The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies
Abstract
:1. Introduction
1.1. The Gut–Brain Axis in Depression
1.2. Prebiotic, Probiotic, Synbiotic, and Microbiota Therapeutics in Depression
1.3. Previous Literature
2. Results
2.1. Search Results
2.2. Findings from the Observational Studies
2.3. Findings from the Clinical Trials
3. Discussion
3.1. Observational Studies
3.2. Interventional Trials
3.3. Limitations
4. Methods
4.1. Information Sources and Search Strategy
- Depression.mp. or exp Depression/or exp Depressive Disorder, Major/or depressive.mp. or exp Depressive Disorder/or exp Depressive Disorder, Treatment-Resistant/
- Gastrointestinal microbiome.mp. or exp Gastrointestinal Microbiome/or gut.mp. or fecal.mp. or microbiota.mp. or exp Microbiota/or microbiome.mp.
- (healthy control or healthy or control).mp.
- (alpha diversity or beta diversity or abundance* or diversity or rRNA).mp.
- 1 and 2 and 3 and 4
- Limit 6 to English language, human, 2016-current.
- Depression.mp. or exp Depression/or exp Depressive Disorder, Major/or depressive.mp. or exp Depressive Disorder/or exp Depressive Disorder, Treatment-Resistant/
- probiotic.mp. or exp Probiotics/or prebiotic.mp. or exp Prebiotics/or synbiotic.mp. or exp Synbiotics/or exp Lactobacillus/or Lactobacillus.mp. or exp Bifidobacterium/
- exp Clinical Trial/or trial.mp.
- 1 and 2 and 3
- Limit 5 to English language, human, 2016–current.
4.2. Eligibility
4.3. Selection Process
4.4. Outcome Measures and Data Items
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA; London, UK, 2013. [Google Scholar]
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010, 9, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlim, M.T.; Turecki, G. What is the meaning of treatment resistant/refractory major depression (TRD)? A systematic review of current randomized trials. Eur. Neuropsychopharmacol. 2007, 17, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 2000, 61, 4–6. [Google Scholar] [PubMed]
- Berman, R.M.; Sanacora, G.; Anand, A.; Roach, L.M.; Fasula, M.K.; Finkelstein, C.O.; Wachen, R.; Oren, D.A.; Heninger, G.R.; Charney, D.S. Monoamine depletion in unmedicated depressed subjects. Biol. Psychiatry 2002, 51, 469–473. [Google Scholar] [CrossRef]
- Hooper, L.V.; Stappenbeck, T.S.; Hong, C.V.; Gordon, J.I. Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 2003, 4, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Schauber, J.; Svanholm, C.; Termén, S.; Iffland, K.; Menzel, T.; Scheppach, W.; Melcher, R.; Agerberth, B.; Lührs, H.; Gudmundsson, G.H. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: Relevance of signalling pathways. Gut 2003, 52, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cash, H.L.; Whitham, C.V.; Behrendt, C.L.; Hooper, L.V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin. Science 2006, 313, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Shishov, V.A.; Kirovskaya, T.A.; Kudrin, V.S.; Oleskin, A.V. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl. Biochem. Microbiol. 2009, 45, 494–497. [Google Scholar] [CrossRef]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 3237. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, X.-R.; Peng, L.; Ge, J.-F. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020, 6, e04097. [Google Scholar] [CrossRef]
- Farooq, R.K.; Asghar, K.; Kanwal, S.; Zulqernain, A. Role of inflammatory cytokines in depression: Focus on interleukin-1β. Biomed. Rep. 2017, 6, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Guida, F.; Turco, F.; Iannotta, M.; De Gregorio, D.; Palumbo, I.; Sarnelli, G.; Furiano, A.; Napolitano, F.; Boccella, S.; Luongo, L.; et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 2018, 67, 230–245. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Chung, Y.-C.E.; Chen, H.-C.; Chou, H.-C.L.; Chen, I.-M.; Lee, M.-S.; Chuang, L.-C.; Liu, Y.-W.; Lu, M.-L.; Chen, C.-H.; Wu, C.-S.; et al. Exploration of microbiota targets for major depressive disorder and mood related traits. J. Psychiatr. Res. 2019, 111, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun. 2020, 88, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; He, S.; Fang, L.; Wang, B.; Bai, S.-J.; Xie, J.; Zhou, C.-J.; Wang, W.; Xie, P. Age-specific differential changes on gut microbiota composition in patients with major depressive disorder. Aging 2020, 12, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, P.; Li, Y.; Wu, J.; Tan, X.; Zhou, J.; Sun, Z.; Chen, X.; Zhang, G.; Zhang, H.; et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci. Adv. 2020, 6, eaba8555. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Xue, F.; Yu, S.-F.; Li, X.-S.; Liu, L.; Jia, Y.-Y.; Yan, W.-J.; Tan, Q.-R.; Wang, H.-N.; Peng, Z.-W. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J. Affect. Disord. 2020, 282, 391–400. [Google Scholar] [CrossRef]
- Rong, H.; Xie, X.-H.; Zhao, J.; Lai, W.-T.; Wang, M.-B.; Xu, D.; Liu, Y.-H.; Guo, Y.-Y.; Xu, S.-X.; Deng, W.-F.; et al. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res. 2019, 113, 90–99. [Google Scholar] [CrossRef]
- Rhee, S.J.; Kim, H.; Lee, Y.; Lee, H.J.; Park, C.H.K.; Yang, J.; Kim, Y.-K.; Kym, S.; Ahn, Y.M. Comparison of serum microbiome composition in bipolar and major depressive disorders. J. Psychiatr. Res. 2020, 123, 31–38. [Google Scholar] [CrossRef]
- Mason, B.L.; Li, Q.; Minhajuddin, A.; Czysz, A.H.; Coughlin, L.A.; Hussain, S.K.; Koh, A.Y.; Trivedi, M.H. Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. J. Affect. Disord. 2020, 266, 394–401. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Valcheva, R.; Dieleman, L.A. Prebiotics: Definition and protective mechanisms. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 27–37. [Google Scholar] [CrossRef]
- Precup, G.; Pocol, C.B.; Teleky, B.-E.; Vodnar, D.C. Awareness, Knowledge, and Interest about Prebiotics—A Study among Romanian Consumers. Int. J. Environ. Res. Public Health 2022, 19, 1208. [Google Scholar] [CrossRef] [PubMed]
- Sorbara, M.T.; Pamer, E.G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 2014, 26, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Pelto, L.; Salminen, S.J.; Isolauri, E. Lactobacillus GG Modulates Milk-Induced Immune Inflammatory Response in Milk-Hypersensitive Adults. Nutr. Today 1996, 31, 47S. [Google Scholar] [CrossRef]
- Isolauri, E.; Arvola, T.; Sütas, Y.; Moilanen, E.; Salminen, S. Probiotics in the management of atopic eczema. Clin. Exp. Allergy 2000, 30, 1605–1610. [Google Scholar] [CrossRef] [Green Version]
- De Vrese, M.; Stegelmann, A.; Richter, B.; Fenselau, S.; Laue, C.; Schrezenmeir, J. Probiotics—Compensation for lactase insufficiency. Am. J. Clin. Nutr. 2001, 73, 421s–429s. [Google Scholar] [CrossRef] [Green Version]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.; Wang, Y.; Sun, A.; Lin, Y.; Jin, Y.; Li, X. Oral Probiotics Ameliorate the Behavioral Deficits Induced by Chronic Mild Stress in Mice via the Gut Microbiota-Inflammation Axis. Front. Behav. Neurosci. 2018, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Łoniewski, I.; Misera, A.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Kaźmierczak-Siedlecka, K.; Misiak, B.; Marlicz, W.; Samochowiec, J. Major Depressive Disorder and Gut Microbiota – Association Not Causation. A Scoping Review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110111. [Google Scholar] [CrossRef]
- Sanada, K.; Nakajima, S.; Kurokawa, S.; Barceló-Soler, A.; Ikuse, D.; Hirata, A.; Yoshizawa, A.; Tomizawa, Y.; Salas-Valero, M.; Noda, Y.; et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2020, 266, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.K.; Liu, Y.-W.; Kuo, P.-H.; Chung, Y.-C.E.; Lu, M.-L.; Chen, C.-H. Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res. 2019, 282, 112568. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shan, W. Pharmacological and non-pharmacological treatments for major depressive disorder in adults: A systematic review and network meta-analysis. Psychiatry Res. 2019, 281, 112595. [Google Scholar] [CrossRef]
- Huang, R.; Wang, K.; Hu, J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.-C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and Major Depression. Front. Psychiatry 2019, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmeister, M.; Clement, F.; Patten, S.; Li, J.; Dowsett, L.E.; Farkas, B.; Mastikhina, L.; Egunsola, O.; Diaz, R.; Cooke, N.C.; et al. The effect of interventions targeting gut microbiota on depressive symptoms: A systematic review and meta-analysis. CMAJ Open 2021, 9, E1195–E1204. [Google Scholar] [CrossRef]
- Minayo, M.D.S.; Miranda, I.; Telhado, R.S. A systematic review of the effects of probiotics on depression and anxiety: An alternative therapy? Cien. Saude Colet. 2021, 26, 4087–4099. [Google Scholar] [CrossRef]
- El Dib, R.; Periyasamy, A.G.; de Barros, J.L.; França, C.G.; Senefonte, F.L.; Vesentini, G.; Alves, M.G.O.; Rodrigues, J.V.D.S.; Gomaa, H.; Júnior, J.R.G.; et al. Probiotics for the treatment of depression and anxiety: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2021, 45, 75–90. [Google Scholar] [CrossRef]
- Gawlik, S.; Waldeier, L.; Müller, M.; Szabo, A.; Sohn, C.; Reck, C. Subclinical depressive symptoms during pregnancy and birth outcome—A pilot study in a healthy German sample. Arch. Women’s Ment. Health 2012, 16, 93–100. [Google Scholar] [CrossRef]
- Schneider, G.; Kruse, A.; Nehen, H.-G.; Senf, W.; Heuft, G. The Prevalence and Differential Diagnosis of Subclinical Depressive Syndromes in Inpatients 60 Years and Older. Psychother. Psychosom. 2000, 69, 251–260. [Google Scholar] [CrossRef]
- Wallace, C.J.K.; Milev, R.V. The Efficacy, Safety, and Tolerability of Probiotics on Depression: Clinical Results from an Open-Label Pilot Study. Front. Psychiatry 2021, 12, 12. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, E.; Tsuji, H.; Asahara, T.; Takahashi, T.; Teraishi, T.; Yoshida, S.; Ota, M.; Koga, N.; Hattori, K.; Kunugi, H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016, 202, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, F.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients With Diarrhea-Predominant Irritable Bowel Syndrome and Patients With Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611.e5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.-J.; Fan, S.-H.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Ding, B.; Feng, C.; Yin, S.; Zhang, T.; Qi, X.; Lv, H.; Guo, X.-K.; Dong, K.; Zhu, Y.; et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J. Affect. Disord. 2017, 207, 300–304. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Sheu, J.C.; Venkatachalam, A.; Runge, J.K.; Luna, R.A.; Calarge, C.A. Gut microbiome in adolescent depression. J. Affect. Disord. 2021, 292, 500–507. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Gui, S.; Zhou, C.; Chen, J.-J.; Yang, C.; Hu, Z.; Wang, H.; Zhong, X.; Zeng, L.; et al. Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. NeuroReport 2018, 29, 417–425. [Google Scholar] [CrossRef]
- Chen, J.-J.; Zheng, P.; Liu, Y.-Y.; Zhong, X.-G.; Wang, H.-Y.; Guo, Y.-J.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Zhu, Y.; Wu, W.; Zhang, Q.; Wang, Y.; Wang, Z.; Yang, F. A correlation study of intestinal microflora and first-episode depression in Chinese patients and healthy volunteers. Brain Behav. 2021, 11, e02036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yun, Y.; An, H.; Zhao, W.; Ma, T.; Wang, Z.; Yang, F. Gut Microbiome Composition Associated With Major Depressive Disorder and Sleep Quality. Front. Psychiatry 2021, 12, 645045. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut Microbiome: A Potential Indicator for Differential Diagnosis of Major Depressive Disorder and General Anxiety Disorder. Front. Psychiatry 2021, 12, 651536. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Xie, J.; Bai, H.; Tian, T.; Zou, T.; Chen, J.-J. Gut Microbiota-Derived Inflammation-Related Serum Metabolites as Potential Biomarkers for Major Depressive Disorder. J. Inflamm. Res. 2021, 14, 3755–3766. [Google Scholar] [CrossRef] [PubMed]
- Caso, J.R.; MacDowell, K.S.; González-Pinto, A.; García, S.; de Diego-Adeliño, J.; Carceller-Sindreu, M.; Sarramea, F.; Caballero-Villarraso, J.; Gracia-García, P.; De la Cámara, C.; et al. Gut microbiota, innate immune pathways, and inflammatory control mechanisms in patients with major depressive disorder. Transl. Psychiatry 2021, 11, 645. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-T.; Deng, W.-F.; Xu, S.-X.; Zhao, J.; Xu, D.; Liu, Y.-H.; Guo, Y.-Y.; Wang, M.-B.; He, F.-S.; Ye, S.-W.; et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med. 2021, 51, 90–101. [Google Scholar] [CrossRef]
- Zheng, P.; Yang, J.; Li, Y.; Wu, J.; Liang, W.; Yin, B.; Tan, X.; Huang, Y.; Chai, T.; Zhang, H.; et al. Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Adv. Sci. 2020, 7, 1902862. [Google Scholar] [CrossRef]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef]
- Bambling, M.; Edwards, S.C.; Hall, S.; Vitetta, L. A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: An intestinal anti-inflammatory response is suggested. Inflammopharmacology 2017, 25, 271–274. [Google Scholar] [CrossRef]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, Z.; Nazari, S.; Etesam, F.; Nourimajd, S.; Ahmadpanah, M.; Jahromi, S.R. The Effect of Synbiotic as an Adjuvant Therapy to Fluoxetine in Moderate Depression: A Randomized Multicenter Trial. Arch. Neurosci. 2018, 5, e60507. [Google Scholar] [CrossRef] [Green Version]
- Miyaoka, T.; Kanayama, M.; Wake, R.; Hashioka, S.; Hayashida, M.; Nagahama, M.; Okazaki, S.; Yamashita, S.; Miura, S.; Miki, H.; et al. Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clin. Neuropharmacol. 2018, 41, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. 2019, 38, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019, 100, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Chahwan, B.; Kwan, S.; Isik, A.; van Hemert, S.; Burke, C.; Roberts, L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 2019, 253, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr. Neurosci. 2021, 24, 339–353. [Google Scholar] [CrossRef]
- Heidarzadeh-Rad, N.; Gökmen-Özel, H.; Kazemi, A.; Almasi, N.; Djafarian, K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J. Neurogastroenterol. Motil. 2020, 26, 486–495. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Mörkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schöggl, H.; et al. PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression—A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef]
- Reiter, A.; Bengesser, S.A.; Hauschild, A.-C.; Birkl-Töglhofer, A.-M.; Fellendorf, F.T.; Platzer, M.; Färber, T.; Seidl, M.; Mendel, L.-M.; Unterweger, R.; et al. Interleukin-6 Gene Expression Changes after a 4-Week Intake of a Multispecies Probiotic in Major Depressive Disorder—Preliminary Results of the PROVIT Study. Nutrients 2020, 12, 2575. [Google Scholar] [CrossRef]
- Saccarello, A.; Montarsolo, P.; Massardo, I.; Picciotto, R.; Pedemonte, A.; Castagnaro, R.; Brasesco, P.C.; Guida, V.; Picco, P.; Fioravanti, P.; et al. Oral Administration of S-Adenosylmethionine (SAMe) and Lactobacillus Plantarum HEAL9 Improves the Mild-To-Moderate Symptoms of Depression. Prim. Care Companion CNS Disord. 2020, 22, 22. [Google Scholar] [CrossRef]
- Browne, P.D.; Bolte, A.C.; der Vaart, I.B.-V.; Claassen, E.; de Weerth, C. Probiotics as a treatment for prenatal maternal anxiety and depression: A double-blind randomized pilot trial. Sci. Rep. 2021, 11, 3051. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-M.; Kuo, P.-H.; Hsu, C.-Y.; Chiu, Y.-H.; Liu, Y.-W.; Lu, M.-L.; Chen, C.-H. Psychophysiological Effects of Lactobacillus plantarum PS128 in Patients with Major Depressive Disorder: A Preliminary 8-Week Open Trial. Nutrients 2021, 13, 3731. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Chen, Y.; Zhu, H.; Wang, L.; Qian, X.; Zou, R.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav. Immun. 2022, 100, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Zhang, M.; Ren, F.; Ren, Y.; Li, Y.; Liu, N.; Zhang, Y.; Zhang, Q.; Wang, R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2238. [Google Scholar] [CrossRef]
- Arifdjanova, S.R.; Abrurakhmanova, Z.Z.; Bizulya, E.S.; Gumenyuk, L.N.; Sorokina, L.E.; Gerbali, O.Y. The role of probiotics in combination therapy of depressive disorders. Russ. Open Med. J. 2021, 10, 109. [Google Scholar] [CrossRef]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 2022, 1–16. [Google Scholar] [CrossRef]
- Larsen, O.F.A.; Claassen, E. The mechanistic link between health and gut microbiota diversity. Sci. Rep. 2018, 8, 2183. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, V.L.; Hall, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-Analysis. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef]
- Nuzum, N.; Loughman, A.; Szymlek-Gay, E.A.; Hendy, A.; Teo, W.-P.; Macpherson, H. Gut microbiota differences between healthy older adults and individuals with Parkinson’s disease: A systematic review. Neurosci. Biobehav. Rev. 2020, 112, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.K.H.; Tong, V.J.W.; Syn, N.; Nagarajan, N.; Tham, E.H.; Tay, S.K.; Shorey, S.; Tambyah, P.A.; Law, E.C.N. Gut microbiota changes in children with autism spectrum disorder: A systematic review. Gut Pathog. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef] [PubMed]
- Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; et al. Current Perspectives on Gut Microbiome Dysbiosis and Depression. Adv. Ther. 2020, 37, 1328–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Das, C.; Mande, S.S. In Silico Analysis of Putrefaction Pathways in Bacteria and Its Implication in Colorectal Cancer. Front. Microbiol. 2017, 8, 2166. [Google Scholar] [CrossRef] [Green Version]
- Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front. Nutr. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.D.; Chen, C.-Y.; Knox, N.C.; Marrie, R.-A.; El-Gabalawy, H.; De Kievit, T.; Alfa, M.; Bernstein, C.N.; Van Domselaar, G. A comparative study of the gut microbiota in immune-mediated inflammatory diseases—Does a common dysbiosis exist? Microbiome 2018, 6, 221. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Barandouzi, Z.A.; Starkweather, A.R.; Henderson, W.; Gyamfi, A.; Cong, X.S. Altered Composition of Gut Microbiota in Depression: A Systematic Review. Front. Psychiatry 2020, 11, 541. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Bridonneau, C.; Robert, V.; Sokol, H.; Bermudez-Humaran, L.G.; Thomas, M.; Langella, P. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 2014, 5, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Men’s Health 2020, 38, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.S.D.; Vieira-Coelho, M.A. Probiotics and prebiotics: Focus on psychiatric disorders – A systematic review. Nutr. Rev. 2019, 78, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Pourjafar, H.; Tabrizi, A.; Homayouni, A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr. Pharm. Biotechnol. 2020, 21, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [Google Scholar] [CrossRef]
- Wagner, B.D.; Grunwald, G.K.; Zerbe, G.O.; Mikulich-Gilbertson, S.K.; Robertson, C.E.; Zemanick, E.T.; Harris, J.K. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front. Microbiol. 2018, 9, 1037. [Google Scholar] [CrossRef] [Green Version]
- Shade, A. Diversity is the question, not the answer. ISME J. 2017, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Senghor, B.; Sokhna, C.; Ruimy, R.; Lagier, J.-C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 7–8, 1–9. [Google Scholar] [CrossRef]
- Simpson, H.L.; Campbell, B.J. Review article: Dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 2015, 42, 158–179. [Google Scholar] [CrossRef] [Green Version]
- Hakansson, A.; Molin, G. Gut Microbiota and Inflammation. Nutrients 2011, 3, 637–682. [Google Scholar] [CrossRef]
- Macedo, D.; Chaves-Filho, A.J.M.; Soares de Sousa, C.N.; Quevedo, J.; Barichello, T.; Júnior, H.V.N.; de Lucena, D.F. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord. 2017, 208, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.; Getselter, D.; Ziv, O.; Oron, O.; Reuveni, E.; Koren, O.; Elliott, E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Ju, Y.; Wang, W.; Wang, Q.; Guo, R.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 2020, 11, 1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Chiu, W.T.; Demler, O.; Walters, E.E. Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 617–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, C.J.K.; Milev, R. Erratum to: The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry 2017, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- Thukral, A.K. A review on measurement of Alpha diversity in biology. Agric. Res. J. 2017, 54, 1. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef] [Green Version]
Study | Study Design | Country | Population | Definition of Depression | Mean Age (SD) | Sex (%F) | Outcomes |
---|---|---|---|---|---|---|---|
Aizawa 2016 [55] | Cross-Sectional | Japan | MDD (N = 43) HC (N = 57) | DSM-IV | MDD: 41.9 HC: 61.4 | MDD: 41.9 HC: 61.4 | Fecal microbiota One time |
Kelly 2016 [22] | Cross-Sectional | Ireland | MDD (N = 34) HC (N = 33) | DSM-IV HAM-D ≥ 17 | MDD: 45.8 (11.5) HC: 45.8 (11.9) | MDD: 32.8 HC: 42.4 | Fecal microbiota One time |
Liu 2016 [56] | Cross-Sectional | China | MDD (N = 15) IBS-D (N = 40) COMO (N = 25) HC (N = 33) | MINI DSM-IV | MDD: 73.3 IBS-D: 30.0 COMO: 44.0 HC: 65.0 | MDD: 73.3 IBS-D: 30.0 COMO: 44.0 HC: 65.0 | Fecal microbiota One time Sigmoid mucosa |
Zheng 2016 [57] | Cross-Sectional | China | MDD (N = 58) HC (N = 63) | DSM-IV HAM-D | MDD: 62.1 HC: 63.5 | MDD: 62.1 HC: 63.5 | Fecal microbiota One time |
Lin 2017 [58] | Prospective | China | MDD (N = 10) HC (N = 10) | DSM-IV HAM-D ≥ 23 | MDD: 36.2 (10.1) HC: 38.1 (2.9) | MDD: 60.0 HC: 60.0 | Fecal microbiota Three times over one month |
Chen 2018a [62] | Cross-Sectional | China | MDD (N = 44) HC (N = 44) | HAM-D | MDD: 40.9 (11.2) HC: 43.4 (13.4) | MDD: 54.5 HC: 54.5 | Fecal microbiota One time |
Chen 2018b [61] | Cross-Sectional | China | MDD (N = 10) HC (N = 10) | DSM-IV HAM-D ≥ 20 | MDD: 43.9 (13.8) HC: 39.6 (9.0) | MDD: 50.0 HC: 50.0 | Fecal microbiota One time |
Huang 2018 [59] | Cross-Sectional | China | MDD (N = 27) HC (N = 27) | ICD-10 | MDD: 48.7 (12.8) HC: 42.3 (14.1) | MDD: 74.0 HC: 74.0 | Fecal microbiota One time |
Chung 2019 [23] | Cross-Sectional | Taiwan | MDD (N = 36) HC (N = 37) | DSM-IV | MDD: 45.83 (14.08) HC: 41.19 (12.73) | MDD: 82.35 HC: 62.16 | Fecal microbiota One time |
Rong 2019 [28] | Cross-Sectional | China | MDD (N = 31) BD-D (N = 30) HC (N = 30) | DSM-V | MDD: 41.58 (10.40) BD-D: 38.40 (8.33) HC: 39.47 (10.22) | MDD: 70.97 BD-D: 50.00 HC: 53.33 | Fecal microbiota One time |
Chen 2020 [25] | Cross-Sectional | China | Y-MDD (N = 25) Y-HC (N = 27) M-MDD (N = 45) M-HC (N = 44) | DSM-IV | Y-MDD: 24.0 (3.74) Y-HC: 24.96 (2.31) M-HC: 47.16 (8.07) M-MDD: 44.96 (7.76) | Y-HC: 70.37 Y-MDD: 72.0 M-HC: 77.2 M-MDD: 68.89 | Fecal microbiota One time |
Liu 2020 [24] | Cross-Sectional | USA | MDD (N = 43) HC (N = 47) | SCID-4 | MDD: 21.9 (2.1) HC: 22.1 (1.8) | MDD: 88.4 HC: 72.3 | Fecal microbiota One time |
Mason 2020 [30] | Cross-Sectional | USA | MDD (N = 38) -Anxiety only (N = 8) -Depression only (N = 14) HC (N = 10) | SCID-5 | MDD: 39.2 -Anxiety only (40.0) -Depression only (41.9) HC: 33 | MDD: 82 -Anxiety only: 100 -Depression only: 79 HC: 60 | Fecal microbiota One time |
Rhee 2020 [29] | Cross-Sectional | South Korea | MDD (N = 30) BD (N = 42) HC (N = 36) | DSM-V MINI | MDD: 46.2 (9.7) BD: 34.2 (10.8) HC: 43.0 (5.6) | MDD: 83.3 BD: 64.3 HC: 75.0 | Fecal microbiota One time |
Yang 2020 [26] | Cross-Sectional | China | MDD (N = 156) HC (N = 155) | DSM-IV MINI | D-HC: 26.86 (5.24) D-MDD: 27.19 (4.71) V-HC: 36.39 (10.75) V-MDD: 37.07 (9.45) | D-HC: 56.78 D-MDD: 56.78 V-HC: 64.86 V-MDD: 86.84 | Fecal microbiota |
Zheng 2020 [69] | Case-Control | China | MDD (N = 165) BD (N = 217) HC (N = 217) | DSM-IV | MDD: 26.54 (4.07) BD: 25.59 (8.41) HC: 26.85 (5.48) | MDD: 63.11 BD: 49.70 HC: 58.48 | Fecal microbiota One time |
Bai 2021 [66] | Cross-Sectional | China | MDD (N = 60) HC (N = 60) | DSM-IV HAM-D > 17 | MDD: 35.62 (17.10) HC: 35.13 (15.79) | HC: 60.0 MDD: 65.0 | Fecal microbiota One time |
Caso 2021 [67] | Cross-Sectional | Spain | a-MDD (N = 46) r-MDD (N = 22) HC (N = 45) | DSM-IV HAM-D > 14 | a-MDD: 42.10 r-MDD: 45.85 HC: 44.72 | a-MDD: 78.26 r-MDD: 77.27 HC: 75.5 | Fecal microbiota One time |
Chen 2021 [27] | Cross-Sectional | China | MDD (N = 62) HC (N = 46) | DSM-V MINI HAMD-17 ≥ 18 | HC: 36.93 (8.58) MDD: 39.58 (12.66) | ND | Fecal microbiota One time |
Dong 2021 [65] | Cross-Sectional | China | MDD (N = 23) GAD (N = 21) HC (N = 10) | DSM-V | MDD: 30.04 (5.90) GAD: 30.43 (7.95) HC: 30.22 (6.50) | MDD: 69.57 GAD: 66.67 HC: 60.00 | Fecal microbiota One time |
Lai 2021 [68] | Cross-Sectional | China | MDD (N = 26) HC (N = 29) | SCID-V HAM-D > 17 | MDD: 43.73 (11.46) HC: 39.41 (10.96) | MDD: 69.2 HC: 55.2 | Fecal microbiota One time |
Thapa 2021 [60] | Longitudinal | USA | MDD (N = 110) HC (N = 27) Psy ctr (N = 23) | DSM-IV-TR | MDD: 19.5 (0.4) HC: 20.3 (0.2) Psy ctr: 19.1 (0.4) | MDD: 65 HC: 37 Psy ctr: 43 | Fecal microbiota One time |
Zhang 2021 [64] | Case-Control | China | MDD (N = 36) HC (N = 45) | ICD-10 | MDD: 36.81 (13.52) HC: 39.29 (11.44) | MDD: 41.7 HC: 57.8 | Fecal microbiota One time |
Zheng 2021 [63] | Case-Control | China | MDD (N = 30) HC (N = 30) | ICD-10 | MDD: 30.80 (10.85) HC: 33.37 (7.02) | MDD: 60.0 HC: 56.7 | Fecal microbiota One time |
Study | Genetic Analysis | Alpha Diversity Findings a | Beta Diversity Findings b |
---|---|---|---|
Aizawa 2016 [55] | Analysis: 16S rRNA sequencing Platform: Yakult Intestinal Flora-SCAN® | ND | ND |
Kelly 2016 [22] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: ND Pipeline: QIIME Database: SILVA | Significant decrease in MDD compared to HC (Chao, observed species, phylogenetic diversity). No significant difference between MDD and HC (Shannon). | No significant difference between MDD and HC (Weighted Bray–Curtis similarity, Unweighted UniFrac distances, Weighted UniFrac distances). |
Liu 2016 [56] | Analysis: 16S rRNA sequencing Platform: Roche 454 sequencing Region: V1-V3 Pipeline: Mothur Database: RDP | No significant difference between MDD and HC (Shannon). | ND |
Zheng 2016 [57] | Analysis: 16S rRNA sequencing Platform: Roche 454 sequencing Region: V3-V5 Pipeline: Mothur Database: RDP | No significant difference between MDD and HC (observed species, phylogenetic diversity, Shannon, Simpson). | Significant difference between MDD and HC (Weighted Bray–Curtis similarity, Unweighted UniFrac distances). |
Lin 2017 [58] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: Mothur Database: SILVA | ND | No significant difference between MDD and HC (Weighted UniFrac distances). |
Chen 2018a [62] | Analysis: 16S rRNA sequencing Platform: Roche 454 sequencing Region: V3-V5 Pipeline: Mothur Database: RDP | No significant difference between MDD and HC (phylogenetic diversity). | Significant difference between MDD and HC (UniFrac distances, PLS-DA). |
Chen 2018b [61] | Analysis: Metaproteomics | ND | ND |
Huang 2018 [59] | Analysis: 16S rRNA sequencing Platform: Illumina HiSeq Region: V3-V4 Pipeline: QIIME Database: GreenGenes | Significant decrease in MDD compared to HC (ACE, Chao, phylogenetic diversity, Shannon). | No significant difference between MDD and HC (Unweighted UniFrac distances, Weighted UniFrac distances). |
Chung 2019 [23] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: QIIME Database: GreenGenes | No significant difference between MDD and HC (Chao, observed OTUs, phylogenetic diversity, Shannon). | Significant difference between MDD and HC (Unweighted UniFrac distances, Weighted UniFrac distances). |
Rong 2019 [28] | Analysis: SMS Platform: Illumina HiSeq Database: KEGG | Significant decrease in MDD compared to HC (Chao). No significant difference between MDD and HC (Inverse Simpson, Shannon). | ND (MDD vs. HC) |
Chen 2020 [25] | Analysis: 16S rRNA sequencing Platform: Roche 454 sequencing Region: V3-V5 Pipeline: Mothur Database: RDP | No significant difference between MDD and HC (ACE, Chao). | ND |
Liu 2020 [24] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V4 Pipeline: QIIME2 Database: SILVA | Significant decrease in MDD compared to HC (phylogenetic diversity). No significant difference between MDD and HC (Shannon, Simpson, observed ASVs). | Significant difference between MDD and HC (Unweighted UniFrac distances, Bray–Curtis). No significant difference between MDD and HC (Weighted UniFrac distances). |
Mason 2020 [30] | Analysis: 16S rRNA sequencing Platform: Roche 454 sequencing Region: V4 Pipeline: QIIME Database: SILVA | No significant difference between MDD and HC (Shannon). | No significant difference between MDD and HC (Weighted UniFrac distance). |
Rhee 2020 [29] | Analysis: 16S rDNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: QIIME Database: SILVA | Significant increase in MDD compared to HC (Inverse Simpson, Shannon). No significant difference between MDD and HC (Chao, observed OTUs). | Significant difference between MDD and HC (Unweighted UniFrac distances, Bray–Curtis). No significant difference between MDD and HC (Weighted UniFrac distances). |
Yang 2020 [26] | Sequencing: SMS Platform: Illumina NovaSeq Database: KEGG, NCBI NR | No significant difference between MDD and HC (Chao, Shannon, Simpson, Inverse Simpson). | Significant difference between MDD and HC (Bray–Curtis Distance). |
Zheng 2020 [69] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: UPARSE Database: RDP | No significant difference between MDD and HC (Ace, Chao, Shannon, Inverse Simpson). | Significant difference between MDD and HC (PLS-DA). |
Bai 2021 [66] | Analysis: 16S rRNA sequencing Platform: ND Region: ND Pipeline: ND Database: RDP | No significant difference between MDD and HC (Chao, Shannon, Simpson, phylogenetic diversity). | Significant difference between MDD and HC (PCoA). |
Caso 2021 [67] | Analysis: 16S rDNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: QIIME, Calypso Database: RDP | No significant difference between MDD and HC (Shannon). | No significant differences between MDD and HC (Bray–Curtis, Binary Jaccard). |
Chen 2021 [27] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: Mothur, QIIME Database: RDP | No significant difference between MDD and HC (ACE, Chao, Shannon, Simpson,). | Significant difference between MDD and HC (Weighted UniFrac, Unweighted UniFrac). |
Dong 2021 [65] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V3-V4 Pipeline: QIIME2 Database: SILVA | No significant difference between MDD and HC (ACE, Chao, Shannon, Simpson). | No significant difference between MDD and HC (Bray–Curtis). |
Lai 2021 [68] | Analysis: SMS Platform: Illumina HiSeq Database: KEGG | Significant difference between MDD and HC (Fisher). No significant difference between MDD and HC (Shannon). | Significant difference between MDD and HC (PCoA). |
Thapa 2021 [60] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: V4 Pipeline: QIIME Database: SILVA | No significant difference between MDD and HC (ACE, Chao, Observed OTUs, phylogenetic diversity, Shannon). | No significant difference between MDD and HC (Bray–Curtis, Unweighted UniFrac distances, Weighted UniFrac distances, Aitchison distance). |
Zhang 2021 [64] | Analysis: 16S rRNA sequencing Platform: Illumina Region: V4-V5 Pipeline: Mothur, UPARSE, R Database: ND | No significant difference between MDD and HC (ACE, Chao, Shannon, Simpson). | No significant difference between MDD and HC (Unweighted UniFrac distances, Weighted UniFrac distances). |
Zheng 2021 [63] | Analysis: 16S rRNA sequencing Platform: Illumina MiSeq Region: ND Pipeline: Mothur Database: ND | No significant difference between MDD and HC (ACE, Chao, Shannon, Simpson). | ND |
Taxon | Increased in MDD | Decreased in MDD |
---|---|---|
Phylum | Bacteroides | |
Family | Bifidobacteriaceae | Sutterellaceae |
Streptococcaceae | ||
Genus | Eggerthella | Coprococcus |
Streptococcus | Faecalibacterium |
Authors | Study Design | Country | Population | Depression Definition | Mean Age (SD) | Sex (% F) |
---|---|---|---|---|---|---|
Akkasheh 2016 [70] | DB RCT | Iran | MDD (N = 40) | DSM-IV; HAMD-17 ≥ 15 | Pro: 38.3 (12.1) Plb: 36.2 (8.2) | ND |
Bambling 2017 [71] | Open-label trial | Australia | Resistant MDD (N = 12) | MINI-V | Pro: 49.3 (10.9) | Pro: 66.7 |
Romijn 2017 [72] | DB RCT | New Zealand | Low mood (N = 79) | QIDS-SR16 ≥ 11; DASS-42-D ≥ 14 | Pro: 35.8 (14) Plb: 35.1 (14.5) | Pro: 20 Plb: 23 |
Ghorbani 2018 [73] | DB RCT | Iran | MDD (N = 40) | DSM-V | Syn: 34.45 Plb: 35.50 | Syn: 70 Plb: 70 |
Miyaoka 2018 [74] | Prospective open-label trial | Japan | TRD (N = 40) | DSM-IV-TR | Pro: 44.2 (15.6) Ctr: 41.9 (14.2) | Pro: 52.0 Ctr: 52.0 |
Chahwan 2019 [77] | TB RCT | Australia | Clinical and sub-clinical depression (N = 71) | MINI-IV | Pro: 36.65 (11.75) Plb: 35.49 (12.34) Ctr: 35.95 (11.74) | Pro: 21 Plb: 28 Ctr: 15 |
Kazemi 2019 [75] | DB RCT | Iran | MDD (N = 110) | ICD-10 | Pro: 36.2 Pre: 75.0 Plb: 66.7 | Pro: 71.1 Pre: 75.0 Ctr: 66.7 |
Rudzki 2019 [76] | DB RCT | Poland | MDD (N = 60) | DSM-IV-TR | Pro: 39.13 (9.96) Plb: 38.90 (12) | Pro: 76.7 Plb: 66.7 |
Heidarzadeh 2020 [79] | DB RCT | Iran | MDD (N = 78) | ICD-10 | Pro: 36.2 Pre: 75.0 Plb: 66.7 | Pro: 71.1 Pre: 75.0 Plb: 66.7 |
Reininghaus 2020 [80] | DB RCT | Austria | MDD (N = 82) | MINI-IV | Pro: 43.00 (14.31) Plb: 40.11 (11.45) | Pro: 71.4 Plb: 81.8 |
Reiter 2020 [81] | DB RCT | Austria | MDD (N = 61) | MINI-IV | Pro: 43.00 (14.31) Plb: 40.11 (11.45) | Pro: 71.4 Plb: 81.8 |
Saccarello 2020 [82] | DB RCT | Italy | MDD (N = 90) | ICD-10 | Pro: 48.6 (10.67) Plb: 47.5 (11.9) | Pro: 84.4 Plb: 75 |
Arifdjanova 2021 [87] | Open RCT | Russia | Mild-moderate depressive episode | ICD-10 | Pro: 32.9 (6.1) Plb: 33.1 (5.7) | Pro and Plb: 62.2 |
Browne 2021 [83] | DB pilot trial | Netherlands | Depressive sxs (N = 40) | EPDS ≥ 10 | Pro: 29.65 (3.9) Plb: 31.7 (4) | ND |
Chen 2021 [84] | Open trial | Taiwan | MDD (N = 11) | DSM-V | Pro: 39.4 (12.0) | Pro: 72.7 |
Vaghef-Mehrabany 2021 [78] | DB RCT | Iran | MDD (N = 62) | DSM-V | Pre: 37.45 Plb: 40.00 | ND |
Wallace 2021 [53] | Open pilot study | Canada | MDD (N = 10) | MINI-IV; MADRS ≥ 20 | Pro: 25.2 (7.0) Plb: 40.00 | Pro: 70 |
Zhang 2021 [86] | DB RCT | China | MDD (N = 69) | DSM-V | Pro: 45.8 (12.3) Plb: 49.7 (9.6) | Pro: 63.2 Plb: 84.5 |
Tian 2022 [85] | DB RCT | China | MDD (N = 45) | HAMD-24 > 14 | Pro: 51.32 (16.11) Plb: 48.15 (13.96) | Pro: 70.0 Plb: 64.0 |
Authors | Population | Intervention | Control | Trial Length | Outcome Measure | Depressive Symptom Score Changes | Microbiome Changes |
---|---|---|---|---|---|---|---|
Akkasheh 2016 [70] | MDD (N = 40) | L. acidophilus, L. casei, B. bifidum | Plb | 8 weeks | BDI | Significant decrease in BDI score in probiotic group compared to placebo over 8 weeks. | ND |
Bambling 2017 [71] | Resistant MDD (N = 12) | Mg2+, L. acidophilus, B. bifidum, S. thermophiles | No ctr | 8 weeks 8, 16-wk f/u | BDI | Significant decrease in BDI score in probiotic group over 8 weeks, but not at 16 weeks. | ND |
Romijn 2017 [72] | Low mood (N = 79) | L. helveticus R0052, B. longum R0174 | Matched Plb | 8 weeks | MADRS | No significant difference in MADRS score in probiotic group compared to placebo over 8 weeks. | ND |
Ghorbani 2018 [73] | MDD (N = 40) | Familact H® a Syn, Fluoxetine | Plb, Fluoxetine | 8 weeks | HAMD-17 | Significant decrease in HAMD-17 score in synbiotic group compared to placebo over 8 weeks. | ND |
Miyaoka 2018 [74] | TRD (N = 40) | C. butyricum miyairi 588, Antidepressants | Anti-depressants | 6 weeks | HAMD-17, BDI | Significant decrease in HAMD-17 and BDI score in probiotic group compared to control over 6 weeks. | ND |
Chahwan 2019 [77] | Clinical and sub-clinical depression (N = 71) | Ecologic®Barrier c | Plb Ctr | 8 weeks | BDI | No significant difference in BDI score between probiotic group and placebo over 8 weeks. | No significant differences in α-diversity or β-diversity between probiotic and placebo groups over time. |
Kazemi 2019 [75] | MDD (N = 110) | CEREBIOME® b | Plb | 8 weeks | BDI | Significant decrease in BDI score in probiotic group compared to placebo or prebiotic over 8 weeks. No significant decrease in prebiotic group BDI score compared to placebo over 8 weeks. | ND |
Rudzki 2019 [76] | MDD (N = 60) | L. Plantarum 299v, SSRI | Plb + SSRI | 8 weeks | HAMD-17 | No significant difference in HAMD-17 score between probiotic group and placebo over 8 weeks. | ND |
Heidarzadeh 2020 [79] | MDD (N = 78) | CEREBIOME® b | Plb | 8 weeks | BDI-II | Significant decrease in BDI-II score in probiotic compared to placebo over 8 weeks. No significant difference in BDI-11 score between probiotic and prebiotic, or prebiotic and placebo groups over 8 weeks. | ND |
Reininghaus 2020 [80] | MDD (N = 82) | OMNi-BiOTiC® Stress Repair d | Plb (Biotin, B7) | 4 weeks | HAM-D, BDI-II | No significant decrease in HAM-D and BDI-II score in probiotic group compared to placebo over 4 weeks. | No significant differences in α-diversity between probiotic and placebo groups over time. β-diversity was significantly different in the probiotics group after 28 days. Increased Ruminococcus gauvreauii and Coprococcus 3 abundance in Pro after 28 days. |
Reiter 2020 [81] | MDD (N = 61) | OMNi-BiOTiC® Stress Repair d, Biotin | Plb (Biotin, B7) | 4 weeks | HAM-D, BDI-II | No significant decrease in HAM-D and BDI-II score in probiotic group compared to placebo over 4 weeks. | ND |
Saccarello 2020 [82] | MDD (N = 90) | SAMe, L. plantarum HEAL9 | Plb | 6 weeks 2,6-wk f/u | Z-SDS | Significant decrease in Z-SDS score in probiotic group compared to placebo at week 2 and 6. | ND |
Arifdjanova 2021 [87] | Mild-moderate depressive episode | Bac-Set-Forte e | Plb | 6 weeks | HAMD-17 | Significant decrease in HAMD-17 score in probiotic group compared to placebo over 6 weeks. | ND |
Browne 2021 [83] | Depressive sxs (N = 40) | Ecologic®Barrier c | Plb | 8 weeks | EPDS | No significant decrease in EDPS score in probiotic group compared to placebo over 8 weeks. | ND |
Chen 2021 [84] | MDD (N = 11) | L. plantarum PS128 | None | 8 weeks | HAMD-17 | Significant decrease in HAMD-17 score in probiotic group over 8 weeks. | No significant differences in α-diversity and β-diversity in probiotic group over 8 weeks. |
Vaghef-Mehrabany 2021 [78] | MDD (N = 62) | Inulin 10 g/day | Plb (Maltodextrin 10 g/day) | 8 weeks | HAM-D BDI-II | No significant difference in HAM-D and BDI-II score in prebiotic group compared to placebo over 8 weeks. | |
Wallace 2021 [53] | MDD (N = 10) | CEREBIOME® b | No ctr | 8 weeks | MADRS | Significant decrease in MADRS score in probiotic group between baseline and 4 weeks. No significant decrease between 4 weeks and 8 weeks. | ND |
Zhang 2021 [86] | MDD (N = 69) | L. casei Shirota | Plb | 9 weeks | BDI, HAM-D | No significant decrease in HAM-D score in probiotic group compared to placebo over 9 weeks. | No significant differences in α-diversity and β-diversity between probiotic and placebo groups over 9 weeks. Increased Adlercreutzia, Megasphaera and Veillonella and decreased Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter in probiotic compared to placebo over 9 weeks. |
Tian 2022 [85] | MDD (N = 45) | B. breve CCFM1025 | Plb (Maltodextrin) | 4 weeks | HAMD-17 | Significant decrease in HAMD-17 score in probiotic group compared to placebo over 4 weeks. | Significant difference in α-diversity between probiotic and placebo according to Chao 1 index and observed operational taxonomic units (OTUs) but not the Shannon index. No significant difference in β-diversity. Increased Desulfovibrio, Faecalibacterium and Bifidobacterium in probiotic compared to placebo over 4 weeks. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alli, S.R.; Gorbovskaya, I.; Liu, J.C.W.; Kolla, N.J.; Brown, L.; Müller, D.J. The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. Int. J. Mol. Sci. 2022, 23, 4494. https://doi.org/10.3390/ijms23094494
Alli SR, Gorbovskaya I, Liu JCW, Kolla NJ, Brown L, Müller DJ. The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. International Journal of Molecular Sciences. 2022; 23(9):4494. https://doi.org/10.3390/ijms23094494
Chicago/Turabian StyleAlli, Sauliha R., Ilona Gorbovskaya, Jonathan C. W. Liu, Nathan J. Kolla, Lisa Brown, and Daniel J. Müller. 2022. "The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies" International Journal of Molecular Sciences 23, no. 9: 4494. https://doi.org/10.3390/ijms23094494
APA StyleAlli, S. R., Gorbovskaya, I., Liu, J. C. W., Kolla, N. J., Brown, L., & Müller, D. J. (2022). The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. International Journal of Molecular Sciences, 23(9), 4494. https://doi.org/10.3390/ijms23094494