6019. [Google Scholar] [CrossRef]
- Yu, J.; Xu, J.; Zhao, J.; Zhang, R. Serum miR-133b Is a Potential Novel Prognostic Biomarker for Colorectal Cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 11673–11678. [Google Scholar]
- Zhang, Y.; Li, M.; Ding, Y.; Fan, Z.; Zhang, J.; Zhang, H.; Jiang, B.; Zhu, Y. Serum MicroRNA Profile in Patients with Colon Adenomas or Cancer. BMC Med. Genom. 2017, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.L.N.R.D.; Bernardes, M.V.A.A.; Feitosa, M.R.; Peria, F.M.; Tirapelli, D.P.d.C.; Rocha, J.J.R.d.; Feres, O. Serological under Expression of microRNA-21, microRNA-34a and microRNA-126 in Colorectal Cancer. Acta Cir. Bras. 2016, 31 (Suppl S1), 13–18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Song, M.; Zhang, J.; Kuerban, M.; Wang, H. Combined Identification of Long Non-Coding RNA CCAT1 and HOTAIR in Serum as an Effective Screening for Colorectal Carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 14131–14140. [Google Scholar] [PubMed]
- Shaker, O.G.; Senousy, M.A.; Elbaz, E.M. Association of rs6983267 at 8q24, HULC rs7763881 Polymorphisms and Serum lncRNAs CCAT2 and HULC with Colorectal Cancer in Egyptian Patients. Sci. Rep. 2017, 7, 16246. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Chen, X.; Mo, S.; Li, J.; Huang, Z.; Huang, S.; Xu, J.; He, B.; Zou, Y.; Chen, J.; et al. Meta-Signature LncRNAs Serve as Novel Biomarkers for Colorectal Cancer: Integrated Bioinformatics Analysis, Experimental Validation and Diagnostic Evaluation. Sci. Rep. 2017, 7, 46572. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal Long Noncoding RNA CRNDE-H as a Novel Serum-Based Biomarker for Diagnosis and Prognosis of Colorectal Cancer. Oncotarget 2016, 7, 85551–85563. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, L.; Zhao, J.; Li, C.; Nie, J.; Liu, F.; Zhuo, C.; Zheng, Y.; Li, B.; Wang, Z.; et al. Nuclear-Enriched Abundant Transcript 1 as a Diagnostic and Prognostic Biomarker in Colorectal Cancer. Mol. Cancer 2015, 14, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; et al. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. Mol. Ther. Nucleic Acids 2018, 12, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Lin, W.; Qi, P.; Xu, M.-D.; Wu, X.; Ni, S.; Huang, D.; Weng, W.-W.; Tan, C.; Sheng, W.; et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Mandel, P.; Metais, P. Nuclear Acids In Human Blood Plasma. C. R. Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid Biopsy in Breast Cancer: A Comprehensive Review. Clin. Genet. 2019, 95, 643–660. [Google Scholar] [CrossRef]
- Molnár, B.; Galamb, O.; Kalmár, A.; Barták, B.K.; Nagy, Z.B.; Tóth, K.; Tulassay, Z.; Igaz, P.; Dank, M. Circulating Cell-Free Nucleic Acids as Biomarkers in Colorectal Cancer Screening and Diagnosis—An Update. Expert Rev. Mol. Diagn. 2019, 19, 477–498. [Google Scholar] [CrossRef]
- Markou, A.; Tzanikou, E.; Ladas, I.; Makrigiorgos, G.M.; Lianidou, E. Nuclease-Assisted Minor Allele Enrichment Using Overlapping Probes-Assisted Amplification-Refractory Mutation System: An Approach for the Improvement of Amplification-Refractory Mutation System-Polymerase Chain Reaction Specificity in Liquid Biopsies. Anal. Chem. 2019, 91, 13105–13111. [Google Scholar] [CrossRef] [PubMed]
- Engstrand, J.; Nilsson, H.; Strömberg, C.; Jonas, E.; Freedman, J. Colorectal Cancer Liver Metastases—A Population-Based Study on Incidence, Management and Survival. BMC Cancer 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Hallet, J.; Sa Cunha, A.; Adam, R.; Goéré, D.; Bachellier, P.; Azoulay, D.; Ayav, A.; Grégoire, E.; Navarro, F.; Pessaux, P.; et al. Factors Influencing Recurrence Following Initial Hepatectomy for Colorectal Liver Metastases. Br. J. Surg. 2016, 103, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Angelsen, J.-H.; Viste, A.; Løes, I.M.; Eide, G.E.; Hoem, D.; Sorbye, H.; Horn, A. Predictive Factors for Time to Recurrence, Treatment and Post-Recurrence Survival in Patients with Initially Resected Colorectal Liver Metastases. World J. Surg. Oncol. 2015, 13, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loupakis, F.; Sharma, S.; Derouazi, M.; Murgioni, S.; Biason, P.; Rizzato, M.D.; Rasola, C.; Renner, D.; Shchegrova, S.; Koyen Malashevich, A.; et al. Detection of Molecular Residual Disease Using Personalized Circulating Tumor DNA Assay in Patients With Colorectal Cancer Undergoing Resection of Metastases. JCO Precis Oncol. 2021, 5, 116–177. [Google Scholar] [CrossRef]
- Lindner, A.K.; Schachtner, G.; Tulchiner, G.; Thurnher, M.; Untergasser, G.; Obrist, P.; Pipp, I.; Steinkohl, F.; Horninger, W.; Culig, Z.; et al. Lynch Syndrome: Its Impact on Urothelial Carcinoma. Int. J. Mol. Sci. 2021, 22, 531. [Google Scholar] [CrossRef] [PubMed]
- Wiik, M.U.; Evans, T.-J.; Belhadj, S.; Bolton, K.A.; Dymerska, D.; Jagmohan-Changur, S.; Capellá, G.; Kurzawski, G.; Wijnen, J.T.; Valle, L.; et al. A Genetic Variant in Telomerase Reverse Transcriptase (TERT) Modifies Cancer Risk in Lynch Syndrome Patients Harbouring Pathogenic MSH2 Variants. Sci. Rep. 2021, 11, 11401. [Google Scholar] [CrossRef]
- Shen, N.; Zhang, D.; Yin, L.; Qiu, Y.; Liu, J.; Yu, W.; Fu, X.; Zhu, B.; Xu, X.; Duan, A.; et al. Bile Cell-free DNA as a Novel and Powerful Liquid Biopsy for Detecting Somatic Variants in Biliary Tract Cancer. Oncol. Rep. 2019, 42, 549–560. [Google Scholar] [CrossRef]
- Guiney, W.J.; Beaumont, C.; Thomas, S.R.; Robertson, D.C.; McHugh, S.M.; Koch, A.; Richards, D. Use of Entero-Test, a Simple Approach for Non-Invasive Clinical Evaluation of the Biliary Disposition of Drugs. Br. J. Clin. Pharmacol. 2011, 72, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Shuwen, H.; Xi, Y.; Yuefen, P. Can Mitochondria DNA Provide a Novel Biomarker for Evaluating the Risk and Prognosis of Colorectal Cancer? Dis. Markers 2017, 2017, 5189803. [Google Scholar] [CrossRef]
- Rhine, C.L.; Cygan, K.J.; Soemedi, R.; Maguire, S.; Murray, M.F.; Monaghan, S.F.; Fairbrother, W.G. Hereditary Cancer Genes Are Highly Susceptible to Splicing Mutations. PLoS Genet. 2018, 14, e1007231. [Google Scholar] [CrossRef] [Green Version]
- Lagerstedt-Robinson, K.; Rohlin, A.; Aravidis, C.; Melin, B.; Nordling, M.; Stenmark-Askmalm, M.; Lindblom, A.; Nilbert, M. Mismatch Repair Gene Mutation Spectrum in the Swedish Lynch Syndrome Population. Oncol. Rep. 2016, 36, 2823–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeuschner, P.; Linxweiler, J.; Junker, K. Non-Coding RNAs as Biomarkers in Liquid Biopsies with a Special Emphasis on Extracellular Vesicles in Urological Malignancies. Expert Rev. Mol. Diagn. 2020, 20, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, J.; Cairns, M.J. Identifying miRNAs, Targets and Functions. Brief. Bioinform. 2012, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Umu, S.U.; Langseth, H.; Bucher-Johannessen, C.; Fromm, B.; Keller, A.; Meese, E.; Lauritzen, M.; Leithaug, M.; Lyle, R.; Rounge, T.B. A Comprehensive Profile of Circulating RNAs in Human Serum. RNA Biol. 2018, 15, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, J.; Li, J.; Wan, Y.; Li, T.; Ma, P.; Wang, Y.; Sang, H. Hsa-miR-137, Hsa-miR-520e and Hsa-miR-590-3p Perform Crucial Roles in Lynch Syndrome. Oncol. Lett. 2016, 12, 2011–2017. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Lotsari, J.E.; Al-Sohaily, S.; Warusavitarne, J.; Kohonen-Corish, M.R.; Peltomäki, P. Identification of Subgroup-Specific miRNA Patterns by Epigenetic Profiling of Sporadic and Lynch Syndrome-Associated Colorectal and Endometrial Carcinoma. Clin. Epigenetics 2015, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Kashani, E.; Hadizadeh, M.; Chaleshi, V.; Mirfakhraie, R.; Young, C.; Savabkar, S.; Irani, S.; Asadzadeh Aghdaei, H.; Ashrafian Bonab, M. The Differential DNA Hypermethylation Patterns of microRNA-137 and microRNA-342 Locus in Early Colorectal Lesions and Tumours. Biomolecules 2019, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Balaguer, F.; Moreira, L.; Lozano, J.J.; Link, A.; Ramirez, G.; Shen, Y.; Cuatrecasas, M.; Arnold, M.; Meltzer, S.J.; Syngal, S.; et al. Colorectal Cancers with Microsatellite Instability Display Unique miRNA Profiles. Clin. Cancer Res. 2011, 17, 6239–6249. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Hou, J.; Cui, X.-H.; Suo, L.-N.; Lv, Y.-W. MiR-133b Regulates the Expression of CTGF in Epithelial-Mesenchymal Transition of Ovarian Cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5602–5609. [Google Scholar]
- Charles Richard, J.L.; Eichhorn, P.J.A. Platforms for Investigating LncRNA Functions. SLAS Technol. 2018, 23, 493–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, H.; Al-Ghafari, A.; Choudhry, H.; Al Doghaither, H. Roles of Long Non-Coding RNAs in Colorectal Cancer Tumorigenesis: A Review. Mol. Clin. Oncol. 2019, 11, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Galamb, O.; Barták, B.K.; Kalmár, A.; Nagy, Z.B.; Szigeti, K.A.; Tulassay, Z.; Igaz, P.; Molnár, B. Diagnostic and Prognostic Potential of Tissue and Circulating Long Non-Coding RNAs in Colorectal Tumors. World J. Gastroenterol. 2019, 25, 5026–5048. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.W.; Ab-Mutalib, N.S.; Abdullah, N.M.A.; Jamal, R.; Abu, N. Extracellular Vesicle-Derived Circular RNAs Confers Chemoresistance in Colorectal Cancer. Sci. Rep. 2019, 9, 16497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yu, D. Exosomes in Cancer Development, Metastasis, and Immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 455–468. [Google Scholar] [CrossRef]
- Vafaei, S.; Roudi, R.; Madjd, Z.; Aref, A.R.; Ebrahimi, M. Potential Theranostics of Circulating Tumor Cells and Tumor-Derived Exosomes Application in Colorectal Cancer. Cancer Cell Int. 2020, 20, 288. [Google Scholar] [CrossRef]
- Mol, E.A.; Goumans, M.-J.; Doevendans, P.A.; Sluijter, J.P.G.; Vader, P. Higher Functionality of Extracellular Vesicles Isolated Using Size-Exclusion Chromatography Compared to Ultracentrifugation. Nanomedicine 2017, 13, 2061–2065. [Google Scholar] [CrossRef]
- Soares Martins, T.; Catita, J.; Martins Rosa, I.; A B da Cruz E Silva, O.; Henriques, A.G. Exosome Isolation from Distinct Biofluids Using Precipitation and Column-Based Approaches. PLoS ONE 2018, 13, e0198820. [Google Scholar]
- Zarovni, N.; Corrado, A.; Guazzi, P.; Zocco, D.; Lari, E.; Radano, G.; Muhhina, J.; Fondelli, C.; Gavrilova, J.; Chiesi, A. Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods 2015, 87, 46–58. [Google Scholar] [CrossRef]
- Nakai, W.; Yoshida, T.; Diez, D.; Miyatake, Y.; Nishibu, T.; Imawaka, N.; Naruse, K.; Sadamura, Y.; Hanayama, R. A Novel Affinity-Based Method for the Isolation of Highly Purified Extracellular Vesicles. Sci. Rep. 2016, 6, 33935. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Mar, S.; Perez-Gonzalez, V.H.; Mata-Gómez, M.A.; Gallo-Villanueva, R.C.; González-Valdez, J. Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics. Anal. Chem. 2019, 91, 14975–14982. [Google Scholar] [CrossRef] [PubMed]
- Keup, C.; Mach, P.; Aktas, B.; Tewes, M.; Kolberg, H.-C.; Hauch, S.; Sprenger-Haussels, M.; Kimmig, R.; Kasimir-Bauer, S. RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients. Clin. Chem. 2018, 64, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X. The Emerging Roles and Therapeutic Potential of Exosomes in Epithelial Ovarian Cancer. Mol. Cancer 2017, 16, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorayappan, K.D.P.; Wallbillich, J.J.; Cohn, D.E.; Selvendiran, K. The Biological Significance and Clinical Applications of Exosomes in Ovarian Cancer. Gynecol. Oncol. 2016, 142, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, M.; Fatima, F.; Nazarenko, I.; Ekström, K.; Murtaza, I.; Anees, M.; Sultan, A.; Neder, L.; Camussi, G.; Valadi, H.; et al. Extracellular Vesicles in Ovarian Cancer: Applications to Tumor Biology, Immunotherapy and Biomarker Discovery. Expert Rev. Proteom. 2016, 13, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Baghaei, K.; Tokhanbigli, S.; Asadzadeh, H.; Nmaki, S.; Reza Zali, M.; Hashemi, S.M. Exosomes as a Novel Cell-Free Therapeutic Approach in Gastrointestinal Diseases. J. Cell. Physiol. 2019, 234, 9910–9926. [Google Scholar] [CrossRef]
Method | Advantages | Limitations |
---|---|---|
IHC | Workflow takes up to 4–6 h | Analysis of MMR proteins separately |
Easy to perform | Needs a pathologist with experience in MMR IHC interpretation | |
Performable in samples with <20% neoplastic cells Able to identify defective MMR genes for downstream analysis | Equivocal test results due to the heterogeneous expression of MMR proteins False-positive results (artificial loss of expression) due to pre-analytic issues or lack of technical calibration Rare false-negative results if there is no apparent loss of expression due to missense mutations in the MMR genes with intact immunoreactivity in approximately 10% of all cases Not reliable in small biopsy specimens Sensitivity depends on antibody panel | |
MSI-PCR | Allows simultaneous detection of multiple targets | No indication about MMR genes |
Highly reproducible Workflow takes less than 5 h | Requires samples with at least 20% neoplastic cells Rare false-positive results due to microsatellite polymorphisms Informative only for a few tumour types Limited number of markers |
Class | Target | Application in LS | Method | References |
---|---|---|---|---|
cfDNA (nuclear origin) | Alu | MSI status assessment | Inter-Alu-PCR, NGS | [88] |
whole exome | MSI status assessment | MSIsensor-ct | [89] | |
BAT26, ACVR2A, DEFB105A/B | MSI status assessment | ddPCR | [90] | |
MLH1 promoter | methylation status assessment | ddPCR | [91] | |
BAT25, BAT26, MONO27, NR21, NR24 | MSI status assessment | ddPCR, NGS | [92] | |
TERT promoter, FGFR3 | UC screening | NGS | [93] | |
cf-mtDNA | ND1 copy number | CRC screening | qPCR | [94] |
cf-mRNA | MLH1 | LS diagnosis | qRT-PCR | [95] |
cf-miRNA | miR-133b | Screening for various LS-associated malignancies | qRT-PCR | [96,97,98] |
miR-1247-5p, miR-1293, miR-548at-5p, miR-107, miR-139-3p | CRC screening | microarray, qRT-PCR | [99] | |
miR-21, miR-34a, miR-126 | CRC screening | qRT-PCR | [100] | |
cf-lncRNA | CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1 | CRC screening | qRT-PCR | [101,102,103,104,105,106] |
BCAR4 (combined with mRNA markers) | CRC screening | qRT-PCR | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buglyó, G.; Styk, J.; Pös, O.; Csók, Á.; Repiska, V.; Soltész, B.; Szemes, T.; Nagy, B. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int. J. Mol. Sci. 2022, 23, 4284. https://doi.org/10.3390/ijms23084284
Buglyó G, Styk J, Pös O, Csók Á, Repiska V, Soltész B, Szemes T, Nagy B. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. International Journal of Molecular Sciences. 2022; 23(8):4284. https://doi.org/10.3390/ijms23084284
Chicago/Turabian StyleBuglyó, Gergely, Jakub Styk, Ondrej Pös, Ádám Csók, Vanda Repiska, Beáta Soltész, Tomas Szemes, and Bálint Nagy. 2022. "Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome" International Journal of Molecular Sciences 23, no. 8: 4284. https://doi.org/10.3390/ijms23084284
APA StyleBuglyó, G., Styk, J., Pös, O., Csók, Á., Repiska, V., Soltész, B., Szemes, T., & Nagy, B. (2022). Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. International Journal of Molecular Sciences, 23(8), 4284. https://doi.org/10.3390/ijms23084284