Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma
Abstract
:1. Background
2. UGCG in Normal Liver Cells
3. UGCG and Gaucher Disease
4. Glycosphingolipids in HCC
4.1. UGCG/GlcCer
4.2. Globoside Lactosylceramide
4.3. Globosides (DSSG, Gb3, Gb2, Globo H, Gb4, iso-Gb4)
4.4. Gangliosides (GM1, GM2, GM3, GD3, NeuGcGM3 Ganglioside)
4.5. Lacto/Neo-Lacto Series Glycosphingolipids
4.6. Sulfatides (Glycosphingolipid Sulfates)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | phosphatidylinositol 3-kinase (PI3K)/protein kinase B |
AMPK | AMP-activated protein kinase |
CRISP | cysteine-rich secretory protein |
CSC | cancer stem cell |
DEN | diethylnitrosamine |
D-PDMP | D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol |
DSGG | disialosyl galactosyl globoside |
EpCAM | epithelial cellular adhesion molecule |
ER | endoplasmic reticulum |
ERT | enzyme replacement therapy |
GBA | glucocerebrosidase |
GBA3 | glucosylceramidase beta 3 |
Gb3 | globotriaosylceramide |
GEMs | glycosphingolipid-enriched microdomains |
GlcCer | glucosylceramide |
GM3 | monosialodihexosylganglioside |
GSLs | glycosphingolipids |
HCC | Hepatocellular carcinoma |
HDAC2 | histone deacetylase 2 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KO | knockout |
LCSC | liver cancer stem cell |
lyso-GlcCer | glucosylsphingosine |
MAPK | mitogen-activated protein kinase |
mTOR | mechanistic Target of Rapamycin |
NASH | non-alcoholic steatohepatitis |
OE | Overexpression |
ORMDL3 | ORMDL sphingolipid biosynthesis regulator 3 |
RAF | rapidly accelerated fibrosarcoma |
S1P | sphingosine-1-phosphate |
SIN3B | paired amphipathic helix protein |
SRT | substrate reduction therapy |
TCGA | The Cancer Genome Atlas |
UGCG | UDP-glucose ceramide glycosyltransferase |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Deeks, E.D. Cabozantinib: A Review in Advanced Hepatocellular Carcinoma. Target Oncol. 2019, 14, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Kelly, D.; O’Kane, G.M. Non-Immunotherapy Options for the First-Line Management of Hepatocellular Carcinoma: Exploring the Evolving Role of Sorafenib and Lenvatinib in Advanced Disease. Curr. Oncol. 2020, 27, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Martinez, S.; Iserte, G.; Sanduzzi-Zamparelli, M.; Llarch, N.; Reig, M. Current pharmacological treatment of hepatocellular carcinoma. Curr. Opin. Pharm. 2021, 60, 141–148. [Google Scholar] [CrossRef]
- Schnaar, R.L.; Kinoshita, T. Glycosphingolipids. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Eds.; Cold Spring Harbor: Ner York, NY, USA, 2015; pp. 125–135. [Google Scholar] [CrossRef]
- Schömel, N.; Geisslinger, G.; Wegner, M.S. Influence of glycosphingolipids on cancer cell energy metabolism. Prog. Lipid Res. 2020, 79, 101050. [Google Scholar] [CrossRef]
- Giussani, P.; Tringali, C.; Riboni, L.; Viani, P.; Venerando, B. Sphingolipids: Key regulators of apoptosis and pivotal players in cancer drug resistance. Int. J. Mol. Sci. 2014, 15, 4356–4392. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, l1. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, M.S.; Gruber, L.; Mattjus, P.; Geisslinger, G.; Grösch, S. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer 2018, 18, 153. [Google Scholar] [CrossRef]
- Stefanovic, M.; Tutusaus, A.; Martinez-Nieto, G.A.; Bárcena, C.; de Gregorio, E.; Moutinho, C.; Barbero-Camps, E.; Villanueva, A.; Colell, A.; Marí, M.; et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget 2016, 7, 8253–8267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, T.; Shimizu, K.; Hasaba, S.; Date, M. Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids. Sci. Rep. 2019, 9, 18803. [Google Scholar] [CrossRef]
- Ishii, K.; Shimizu, M.; Kogo, H.; Negishi, Y.; Tamura, H.; Morita, R.; Takahashi, H. A combination of check-point blockade and α-galactosylceramide elicits long-lasting suppressive effects on murine hepatoma cell growth in vivo. Immunobiology 2020, 225, 151860. [Google Scholar] [CrossRef] [PubMed]
- Companioni, O.; Mir, C.; Garcia-Mayea, Y.; ME, L.L. Targeting Sphingolipids for Cancer Therapy. Front. Oncol. 2021, 11, 745092. [Google Scholar] [CrossRef] [PubMed]
- (NCBI)[INTERNET], N. C. F. B. I. (1988)—[Cited 2017 Apr 17]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 16 March 2022).
- Wegner, M.S.; Schömel, N.; Olzomer, E.M.; Trautmann, S.; Olesch, C.; Byrne, F.L.; Brüne, B.; Gurke, R.; Ferreirós, N.; Weigert, A.; et al. Increased glucosylceramide production leads to decreased cell energy metabolism and lowered tumor marker expression in non-cancerous liver cells. Cell Mol. Life Sci. 2021, 78, 7025–7041. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Ouro, A.; Ala-Ibanibo, L.; Presa, N.; Delgado, T.C.; Martinez-Chantar, M.L. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int. J. Mol. Sci. 2019, 21, 40. [Google Scholar] [CrossRef] [Green Version]
- Siddique, M.M.; Li, Y.; Wang, L.; Ching, J.; Mal, M.; Ilkayeva, O.; Wu, Y.J.; Bay, B.H.; Summers, S.A. Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Mol. Cell Biol. 2013, 33, 2353–2369. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Ash, J.D. The Role of AMPK Pathway in Neuroprotection. Adv. Exp. Med. Biol. 2016, 854, 425–430. [Google Scholar] [CrossRef]
- Blázquez, C.; Geelen, M.J.; Velasco, G.; Guzmán, M. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001, 489, 149–153. [Google Scholar] [CrossRef]
- Wang, N.; Wang, S.; Li, M.Y.; Hu, B.G.; Liu, L.P.; Yang, S.L.; Yang, S.; Gong, Z.; Lai, P.B.S.; Chen, G.G. Cancer stem cells in hepatocellular carcinoma: An overview and promising therapeutic strategies. Adv. Med. Oncol. 2018, 10, 1758835918816287. [Google Scholar] [CrossRef]
- Nelson, M.E.; Lahiri, S.; Chow, J.D.; Byrne, F.L.; Hargett, S.R.; Breen, D.S.; Olzomer, E.M.; Wu, L.E.; Cooney, G.J.; Turner, N.; et al. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun. 2017, 8, 14689. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Hirabayashi, Y. AMP-activated Protein Kinase Suppresses Biosynthesis of Glucosylceramide by Reducing Intracellular Sugar Nucleotides. J. Biol. Chem. 2015, 290, 18245–18260. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, T.A.; Dyck, J.R.; Lopaschuk, G.D. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem. Soc. Trans. 2003, 31, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Doneda, D.; Netto, C.B.; Moulin, C.C.; Schwartz, I.V. Effects of imiglucerase on the growth and metabolism of Gaucher disease type I patients: A systematic review. Nutr. Metab. 2013, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Sheth, J.; Bhavsar, R.; Mistri, M.; Pancholi, D.; Bavdekar, A.; Dalal, A.; Ranganath, P.; Girisha, K.M.; Shukla, A.; Phadke, S.; et al. Gaucher disease: Single gene molecular characterization of one-hundred Indian patients reveals novel variants and the most prevalent mutation. BMC Med. Genet. 2019, 20, 31. [Google Scholar] [CrossRef]
- Nascimbeni, F.; Dalla Salda, A.; Carubbi, F. Energy balance, glucose and lipid metabolism, cardiovascular risk and liver disease burden in adult patients with type 1 Gaucher disease. Blood Cells Mol. Dis. 2018, 68, 74–80. [Google Scholar] [CrossRef]
- Regenboog, M.; van Dussen, L.; Verheij, J.; Weinreb, N.J.; Santosa, D.; Vom Dahl, S.; Häussinger, D.; Müller, M.N.; Canbay, A.; Rigoldi, M.; et al. Hepatocellular carcinoma in Gaucher disease: An international case series. J. Inherit. Metab. Dis. 2018, 41, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Dubot, P.; Astudillo, L.; Therville, N.; Sabourdy, F.; Stirnemann, J.; Levade, T.; Andrieu-Abadie, N. Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses. Cancers 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Astudillo, L.; Therville, N.; Colacios, C.; Ségui, B.; Andrieu-Abadie, N.; Levade, T. Glucosylceramidases and malignancies in mammals. Biochimie 2016, 125, 267–280. [Google Scholar] [CrossRef]
- Wątek, M.; Piktel, E.; Wollny, T.; Durnaś, B.; Fiedoruk, K.; Lech-Marańda, E.; Bucki, R. Defective Sphingolipids Metabolism and Tumor Associated Macrophages as the Possible Links Between Gaucher Disease and Blood Cancer Development. Int. J. Mol. Sci. 2019, 20, 843. [Google Scholar] [CrossRef] [Green Version]
- Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, C.; Zhao, X.; Dai, W.; Chen, S.; Lu, X.; Xu, G. Large-scaled human serum sphingolipid profiling by using reversed-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: Method development and application in hepatocellular carcinoma. J. Chromatogr. A 2013, 1320, 103–110. [Google Scholar] [CrossRef]
- Jennemann, R.; Federico, G.; Mathow, D.; Rabionet, M.; Rampoldi, F.; Popovic, Z.V.; Volz, M.; Hielscher, T.; Sandhoff, R.; Gröne, H.J. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget 2017, 8, 109201–109216. [Google Scholar] [CrossRef] [Green Version]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32, 807–823.e812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Chen, X.; Luan, C.; Wu, J. High throughput lipid profiling for subtype classification of hepatocellular carcinoma cell lines and tumor tissues. Anal. Chim. Acta 2020, 1107, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Souady, J.; Soltwisch, J.; Dreisewerd, K.; Haier, J.; Peter-Katalinić, J.; Müthing, J. Structural profiling of individual glycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetection matched with Direct IR-MALDI-o-TOF mass spectrometry. Anal. Chem. 2009, 81, 9481–9492. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Yen, C.J.; Chou, R.H.; Li, S.T.; Huang, W.C.; Ren, C.T.; Wu, C.Y.; Yu, Y.L. Cancer-associated carbohydrate antigens as potential biomarkers for hepatocellular carcinoma. PLoS ONE 2012, 7, e39466. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Yu, Y.; Wang, Z.; Zhu, T.; Xu, X.; Liu, H.; Hawke, D.; Zhou, D.; Li, Y. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver. Int. 2014, 34, 147–160. [Google Scholar] [CrossRef]
- Su, Y.H.; Lin, T.Y.; Liu, H.J.; Chuang, C.K. A set of cancer stem cell homing peptides associating with the glycan moieties of glycosphingolipids. Oncotarget 2018, 9, 20490–20507. [Google Scholar] [CrossRef] [Green Version]
- Ariga, T.; Kasai, N.; Miyoshi, I.; Yamawaki, M.; Scarsdale, J.N.; Yu, R.K.; Kasama, T.; Taki, T. Accumulation of isogloboside and ganglio-N-tetraosyl ceramide having blood group B determinant in the hepatomas of female LEC rats. Biochim. Biophys. Acta 1995, 1254, 257–266. [Google Scholar] [CrossRef]
- Tanno, M.; Yamada, H.; Shimada, H.; Ohashi, M. Ganglioside variations in human liver cirrhosis and hepatocellular carcinoma as shown by two-dimensional thin-layer chromatography. Clin. Biochem. 1988, 21, 333–339. [Google Scholar] [CrossRef]
- Tanno, M.; Yamada, H.; Shimada, H. The clinicopathological significance of changes of ganglioside patterns in the cirrhotic liver: A study of 11 cases. JPN J. Med. 1987, 26, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Livera, A.M.; Sysi-Aho, M.; Jacob, L.; Gagnon-Bartsch, J.A.; Castillo, S.; Simpson, J.A.; Speed, T.P. Statistical methods for handling unwanted variation in metabolomics data. Anal. Chem. 2015, 87, 3606–3615. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, X.; Zhong, W.; Zhang, J.; Ma, K. Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Mol. Cell Biochem. 2013, 382, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; Zhang, J.; Xu, Y.; Tian, Y.; Ma, K. Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway. J. Cell. Biochem. 2013, 114, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Qin, X.Y.; Dohmae, N.; Wei, F.; Furutani, Y.; Kojima, S.; Yu, W. Inhibition of Ganglioside Synthesis Suppressed Liver Cancer Cell Proliferation through Targeting Kinetochore Metaphase Signaling. Metabolites 2021, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lu, R.; Song, H.; Wu, J.; Liu, X.; Zhou, X.; Yang, J.; Zhang, H.; Tang, C.; Guo, H.; et al. Metabolomic study of natrin-induced apoptosis in SMMC-7721 hepatocellular carcinoma cells by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Int. J. Biol. Macromol. 2019, 124, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.N.; Gu, T.G.; Xia, L.A.; Murphy, M.J., Jr.; Lee, W.; Gao, N.H.; Gu, J.R.; Fuhrer, J.P. Enhanced expression of ganglioside GD3 in human and rat hepatocellular carcinoma cells and NIH 3T3 cells transfected with human tumor DNAs. Cancer Res. 1990, 50, 7697–7702. [Google Scholar] [PubMed]
- Morales, A.; Mari, M.; Garcia-Ruiz, C.; Colell, A.; Fernandez-Checa, J.C. Hepatocarcinogenesis and ceramide/cholesterol metabolism. Anticancer Agents Med. Chem. 2012, 12, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Souady, J.; Hülsewig, M.; Distler, U.; Haier, J.; Denz, A.; Pilarsky, C.; Senninger, N.; Dreisewerd, K.; Peter-Katalinic, J.; Müthing, J. Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2011, 21, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Blanco, R.; Rengifo, E.; Cedeño, M.; Rengifo, C.E.; Alonso, D.F.; Carr, A. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Epithelial Malignant Tumors from Digestive System. ISRN Gastroenterol. 2011, 2011, 645641. [Google Scholar] [CrossRef] [Green Version]
- Zhong Wu, X.; Honke, K.; Long Zhang, Y.; Liang Zha, X.; Taniguchi, N. Lactosylsulfatide expression in hepatocellular carcinoma cells enhances cell adhesion to vitronectin and intrahepatic metastasis in nude mice. Int. J. Cancer 2004, 110, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Dong, Y.W.; Shi, P.C.; Yu, M.; Fu, D.; Zhang, C.Y.; Cai, Q.Q.; Zhao, Q.L.; Peng, M.; Wu, L.H.; et al. Regulation of integrin αV subunit expression by sulfatide in hepatocellular carcinoma cells. J. Lipid. Res. 2013, 54, 936–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.; Liu, Y.; Zhu, P.; Kang, C.; Xu, H.; Qi, B.; Wang, R.; Dong, Y.; Wu, X.Z. SIN3B promotes integrin αV subunit gene transcription and cell migration of hepatocellular carcinoma. J. Mol. Cell Biol. 2019, 11, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Oyeniran, C.; Biswas, D.D.; Allegood, J.; Milstien, S.; Kordula, T.; Maceyka, M.; Spiegel, S. ORMDL proteins regulate ceramide levels during sterile inflammation. J. Lipid. Res. 2016, 57, 1412–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, J.F.; Zhang, Y.N.; Song, S.S.; Hu, Z.M.; He, X.L.; Pan, H.Y.; Zhang, C.W.; Wang, H.J.; Li, W.F.; Mou, X.Z. Decreased expression of GBA3 correlates with a poor prognosis in hepatocellular carcinoma patients. Neoplasma 2020, 67, 1139–1145. [Google Scholar] [CrossRef]
- Hayashi, Y.; Okino, N.; Kakuta, Y.; Shikanai, T.; Tani, M.; Narimatsu, H.; Ito, M. Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase. J. Biol. Chem. 2007, 282, 30889–30900. [Google Scholar] [CrossRef] [Green Version]
- Satoh, M.; Handa, K.; Saito, S.; Tokuyama, S.; Ito, A.; Miyao, N.; Orikasa, S.; Hakomori, S. Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential. Cancer Res. 1996, 56, 1932–1938. [Google Scholar]
- Zhu, D.; Wu, Z.H.; Xu, L.; Yang, D.L. Single sample scoring of hepatocellular carcinoma: A study based on data mining. Int. J. Immunopathol. Pharm. 2021, 35, 20587384211018389. [Google Scholar] [CrossRef] [PubMed]
- Barletta, E.; Mugnai, G.; Ruggieri, S. Complex gangliosides modulate the integrin-mediated adhesion in a rat hepatoma cell line. Biochem. Biophys. Res. Commun. 1993, 192, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.K.; Lukina, E.; Ben Turkia, H.; Shankar, S.P.; Baris Feldman, H.; Ghosn, M.; Mehta, A.; Packman, S.; Lau, H.; Petakov, M.; et al. Clinical outcomes after 4.5 years of eliglustat therapy for Gaucher disease type 1: Phase 3 ENGAGE trial final results. Am. J. Hematol. 2021, 96, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Peterschmitt, M.J.; Crawford, N.P.S.; Gaemers, S.J.M.; Ji, A.J.; Sharma, J.; Pham, T.T. Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Oral Venglustat in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2021, 10, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Jennemann, R.; Volz, M.; Bestvater, F.; Schmidt, C.; Richter, K.; Kaden, S.; Müthing, J.; Gröne, H.J.; Sandhoff, R. Blockade of Glycosphingolipid Synthesis Inhibits Cell Cycle and Spheroid Growth of Colon Cancer Cells In Vitro and Experimental Colon Cancer Incidence In Vivo. Int. J. Mol. Sci. 2021, 22, 539. [Google Scholar] [CrossRef]
- Kok, K.; Zwiers, K.C.; Boot, R.G.; Overkleeft, H.S.; Aerts, J.; Artola, M. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules 2021, 11, 271. [Google Scholar] [CrossRef]
- Yu, J.; Hung, J.T.; Wang, S.H.; Cheng, J.Y.; Yu, A.L. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett. 2020, 594, 3602–3618. [Google Scholar] [CrossRef]
- Robert, A.; Wiels, J. Shiga Toxins as Antitumor Tools. Toxins 2021, 13, 690. [Google Scholar] [CrossRef] [PubMed]
Glycosphingolipid Species | Change | Effect | References |
---|---|---|---|
GlcCer | ↑ | Unknown | [10,11,35,36] |
tumor development via mTOR | [37] | ||
Sorafenib resistance | [13] | ||
Lactosylceramide | ↑ | Unknown | [35,38,39] |
DSGG, Gb3, Gb2 | ↑ | Unknown | [40] |
Gb3, Gb4 | ↓ | Unknown | [39] |
Globo H | ↑ | Unknown | [41] |
Liver CSC | [42] | ||
Iso-Gb4 | ↑ | Unknown | [43] |
GM2 | ↑ | Unknown | [44,45] |
GM3 | ↓ | Unknown | [44] |
GM3 | ↑ | Cell migration | [46,47,48] |
Gangliosides in general | ↑ | Liver progenitor-like cells and liver CSC | [49] |
GM1 | ↑ | In EpCAM positive CSC-like HCC cell line JHH7 | [49] |
Gangliosides in general | ↑ | Natrin-induced apoptosis | [50] |
Fucosyl GM1 | ↑ | Unknown | [40] |
GD3 | ↑ | Inhibition of survival pathways | [51,52] |
GD1α | ↑ | Unknown | [44] |
CD75s- and iso-CD75s-gangliosides | ↑ | Unknown | [53] |
NeuGcGM3 ganglioside | ↑ | Unknown | [54] |
Fucosylated GSLs | ↑ | Unknown | [41] |
Sulfatides | ↑ | Tumor metastasis | [55,56,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, F.L.; Olzomer, E.M.; Lolies, N.; Hoehn, K.L.; Wegner, M.-S. Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 4477. https://doi.org/10.3390/ijms23094477
Byrne FL, Olzomer EM, Lolies N, Hoehn KL, Wegner M-S. Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2022; 23(9):4477. https://doi.org/10.3390/ijms23094477
Chicago/Turabian StyleByrne, Frances L., Ellen M. Olzomer, Nina Lolies, Kyle L. Hoehn, and Marthe-Susanna Wegner. 2022. "Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma" International Journal of Molecular Sciences 23, no. 9: 4477. https://doi.org/10.3390/ijms23094477
APA StyleByrne, F. L., Olzomer, E. M., Lolies, N., Hoehn, K. L., & Wegner, M. -S. (2022). Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 23(9), 4477. https://doi.org/10.3390/ijms23094477