Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review
Abstract
:1. Introduction
2. Results
Retrieving Studies
3. Discussion
3.1. Human Papillomavirus Infection
3.2. Conventional and Recently Reported Histopathological Markers
3.3. Oncogenes/Tumor Suppressor Genes
3.3.1. Maspin
3.3.2. p53, EGFR, and Notch1
3.3.3. pSTAT3
3.3.4. KRAS
3.4. Tumor Microenvironment in TBSCC
3.4.1. ECM Degradation
3.4.2. Basement Membrane Constituents and Cytoskeleton Remodeling
3.4.3. The Immune Microenvironment: Programmed Death-Ligand 1 (PD-L1) and Other Checkpoint Inhibitors, Tumor-Infiltrating Lymphocytes (TILs), and Innate Lymphoid Cells
3.4.4. Epithelial–Mesenchymal Transition (EMT)
3.5. Neoangiogenesis
3.6. Systemic Inflammatory Markers
3.6.1. White Blood Cell Counts
3.6.2. NLR, PLR, and LMR
3.6.3. Blood C-Reactive Protein (CRP)
3.7. Genetic Landscape
4. Materials and Methods
4.1. Inclusion/Exclusion Criteria
4.2. Data Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hongo, T.; Kuga, R.; Miyazaki, M.; Komune, N.; Nakano, T.; Yamamoto, H.; Koike, K.; Sato, K.; Kogo, R.; Nabeshima, K.; et al. Programmed Death-Ligand 1 expression and tumor-infiltrating lymphocytes in temporal bone squamous cell carcinoma. Laryngoscope 2021, 131, 2674–2683. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, E.; Lovato, A.; Stritoni, P.; Martini, A.; Mazzoni, A.; Marioni, G. A critical look at persistent problems in the diagnosis, staging and treatment of temporal bone carcinoma. Cancer Treat. Rev. 2015, 41, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Lovin, B.D.; Gidley, P.W. Squamous cell carcinoma of the temporal bone: A current review. Laryngoscope Investig. Otolaryngol. 2019, 4, 684–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandrini, L.; Zanoletti, E.; Cazzador, D.; Sbaraglia, M.; Franz, L.; Tealdo, G.; Frigo, A.C.; Blandamura, S.; Nicolai, P.; Mazzoni, A.; et al. Tumor budding to investigate local invasion, metastasis and prognosis in temporal bone squamous cell carcinoma. Pathol. Res. Pract. 2022, 229, 153719. [Google Scholar]
- Marioni, G.; Martini, A.; Favaretto, N.; Franchella, S.; Cappellesso, R.; Marino, F.; Blandamura, S.; Mazzoni, A.; Zanoletti, E. Temporal bone carcinoma: A first glance beyond the conventional clinical and pathological prognostic factors. Eur. Arch. Otorhinolaryngol. 2016, 273, 2903–2910. [Google Scholar] [CrossRef]
- Zanoletti, E.; Franz, L.; Cazzador, D.; Franchella, S.; Calvanese, L.; Nicolai, P.; Mazzoni, A.; Marioni, G. Temporal bone carcinoma: Novel prognostic score based on clinical and histological features. Head Neck 2020, 42, 3693–3701. [Google Scholar] [CrossRef]
- Mazzoni, A.; Zanoletti, E.; Marioni, G.; Martini, A. En bloc temporal bone resections in squamous cell carcinoma of the ear. Technique, principles, and limits. Acta Otolaryngol. 2016, 136, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Lionello, M.; Stritoni, P.; Facciolo, M.C.; Staffieri, A.; Martini, A.; Mazzoni, A.; Zanoletti, E.; Marioni, G. Temporal bone carcinoma. Current diagnostic, therapeutic, and prognostic concepts. J. Surg. Oncol. 2014, 110, 383–392. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Ungar, O.J.; Santos, F.; Nadol, J.B.; Horowitz, G.; Fliss, D.M.; Faquin, W.C.; Handzel, O. Invasion patterns of external auditory canal squamous cell carcinoma: A histopathology study. Laryngoscope 2021, 131, E590–E597. [Google Scholar] [CrossRef]
- Makita, K.; Hamamoto, Y.; Takata, N.; Ishikawa, H.; Tsuruoka, S.; Uwatsu, K.; Hato, N.; Kido, T. Prognostic significance of inflammatory response markers for locally advanced squamous cell carcinoma of the external auditory canal and middle ear. J. Radiat. Res. 2021, 62, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Komune, N.; Sato, K.; Hongo, T.; Miyazaki, M.; Masuda, S.; Koike, K.; Uchi, R.; Tsuchihashi, N.A.; Noda, T.; Kogo, R.; et al. Prognostic significance of systemic inflammatory response in cases of temporal bone squamous cell carcinoma. Laryngoscope 2021, 131, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Basura, G.J.; Smith, J.D.; Ellsperman, S.; Bhangale, A.; Brenner, J.C. Targeted molecular characterization of external auditory canal squamous cell carcinomas. Laryngoscope Investig. Otolaryngol. 2021, 6, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Maki, D.; Okami, K.; Ebisumoto, K.; Sakai, A.; Hamada, M.; Ogura, G.; Murakami, T.; Yamauchi, M.; Saito, K.; Kaneda, S.; et al. Immunohistochemical marker expression in temporal bone squamous cell carcinoma. Tokai J. Exp. Clin. Med. 2021, 46, 89–93. [Google Scholar]
- Miyazaki, M.; Aoki, M.; Okado, Y.; Koga, K.; Hamasaki, M.; Nakagawa, T.; Sakata, T.; Nabeshima, K. Highly expressed tumoral emmprin and stromal CD73 predict a poor prognosis for external auditory canal carcinoma. Cancer Sci. 2020, 111, 3045–3056. [Google Scholar] [CrossRef]
- Sato, K.; Komune, N.; Hongo, T.; Koike, K.; Niida, A.; Uchi, R.; Noda, T.; Kogo, R.; Matsumoto, N.; Yamamoto, H.; et al. Genetic landscape of external auditory canal squamous cell carcinoma. Cancer Sci. 2020, 111, 3010–3019. [Google Scholar] [CrossRef]
- Li, F.; Shi, X.; Dai, C. Prognostic value of pre-operative peripheral inflammation markers in patients with squamous cell carcinoma of the external auditory canal. Braz. J. Otorhinolaryngol. 2020, in press. [Google Scholar] [CrossRef]
- Miyazaki, M.; Aoki, M.; Okado, Y.; Koga, K.; Hamasaki, M.; Kiyomi, F.; Sakata, T.; Nakagawa, T.; Nabeshima, K. Poorly differentiated clusters predict a poor prognosis for external auditory canal carcinoma. Head Neck Pathol. 2019, 13, 198–207. [Google Scholar] [CrossRef]
- Morita, S.; Nakamaru, Y.; Homma, A.; Yasukawa, S.; Hatakeyama, H.; Sakashita, T.; Kano, S.; Fukuda, A.; Fukuda, S. Expression of p53, p16, cyclin D1, epidermal growth factor receptor and Notch1 in patients with temporal bone squamous cell carcinoma. Int. J. Clin. Oncol. 2017, 22, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Marioni, G.; Zanoletti, E.; Mazzoni, A.; Gianatti, A.; Valentini, E.; Girasoli, L.; Guariento, M.; Giacomelli, L.; Martini, A.; Blandamura, S. Cortactin and phosphorylated cortactin tyr466 expression in temporal bone carcinoma. Am. J. Otolaryngol. 2017, 38, 208–212. [Google Scholar] [CrossRef]
- Liu, H.; Dai, C.; Wu, Q.; Liu, H.; Li, F. Expression profiling of long noncoding RNA identifies lnc-MMP3-1 as a prognostic biomarker in external auditory canal squamous cell carcinoma. Cancer Med. 2017, 6, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Okado, Y.; Aoki, M.; Hamasaki, M.; Koga, K.; Sueta, T.; Shiratsuchi, H.; Oda, Y.; Nakagawa, T.; Nabeshima, K. Tumor budding and laminin5-γ2 in squamous cell carcinoma of the external auditory canal are associated with shorter survival. Springerplus 2015, 4, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marioni, G.; Zanoletti, E.; Lovato, A.; Franchella, S.; Giacomelli, L.; Gianatti, A.; Mazzoni, A.; Blandamura, S.; Martini, A. Relaxin-2 expression in temporal bone carcinoma. Eur. Arch. Otorhinolaryngol. 2015, 272, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Marioni, G.; Zanoletti, E.; Stritoni, P.; Lionello, M.; Giacomelli, L.; Gianatti, A.; Cattaneo, L.; Blandamura, S.; Mazzoni, A.; Martini, A. Expression of the tumour-suppressor maspin in temporal bone carcinoma. Histopathology 2013, 63, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Marioni, G.; Nucci, R.; Marino, F.; Cappellesso, R.; Pillon, M.; Zanoletti, E.; Giacomelli, L.; Franchella, S.; Billo, P.; Pareschi, R.; et al. Evaluation of the prognostic role of pSTAT3 expression in temporal bone squamous cell carcinoma. Otol. Neurotol. 2013, 34, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Masterson, L.; Winder, D.M.; Marker, A.; Sterling, J.C.; Sudhoff, H.H.; Moffat, D.A.; Kin Cho Goon, P. Investigating the role of human papillomavirus in squamous cell carcinoma of the temporal bone. Head Neck Oncol. 2013, 5, 22. [Google Scholar]
- Marioni, G.; Nucci, R.; Marino, F.; Giacomelli, L.; Rugge, M.; Pareschi, R.; Martini, A. Neoangiogenesis in temporal bone carcinoma: The prognostic role of CD105. Otol. Neurotol. 2012, 33, 843–848. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Chen, J.; Chen, C.; Zhou, J.; Cao, L. Expression of reversion-inducing cysteine-rich protein with kazal motifs and matrix metalloproteinase 9 in middle ear squamous cell carcinoma. ORL J. Otorhinolaryngol. Relat. Spec. 2012, 74, 16–21. [Google Scholar] [CrossRef]
- Sugimoto, H.; Ito, M.; Hatano, M.; Kondo, S.; Suzuki, S.; Yoshizaki, T. Roles of epithelial-mesenchymal transition in squamous cell carcinoma of the temporal bone. Otol. Neurotol. 2011, 32, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.T.; Tsai, S.T.; Li, C.; Chang, K.C.; Yan, J.J.; Chao, W.Y.; Eng, H.L.; Chou, T.Y.; Wu, T.C.; Su, I.J. Prevalence of human papillomavirus in middle ear carcinoma associated with chronic otitis media. Am. J. Pathol. 1997, 150, 1327–1333. [Google Scholar]
- Tsai, S.T.; Li, C.; Jin, Y.T.; Chao, W.Y.; Su, I.J. High prevalence of human papillomavirus types 16 and 18 in middle-ear carcinomas. Int. J. Cancer 1997, 71, 208–212. [Google Scholar] [CrossRef]
- Michaud, D.S.; Langevin, S.M.; Eliot, M.; Nelson, H.H.; Pawlita, M.; McClean, M.D.; Kelsey, K.T. High-risk HPV types and head and neck cancer. Int. J. Cancer 2014, 135, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Shen, C.; Wei, Y.; Hu, C.; Wang, Y.; Xiang, J.; Sun, G.H.; Su, F.; Wang, Q.; Lu, X. Human papillomavirus (HPV) in Chinese oropharyngeal squamous cell carcinoma (OPSCC): A strong predilection for the tonsil. Cancer Med. 2020, 9, 6556–6564. [Google Scholar] [CrossRef] [PubMed]
- Awan, M.S.; Irfan, B.; Zahid, I.; Mirza, Y.; Ali, S.A. Comparison of polymerase chain reaction and immunohistochemistry assays for analysing human papillomavirus infection in oral squamous cell carcinoma. J. Clin. Diagn. Res. 2017, 11, XC10–XC13. [Google Scholar] [CrossRef]
- Gupta, R.; Sandison, A.; Wenig, B.M.; Thompson, L.D.R. Data set for the reporting of ear and temporal bone tumors: Explanations and recommendations of the guidelines from the international collaboration on cancer reporting. Arch. Pathol. Lab. Med. 2019, 143, 593–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allanson, B.M.; Low, T.H.; Clark, J.R.; Gupta, R. Squamous cell carcinoma of the external auditory canal and temporal bone: An update. Head Neck Pathol. 2018, 12, 407–418. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumours, 4th ed.; IARC Press: Lyon, France, 2017; p. 265. [Google Scholar]
- Moody, S.A.; Hirsch, B.E.; Myers, E.N. Squamous cell carcinoma of the external auditory canal: An evaluation of a staging system. Am. J. Otol. 2000, 21, 582–588. [Google Scholar]
- Zanoletti, E.; Marioni, G.; Franchella, S.; Munari, S.; Pareschi, R.; Mazzoni, A.; Martini, A. Temporal bone carcinoma: Classical prognostic variables revisited and modern clinico-pathological evidence. Rep. Pract. Oncol. Radiother. 2016, 21, 386–930. [Google Scholar] [CrossRef] [Green Version]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A Review. Anticancer Res. 2020, 40, 6009–6015. [Google Scholar] [CrossRef]
- Marioni, G.; D’Alessandro, E.; Giacomelli, L.; de Filippis, C.; Calgaro, N.; Sari, M.; Staffieri, A.; Blandamura, S. Maspin nuclear localization is related to reduced density of tumour-associated micro-vessels in laryngeal carcinoma. Anticancer Res. 2006, 26, 4927–4932. [Google Scholar]
- Lovato, A.; Franz, L.; Carraro, V.; Bandolin, L.; Contro, G.; Ottaviano, G.; de Filippis, C.; Blandamura, S.; Alessandrini, L.; Marioni, G. Maspin expression and anti-apoptotic pathway regulation by bcl2 in laryngeal cancer. Ann. Diag. Pathol. 2020, 45, 151471. [Google Scholar] [CrossRef] [PubMed]
- Kastenhuber, E.R.; Lowe, S.W. Putting p53 in Context. Cell 2017, 170, 1062–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol. 2019, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, S.; Pai, S.G.; Campbell, N.R.; de Wilde, R.F.; De Oliveira, E.; Korangath, P.; Streppel, M.M.; Rasheed, Z.A.; Hidalgo, M.; Maitra, A.; et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013, 335, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Miklossy, G.; Hilliard, T.S.; Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 2013, 12, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer 2014, 14, 736–746. [Google Scholar] [CrossRef]
- Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 2016, 56, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Grandis, J.R.; Drenning, S.D.; Zeng, Q.; Watkins, S.C.; Melhem, M.F.; Endo, S.; Johnson, D.E.; Huang, L.; He, Y.; Kim, J.D. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 4227–4232. [Google Scholar] [CrossRef] [Green Version]
- Zinsky, R.; Bolukbas, S.; Bartsch, H.; Schirren, J.; Fisseler-Eckhoff, A. Analysis of KRAS mutations of exon 2 codons 12 and 13 by SnaPshot analysis in comparison to common DNA sequencing. Gastroenterol. Res. Pract. 2010, 2010, 789363. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Y.; Chien, Y.C.; Wong, Y.K.; Lin, Y.L.; Lin, J.C. Effects of KRAS mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Head Neck 2012, 34, 663–666. [Google Scholar] [CrossRef]
- Weidhaas, J.B.; Harris, J.; Schaue, D.; Chen, A.M.; Chin, R.; Axelrod, R.; El-Naggar, A.K.; Singh, A.K.; Galloway, T.J.; Raben, D.; et al. The KRAS-variant and Cetuximab response in head and neck squamous cell cancer: A secondary analysis of a randomized clinical trial. JAMA Oncol. 2017, 3, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Avila, G.; Sommer, B.; García-Hernández, A.A.; Ramos, C. Matrix Metalloproteinases’ role in tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1245, 97–131. [Google Scholar] [PubMed]
- Meng, N.; Li, Y.; Zhang, H.; Sun, X.F. RECK, a novel matrix metalloproteinase regulator. Histol. Histopathol. 2008, 23, 1003–1010. [Google Scholar]
- Aoki, M.; Koga, K.; Miyazaki, M.; Hamasaki, M.; Koshikawa, N.; Oyama, M.; Kozuka-Hata, H.; Seiki, M.; Toole, B.P.; Nabeshima, K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019, 19, 912. [Google Scholar] [CrossRef]
- Nguyen, B.P.; Ryan, M.C.; Gil, S.G.; Carter, W.G. Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr. Opin. Cell Biol. 2000, 12, 554–562. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.J.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018, 81, 45–51. [Google Scholar] [CrossRef]
- Oliva, M.; Spreafico, A.; Taberna, M.; Alemany, L.; Coburn, B.; Mesia, R.; Siu, L.L. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann. Oncol. 2019, 30, 57–67. [Google Scholar] [CrossRef]
- Hanna, G.J.; Lizotte, P.; Cavanaugh, M.; Kuo, F.C.; Shivdasani, P.; Frieden, A.; Chau, N.G.; Schoenfeld, J.D.; Lorch, J.H.; Uppaluri, R.; et al. Frameshift events predict antiPD-1/L1 response in head and neck cancer. JCI Insight 2018, 3, e98811. [Google Scholar] [CrossRef] [Green Version]
- Lechner, A.; Schlößer, H.; Rothschild, S.I.; Thelen, M.; Reuter, S.; Zentis, P.; Shimabukuro-Vornhagen, A.; Theurich, S.; Wennhold, K.; Garcia-Marquez, M.; et al. Characterization of tumor associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 2017, 8, 44418–44433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charap, A.J.; Enokida, T.; Brody, R.; Sfakianos, J.; Miles, B.; Bhardwaj, N.; Horowitz, A. Landscape of natural killer cell activity in head and neck squamous cell carcinoma. J. Immuno. Ther. Cancer 2020, 8, e001523. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendt, M.K.; Allington, T.M.; Schiemann, W.P. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol. 2009, 5, 1145–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lionello, M.; Staffieri, A.; Marioni, G. Potential prognostic and therapeutic role for angiogenesis markers in laryngeal carcinoma. Acta Otolaryngol. 2012, 132, 574–582. [Google Scholar] [CrossRef]
- Marioni, G.; Franz, L.; Ottaviano, G.; Contro, G.; Tealdo, G.; Carli, A.; Frigo, A.C.; Nicolai, P.; Alessandrini, L. Prognostic significance of CD105- and CD31-assessed microvessel density in paired biopsies and surgical samples of laryngeal carcinoma. Cancers 2020, 12, 2059. [Google Scholar] [CrossRef]
- Marioni, G.; Gaio, E.; Giacomelli, L.; Marchese-Ragona, R.; Staffieri, C.; Staffieri, A.; Marino, F. Endoglin (CD105) expression in head and neck basaloid squamous cell carcinoma. Acta Otolaryngol. 2005, 125, 307–311. [Google Scholar] [CrossRef]
- Ollauri-Ibáñez, C.; Núñez-Gómez, E.; Egido-Turrión, C.; Silva-Sousa, L.; Díaz-Rodríguez, E.; Rodríguez-Barbero, A.; López-Novoa, J.M.; Pericacho, M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020, 23, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, L.; Lin, Q.; Ren, W.; Xu, G. Prognostic value of endoglin-assessed microvessel density in cancer patients: A systematic review and meta-analysis. Oncotarget 2017, 9, 7660–7671. [Google Scholar] [CrossRef] [Green Version]
- Marioni, G.; Di Carlo, R.; Ottaviano, G.; Cappellesso, R.; Bedogni, A.; Marchese-Ragona, R.; Stritoni, P.; Rossi, M.; Zanoletti, E.; Favaretto, N.; et al. Relaxin-2 expression in oral squamous cell carcinoma. Int. J. Biol. Markers 2016, 31, e324–e329. [Google Scholar] [CrossRef]
- Facciolli, A.; Ferlin, A.; Gianesello, L.; Pepe, A.; Foresta, C. Role of relaxin in human osteoclastogenesis. Ann. N. Y. Acad. Sci. 2009, 1160, 221–225. [Google Scholar] [CrossRef]
- Ferlin, A.; Pepe, A.; Facciolli, A.; Gianesello, L.; Foresta, C. Relaxin stimulates osteoclast differentiation and activation. Bone 2010, 46, 504–513. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, L.; Luo, M.; Hu, G.; Mei, Q.; Liu, D.; Long, G.; Hu, G. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Head Neck 2016, 38, E1332–E1340. [Google Scholar] [CrossRef]
- Yasumatsu, R.; Wakasaki, T.; Hashimoto, K.; Nakashima, K.; Manako, T.; Taura, M.; Matsuo, M.; Nakagawa, T. Monitoring the neutrophilto-lymphocyte ratio may be useful for predicting the anticancer effect of nivolumab in recurrent or metastatic head and neck cancer. Head Neck 2019, 41, 2610–2618. [Google Scholar] [CrossRef]
- Franz, L.; Alessandrini, L.; Fasanaro, E.; Gaudioso, P.; Carli, A.; Nicolai, P.; Marioni, G. Prognostic impact of neutrophils-to-lymphocytes ratio (NLR), PD-L1 expression, and tumor immune microenvironment in laryngeal cancer. Ann. Diagn. Pathol. 2021, 50, 151657. [Google Scholar] [CrossRef]
- Hsueh, C.-Y.; Tao, L.; Zhang, M.; Cao, W.; Gong, H.; Zhou, J.; Zhou, L. The prognostic value of preoperative neutrophils, platelets, lymphocytes, monocytes and calculated ratios in patients with laryngeal squamous cell cancer. Oncotarget 2017, 8, 60514–60527. [Google Scholar] [CrossRef] [Green Version]
- Nozoe, T.; Saeki, H.; Sugimachi, K. Significance of preoperative elevation of serum C-reactive protein as an indicator of prognosis in esophageal carcinoma. Am. J. Surg. 2001, 182, 197–201. [Google Scholar] [CrossRef]
- Hefler, L.A.; Concin, N.; Hofstetter, G.; Marth, C.; Mustea, A.; Sehouli, J.; Zeillinger, R.; Leipold, H.; Lass, H.; Grimm, C.; et al. Serum C-reactive protein as independent prognostic variable in patients with ovarian cancer. Clin. Cancer Res. 2008, 14, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–920. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Kono, Y.; Murakami, Y.; Shishido, Y.; Kuroda, H.; Matsunaga, T.; Fukumoto, Y.; Osaki, T.; Ashida, K.; Fujiwara, Y. Prognostic significance of the preoperative ratio of C-reactive protein to albumin and neutrophil–lymphocyte ratio in gastric cancer patients. World J. Surg. 2018, 42, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Tsujino, T.; Komura, K.; Hashimoto, T.; Muraoka, R.; Satake, N.; Matsunaga, T.; Tsutsumi, T.; Yoshikawa, Y.; Takai, T.; Minami, K.; et al. C-reactive proteinalbumin ratio as a prognostic factor in renal cell carcinoma—A data from multi-institutional study in Japan. Urol. Oncol. 2019, 37, 812.e1–812.e8. [Google Scholar] [CrossRef]
- Wei, L.; Wang, L.; Liu, Z.; Wang, M.; Lu, W.; Zhao, D.; Yang, B.; Kong, X.; Ding, Y.; Wang, Z. Dramatic response of CTNNB1 and VEGFR-2 mutant temporal bone squamous cell carcinoma to bevacizumab in combination with pemetrexed. Oncotarget 2017, 8, 57898–57904. [Google Scholar] [CrossRef] [Green Version]
- Ramos-García, P.; González-Moles, M.Á. Prognostic and clinicopathological significance of the aberrant expression of beta-catenin in oral squamous cell carcinoma: A systematic review and meta-analysis. Cancers 2022, 14, 479. [Google Scholar] [CrossRef]
- Gong, W.; Xiao, Y.; Wei, Z.; Yuan, Y.; Qiu, M.; Sun, C.; Zeng, X.; Liang, X.; Feng, M.; Chen, Q.C. Toward the use of precision medicine for the treatment of head and neck squamous cell carcinoma. Oncotarget 2017, 8, 2141–2152. [Google Scholar] [CrossRef]
- Todorovic, E.; Truong, T.; Eskander, A.; Lin, V.; Swanson, D.; Dickson, B.C.; Weinreb, I. Middle ear and temporal bone nonkeratinizing squamous cell carcinomas with DEK-AFF2 fusion: An emerging entity. Am. J. Surg. Pathol. 2020, 44, 1244–1250. [Google Scholar] [CrossRef]
- Rooper, L.M.; Agaimy, A.; Dickson, B.C.; Dueber, J.C.; Eberhart, C.G.; Gagan, J.; Hartmann, A.; Khararjian, A.; London, N.R.; MacMillan, C.M.; et al. DEK-AFF2 carcinoma of the sinonasal region and skull base: Detailed clinicopathologic characterization of a distinctive entity. Am. J. Surg. Pathol. 2021, 45, 1682–1693. [Google Scholar] [CrossRef]
- Sekino, Y.; Imaizumi, A.; Komune, N.; Ono, M.; Sato, K.; Masuda, S.; Fujimura, A.; Koike, K.; Hongo, T.; Uchi, R.; et al. Establishment and characterization of a primary cell culture derived from external auditory canal squamous cell carcinoma. FEBS Open Bio. 2021, 11, 2211–2224. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzikiewicz-Krawczyk, A.; Kok, K.; Slezak-Prochazka, I.; Robertus, J.L.; Bruining, J.; Tayari, M.M.; Rutgers, B.; de Jong, D.; Koerts, J.; Seitz, A.; et al. ZDHHC11 and ZDHHC11B are critical novel components of the oncogenic MYC-miR-150-MYB network in Burkitt lymphoma. Leukemia 2017, 31, 1470–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, H.; Cai, Y.; Song, Y.; Meng, L.; Chen, X.; Wang, M.; Bian, Z.; Wang, R. Elevated TARP promotes proliferation and metastasis of salivary adenoid cystic carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 468–476. [Google Scholar] [CrossRef] [PubMed]
- PubMed. Available online: www.ncbi.nlm.nih.gov/pubmed (accessed on 21 March 2022).
- Scopus. Available online: www.scopus.com (accessed on 21 March 2022).
- Web of Science. Available online: www.webofscience.com (accessed on 21 March 2022).
- CEBM. Available online: http://www.cebm.net/oxford-centre-evidence-based-medicinelevels-evidence-March-2009/ (accessed on 20 October 2015).
- Preedy, V.R.; Patel, V.B. General Methods in Biomarker Research and Their Applications, 1st ed.; Springer: Basel, Switzerland, 2015. [Google Scholar]
Authors/Year | Potential Biomarker Considered | Methods | No. of Cases | Follow-Up Period | T * | N | Stage | G | Recurrence Rate | Survival | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
Alessandrini et al., 2022 [4] | PTB ITB PDC | Conventional histopathology | 32 | 71 (10–23) months | PTB - ITB + PDC - | PTB + ITB - PDC - | ND | PTB - ITB - PDC - | PTB + ITB - PDC + (trend) | PTB (DFS +, OS +) | ITB and PTB evaluated as either absolute counts or 2-tier and 3-tier scores. |
Ungar et al., 2021 [10] | Invasion pattern | Conventional histopathology Macrosections | 9 | ND | ND | ND | ND | ND | ND | ND | Retrospective analysis of medical charts and ex vivo temporal bone specimens of patients diagnosed with TBSCC. |
Makita et al., 2021 [11] | NLR CAR PLR AGR | Blood tests | 24 | 25 (6–137) months | ND | ND | ND | ND | NLR - CAR + PLR - AGR - | NLR (OS +, DFS -) CAR (OS +, DFS +) PLR (OS -, DFS -) AGR (OS -, DFS -) | All included patients were T3–4. |
Hongo et al., 2021 [1] | PDL1 Foxp3 CD8 | IHC | 123 | ND | - | - | - | - | PDL1 + Foxp3 + CD8 + | PDL1 (OS +, DFS +) Foxp3 (OS +, DFS +) CD8 (OS +, DFS +) | Retrospective analysis of collected biopsied or surgically resected specimens from 123 TBSCC cases.PD-L1 and Foxp3 expression were significantly associated with worse prognosis. A high density of CD8+ TILs was significantly associated with better prognosis. |
Komune et al., 2021 [12] | WBC PLT LMR NLR PLR | Blood cell count | 71 | ND | LMR - NLR - PLR + | LMR - NLR + PLR + | ND | ND | ND | LMR (OS +) NLR (OS +) PLR (OS +) | Inflammation-based prognostic markers were associated with the survival. |
Basura et al., 2021 [13] | TP53 EGFR FGFR PI3K | Copy number analysis | 7 | ND | ND | ND | ND | ND | ND | ND | Targeted DNA sequencing in 7 TBSCCs using a 227-gene panel. |
Maki et al., 2021 [14] | p53 EGFR | IHC | 22 | 63 (5–132) months | p53 - EGFR - | ND | ND | p53 - EGFR - | ND | p53 (OS -) EGFR (OS +) | - |
Miyazaki et al., 2020 [15] | CD73 TB PDC t-emmprin | IHC Immunoblotting | 34 | ND | ND | ND | ND | ND | ND | CD73 (OS -) TB (OS +) PDC (OS +) t-emmprin (OS +) CD73 and t-emmprin (OS +) | High-grade TB and PDCs are associated with shorter survival. Concurrent elevated expression of t-emmprin and stromal CD73 was a poor prognostic factor. |
Sato et al., 2020 [16] | TP53 CDKN2A NOTCH1 NOTCH2 FAT1 FAT3 | WES | 10 | ND | ND | ND | ND | ND | ND | ND | WES performed on 11 primary tumors, 1 relapsed tumor, and 10 noncancerous tissues from 10 patients with TBSCC. |
Li et al., 2020 [17] | NEU MON LYM PLT LMR NLR PLR | Blood cell count | 83 | 27(8–138) months | NEU + MON - LYM - PLT - LMR - NLR + PLR - | ND | ND | - | NEU + LYM + LMR + NLR + PLR + | ND | Preoperative neutrophil and lymphocyte counts, NLR, PLR, and LMR were significantly correlated with tumor recurrence. |
Miyazaki et al., 2019 [18] | PDC TB | Conventional histopathology IHC | 31 | 3 years | PDC + | PDC - | PDC + | PDC + | PDC + (trend) | PDC (PFS +) TB (PFS + [trend]) | In multivariate analysis, high-grade PDCs were associated with poor prognosis. |
Morita et al., 2018 [19] | p53 p16 cyclin D1 EGFR Notch1 | IHC | 30 | 9−112 months | p53 + p16 - cyclin D1 - EGFR + Notch1 - | p53 + p16 - cyclin D1 - EGFR + Notch1 - | ND | p53 - p16 - cyclin D1 - EGFR - Notch1 - | ND | p53 (OS -) p16 (OS -) cyclin D1 (OS -) EGFR (OS +) Notch1 (OS +) | EGFR and Notch1 were significantly correlated with poor survival outcomes. |
Marioni et al., 2017 [20] | Cortactin | IHC | 27 | 82.9 ± 67.1 months | - | - | - | - | - | DFS - | Cortactin expression was higher in carcinoma cells than in normal tissue. Recurrence and DFS rates did not correlate with cortactin expression. |
Liu et al., 2017 [21] | lncRNA MMP 3-1 | ISH | 8 | 3 years | + | - | + | + | ND | OS + | Lnc-MMP3-1 was the most upregulated lncRNA in EACSCC, with fold change of 237.2. |
Okado et al., 2015 [22] | laminin5-γ2 TB | IHC | 46 | 34.6 (4–66) months | laminin5-γ2-TB | laminin5-γ2-TB | laminin5-γ2-TB | laminin5-γ2-TB | laminin5-γ2-TB + (trend) | laminin5-γ2 (DSS +) TB (DSS +) | Multivariate analysis revealed that high budding grade predicted poorer prognosis regardless of disease stage. |
Marioni et al., 2015 [23] | Relaxin-2 | IHC | 25 | 76.0 months (median) | - | - | ND | - | - | DFS - DSS - | - |
Marioni et al., 2013 [24] | MASPIN | IHC | 29 | 50.0 months (median) | - | - | ND | + | + | DFS - DSS - | MASPIN in the cytoplasm. |
Marioni et al., 2013 [25] | pSTAT3 | IHC | 25 | 42.0 months (median) | - | - | - | - | - | DFS - DSS - | - |
HPV | ISH, PCR | 14 | ND | ND | ND | ND | ND | ND | - | Nested PCR was positive in 3 of 14 cases: DNA sequencing of positive samples revealed the HPV16 subtype in all cases. HPV-associated patients showed a trend towards improved survival. | |
Masterson et al., 2013 [26] | EBV | ISH, PCR | 20 | 34.0 months (mean) | ND | ND | ND | ND | ND | ND | Out of 20 cases, 1 showed evidence of EBV positivity on PCR. |
p16 | IHC | 14 | ND | ND | ND | ND | ND | ND | ND | Out of 3 HPV+ cases, 2 showed p16 staining; controls negative for HPV-DNA showed no evidence of p16 activity. | |
TP53 mutation | PCR | 13 | ND | ND | ND | ND | ND | ND | ND | A functional mutation was found in 3 of 10 HPV- and in 0 of 3 HPV+ samples. | |
Marioni et al., 2012 [27] | Endoglin (CD105) | IHC | 20 | 40.6 months (mean) | - | - | - | - | + | DFS + | - |
Liu et al., 2012 [28] | RECK MMP9 | IHC | 30 | ND | + ** | - | ND | ND | ND | ND | All middle ear SCCs. RECK and MMP9 expressions were higher for histological grades I–II than for grades III–IV. |
Sugimoto et al., 2011 [29] | Vimentin TGF β | IHC | 16 | 34.2 months (mean) | ND | ND | ND | ND | ND | Vimentin (DSS -) | Increase in score for vimentin expression in patients with extensive bone involvement. |
Jin et al., 1997 [30] | HPV types 16 and 18 | ISH, PCR | 14 | ND | ND | ND | ND | ND | ND | ND | All middle ear SCCs in patients with history of chronic otitis media: 5 cases were HPV16- and HPV18-positive; 6 cases were only HPV16-positive. |
Tsai et al., 1997 [31] | HPV types 16 and 18 | PCR | 9 | ND | ND | ND | ND | ND | ND | ND | Total of 8 middle ear SCCs and 1 adenocarcinoma: 8 patients were HPV+; 3 cases were HPV16- and HPV18-positive; only 4 SCCs and 1 adenocarcinoma were HPV16-positive. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandrini, L.; Astolfi, L.; Franz, L.; Gentilin, E.; Mazzoni, A.; Zanoletti, E.; Marioni, G. Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 4536. https://doi.org/10.3390/ijms23094536
Alessandrini L, Astolfi L, Franz L, Gentilin E, Mazzoni A, Zanoletti E, Marioni G. Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(9):4536. https://doi.org/10.3390/ijms23094536
Chicago/Turabian StyleAlessandrini, Lara, Laura Astolfi, Leonardo Franz, Erica Gentilin, Antonio Mazzoni, Elisabetta Zanoletti, and Gino Marioni. 2022. "Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review" International Journal of Molecular Sciences 23, no. 9: 4536. https://doi.org/10.3390/ijms23094536
APA StyleAlessandrini, L., Astolfi, L., Franz, L., Gentilin, E., Mazzoni, A., Zanoletti, E., & Marioni, G. (2022). Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review. International Journal of Molecular Sciences, 23(9), 4536. https://doi.org/10.3390/ijms23094536