Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada
Abstract
:1. Introduction
2. Results
2.1. Analysis of Bacteriocin-Related Genes in the Sequence of Plasmid pLG50 of L. garvieae Lg-Granada
2.2. Antimicrobial Activity of L. garvieae Lg-Granada
2.3. Antimicrobial Activity of the Chemically Synthesized Garvicins AG1 and AG2
2.4. Relationship between Sensitivity to Garvicins AG1 and AG2 and Mannose Fermentation Ability
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. DNA and Amino Acid Sequence Analysis
4.3. Preparation of Garvicins AG1 and AG2
4.4. Bacteriocin Assays
4.5. Mannose Fermentation Ability among the Indicator Strains
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, E.M.; Jaime, I.; Rovira, J.; Lyhs, U.; Korkeala, H.; Björkroth, J. Characterization and identification of lactic acid bacteria in “morcilla de Burgos”. Int. J. Food Microbiol. 2005, 97, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanishi, M.; Yoshida, T.; Kijima, M.; Yagyu, K.; Nakai, T.; Okada, S.; Endo, A.; Murakami, M.; Suzuki, S.; Morita, H. Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Lett. Appl. Microbiol. 2007, 44, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegría, A.; Alvarez-Martín, P.; Sacristán, N.; Fernández, E.; Delgado, S.; Mayo, B. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow’s milk. Int. J. Food Microbiol. 2009, 136, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera-Brito, M.; Galán-Sánchez, F.; Blanco, M.M.; Rodríguez-Iglesias, M.; Domínguez, L.; Fernández-Garayzábal, J.F.; Gibello, A. Genetic analysis of human clinical isolates of Lactococcus garvieae: Relatedness with isolates from foods. Infect. Genet. Evol. 2016, 37, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in fish: A review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Meyburgh, C.M.; Bragg, R.R.; Boucher, C.E. Lactococcus garvieae: An emerging bacterial pathogen of fish. Dis. Aquat. Organ. 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Teixeira, L.M.; Merquior, V.L.; Vianni, M.C.; Carvalho, M.G.; Fracalanzza, S.E.; Steigerwalt, A.G.; Brenner, D.J.; Facklam, R.R. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int. J. Syst. Bacteriol. 1996, 46, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Vela, A.I.; Vázquez, J.; Gibello, A.; Blanco, M.M.; Moreno, M.A.; Liébana, P.; Albendea, C.; Alcalá, B.; Mendez, A.; Domínguez, L.; et al. Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. J. Clin. Microbiol. 2000, 38, 3791–3795. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, J.L.; Vela, A.I.; Gibello, A.; Casamayor, A.; Domínguez, L.; Fernández-Garayzábal, J.F. A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett. Appl. Microbiol. 2011, 53, 614–619. [Google Scholar] [CrossRef]
- Gibello, A.; Galán-Sánchez, F.; Blanco, M.M.; Rodríguez-Iglesias, M.; Domínguez, L.; Fernández-Garayzábal, J.F. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res. Vet. Sci. 2016, 109, 59–70. [Google Scholar] [CrossRef]
- Fefer, J.J.; Ratzan, K.R.; Sharp, S.E.; Saiz, E. Lactococcus garvieae endocarditis: Report of a case and review of the literature. Diagn. Microbiol. Infect. Dis. 1998, 32, 127–130. [Google Scholar] [CrossRef]
- Wang, C.Y.; Shie, H.S.; Chen, S.C.; Huang, J.P.; Hsieh, I.C.; Wen, M.S.; Lin, F.C.; Wu, D. Lactococcus garvieae infections in humans: Possible association with aquaculture outbreaks. Int. J. Clin. Pract. 2007, 61, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Li, W.K.; Chen, Y.S.; Wann, S.R.; Liu, Y.C.; Tsai, H.C. Lactococcus garvieae endocarditis with initial presentation of acute cerebral infarction in a healthy immunocompetent man. Intern. Med. 2008, 47, 1143–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguado-Urda, M.; López-Campos, G.H.; Blanco, M.M.; Fernández-Garayzábal, J.F.; Cutuli, M.T.; Aspiroz, C.; López-Alonso, V.; Gibello, A. Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J. Bacteriol. 2011, 193, 4033–4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.; Woo, P.C.; Teng, J.L.; Lau, S.K.; Leung, S.S.; Tam, F.C.; Yuen, K.Y. Primary infective spondylodiscitis caused by Lactococcus garvieae and a review of human L. garvieae infections. Infection 2011, 39, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Go, J.; Cho, C.R.; Kim, J.I.; Lee, M.S.; Park, S.C. First report of human acute acalculous cholecystitis caused by the fish pathogen Lactococcus garvieae. J. Clin. Microbiol. 2013, 51, 712–714. [Google Scholar] [CrossRef] [Green Version]
- Choksi, T.T.; Dadani, F. Reviewing the Emergence of Lactococcus garvieae: A Case of Catheter Associated Urinary Tract Infection Caused by Lactococcus garvieae and Escherichia coli Coinfection. Case Rep. Infect. Dis. 2017, 2017, 5921865. [Google Scholar] [CrossRef] [Green Version]
- Wilbring, M.; Alexiou, K.; Reichenspurner, H.; Matschke, K.; Tugtekin, S.M. Lactococcus garvieae causing zoonotic prosthetic valve endocarditis. Clin. Res. Cardiol. 2011, 100, 545–546. [Google Scholar] [CrossRef]
- Fleming, H.; Fowler, S.V.; Nguyen, L.; Hofinger, D.M. Lactococcus garvieae multi-valve infective endocarditis in a traveler returning from South Korea. Travel Med. Infect. Dis. 2012, 10, 101–104. [Google Scholar] [CrossRef]
- Heras Cañas, V.; Pérez Ramirez, M.D.; Bermudez Jiménez, F.; Rojo Martin, M.D.; Miranda Casas, C.; Marin Arriaza, M.; Navarro Marí, J.M. Lactococcus garvieae endocarditis in a native valve identified by MALDI-TOF MS and PCR-based 16s rRNA in Spain: A case report. New Microbes New Infect. 2015, 5, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Tsur, A.; Slutzki, T.; Flusser, D. Lactococcus garvieae Endocarditis on a Prosthetic Biological Aortic Valve. Zoonoses Public Health 2015, 62, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Suh, Y.; Ja Kim, M.; Seung Jung, J.; Pil Chong, Y.; Hwan Kim, C.; Kang, Y.; Wook Sohn, J.; Kyung Yoon, Y. Afebrile Multi-valve Infective Endocarditis Caused by Lactococcus garvieae: A Case Report and Literature Review. Intern. Med. 2016, 55, 1011–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rösch, R.M.; Buschmann, K.; Brendel, L.; Schwanz, T.; Vahl, C.F. Lactococcus garvieae Endocarditis in a Prosthetic Aortic Valve: A Case Report and Literature Review. J. Investig. Med. High Impact Case Rep. 2019, 7, 2324709619832052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malek, A.; De la Hoz, A.; Gomez-Villegas, S.I.; Nowbakht, C.; Arias, C.A. Lactococcus garvieae, an unusual pathogen in infective endocarditis: Case report and review of the literature. BMC Infect. Dis. 2019, 19, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Barragán, A.; West, S.A. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. J. Evol. Biol. 2020, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- García-Bayona, L.; Comstock, L.E. Bacterial antagonism in host-associated microbial communities. Science 2018, 361, eaat2456. [Google Scholar] [CrossRef] [Green Version]
- Villani, F.; Aponte, M.; Blaiotta, G.; Mauriello, G.; Pepe, O.; Moschetti, G. Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow’s milk. J. Appl. Microbiol. 2001, 90, 430–439. [Google Scholar] [CrossRef]
- Borrero, J.; Brede, D.A.; Skaugen, M.; Diep, D.B.; Herranz, C.; Nes, I.F.; Cintas, L.M.; Hernández, P.E. Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl. Environ. Microbiol. 2011, 77, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Tosukhowong, A.; Zendo, T.; Visessanguan, W.; Roytrakul, S.; Pumpuang, L.; Jaresitthikunchai, J.; Sonomoto, K. Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl. Environ. Microbiol. 2012, 78, 1619–1623. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Barragán, A.; Cárdenas, N.; Martínez, B.; Ruiz-Barba, J.L.; Fernández-Garayzábal, J.F.; Rodríguez, J.M.; Gibello, A. Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl. Environ. Microbiol. 2013, 79, 4336–4346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovchinnikov, K.V.; Chi, H.; Mehmeti, I.; Holo, H.; Nes, I.F.; Diep, D.B. Novel Group of Leaderless Multipeptide Bacteriocins from Gram-Positive Bacteria. Appl. Environ. Microbiol. 2016, 82, 5216–5224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tymoszewska, A.; Diep, D.B.; Aleksandrzak-Piekarczyk, T. The extracellular loop of Man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C. Sci. Rep. 2018, 8, 15790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tymoszewska, A.; Diep, D.B.; Wirtek, P.; Aleksandrzak-Piekarczyk, T. The Non-Lantibiotic Bacteriocin Garvicin Q Targets Man-PTS in a Broad Spectrum of Sensitive Bacterial Genera. Sci. Rep. 2017, 7, 8359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francés-Cuesta, C.; Ansari, I.; Fernández-Garayzábal, J.F.; Gibello, A.; González-Candelas, F. Comparative genomics and evolutionary analysis of Lactococcus garvieae isolated from human endocarditis. Microb. Genom. 2022, 8, 000771. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Langa, S.; Maldonado-Barragán, A.; Delgado, S.; Martín, R.; Martín, V.; Jiménez, E.; Ruíz-Barba, J.L.; Mayo, B.; Connor, R.I.; Suárez, J.E.; et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: From genotype to phenotype. Appl. Microbiol. Biotechnol. 2012, 94, 1279–1287. [Google Scholar] [CrossRef]
- Islam, M.; Abaragu, A.; Sistu, H.; Akins, R.L.; Palmer, K. Molecular characterization of vancomycin-resistant Enterococcus faecium isolates collected from the Dallas, Texas area. bioRxiv 2021, 13, 36. [Google Scholar] [CrossRef]
- Smits, S.H.J.; Schmitt, L.; Beis, K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett. 2020, 594, 3920–3942. [Google Scholar] [CrossRef]
- Jeckelmann, J.M.; Erni, B. The mannose phosphotransferase system (Man-PTS)—Mannose transporter and receptor for bacteriocins and bacteriophages. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183412. [Google Scholar] [CrossRef]
- Kjos, M.; Borrero, J.; Opsata, M.; Birri, D.J.; Holo, H.; Cintas, L.M.; Snipen, L.; Hernández, P.E.; Nes, I.F.; Diep, D.B. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 2011, 157, 3256–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Montalban-Lopez, M.; Kuipers, O.P. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 2018, 84, e00052-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desiderato, C.K.; Sachsenmaier, S.; Ovchinnikov, K.V.; Stohr, J.; Jacksch, S.; Desef, D.N.; Crauwels, P.; Egert, M.; Diep, D.B.; Goldbeck, O.; et al. Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools. Int. J. Mol. Sci. 2021, 22, 8615. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Martínez, M.I.; Horn, N.; Dodd, H.M. Heterologous production of bacteriocins by lactic acid bacteria. Int. J. Food Microbiol. 2003, 80, 101–116. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Solovyev, V.; Salamov, A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies; Li, R.W., Ed.; Nova Science Publishers: New York, NY, USA, 2011; pp. 61–78. [Google Scholar]
- Naville, M.; Ghuillot-Gaudeffroy, A.; Marchais, A.; Gautheret, D. ARNold: A web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011, 8, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–11090. [Google Scholar] [CrossRef]
- Hennig, L. WinGene/WinPep: User-friendly software for the analysis of amino acid sequences. Biotechniques 1999, 26, 1170–1172. [Google Scholar] [CrossRef]
Indicator Strain | Origin | Source 1 | Inhibition (mm) 2 by: | Man 3 | |
---|---|---|---|---|---|
Garvicin AG1 | Garvicin AG2 | ||||
Aerococcus viridans CECT 978T 4 | Air sample | CECT | − | − | − |
Bacillus cereus CECT 5050T | Unknown | CECT | − | − | − |
Carnobacterium maltaromaticum 02/5685 | Fish (trout) | FVM-S | − | 18 | + |
Enterococcus faecalis MP48 | Human (vagina) | FVM-N | − | 13 | + |
E. faecalis EIPO | Human (urine) | FVM-N | − | 18 | + |
E. faecalis OEA1 | Human (urine) | FVM-N | − | 20 | + |
Escherichia coli CECT 515T | Human (urine) | CECT | − | − | + |
Lactococcus garvieae 19 | Human (urine) | HPM | 12 | 16 | + |
L. garvieae 21881 (GarA+) 5 | Human (blood) | HRV | − | − | + |
L. garvieae 21881-N (GarA−) 6 | Human (blood) | FVM-S | − | − | + |
L. garvieae 3AA7 | Food (cheese) | IPLA | 12 | 14 | + |
L. garvieae 57 | Fish (trout) | VISAVET | 12 | 18 | + |
L. garvieae 65 | Fish (trout) | VISAVET | 16 | 16 | + |
L. garvieae 80 | Fish (trout) | VISAVET | 14 | 17 | + |
L. garvieae 85 | Fish (trout) | VISAVET | 10 | 12 | + |
L. garvieae 8831 | Fish (trout) | VISAVET | 14 | 18 | + |
L. garvieae BM06/00349 | Human (blood) | HRV | 12 | 22 | + |
L. garvieae CAS-2 | Food (cheese) | IPLA | 14 | 15 | + |
L. garvieae CECT 4531T | Bovine | CECT | 14 | 18 | + |
L. garvieae CP-1 | Fish (trout) | FVM-S | 10 | 14 | + |
L. garvieae Lg-Granada | Human (blood) | HVN | 13 | 16 | + |
L. garvieae Lg-Granada 240-88 | Human (blood) | HVN | 12 | 20 | + |
L. garvieae N-201 | Food (cheese) | IPLA | 10 | 18 | + |
L. garvieae NRTC 0607 | Food (vegetable) | HUJ | 9 | 20 | + |
L. garvieae T2-17 | Food | IPLA | 12 | 18 | + |
Lactococcus lactis subsp. lactis MG1363 | Food | IFR(QI) | − | 19 | + |
L. lactis subsp. lactis MP29 | Food (cheese) | FVM-N | − | 29 | + |
Listeria ivanovii CECT 913T | Ovine | CECT | − | 24 | + |
Listeria monocytogenes 51112 | Food | FVM-S | − | 25 | + |
Pediococcus acidilactici CECT 98 | Food | CECT | 14 | − | − |
Salmonella enterica S79 | Poultry (faeces) | FVM-S | − | − | + |
Staphylococcus aureus CECT 86T | Human (pleural fluid) | CECT | − | − | + |
Streptococcus agalactiae MP007 | Human (vagina) | FVM-N | − | − | − |
Streptococcus parauberis CCUG 39954T | Bovine (mastitis) | CCUG | − | − | − |
Streptococcus salivarius CECT 805T | Human (blood) | CECT | − | 10 | + |
Streptococcus uberis CECT 994T | Bovine (mastitis) | CECT | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Barragán, A.; Alegría-Carrasco, E.; Blanco, M.d.M.; Vela, A.I.; Fernández-Garayzábal, J.F.; Rodríguez, J.M.; Gibello, A. Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. Int. J. Mol. Sci. 2022, 23, 4685. https://doi.org/10.3390/ijms23094685
Maldonado-Barragán A, Alegría-Carrasco E, Blanco MdM, Vela AI, Fernández-Garayzábal JF, Rodríguez JM, Gibello A. Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. International Journal of Molecular Sciences. 2022; 23(9):4685. https://doi.org/10.3390/ijms23094685
Chicago/Turabian StyleMaldonado-Barragán, Antonio, Estíbaliz Alegría-Carrasco, María del Mar Blanco, Ana Isabel Vela, José Francisco Fernández-Garayzábal, Juan Miguel Rodríguez, and Alicia Gibello. 2022. "Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada" International Journal of Molecular Sciences 23, no. 9: 4685. https://doi.org/10.3390/ijms23094685
APA StyleMaldonado-Barragán, A., Alegría-Carrasco, E., Blanco, M. d. M., Vela, A. I., Fernández-Garayzábal, J. F., Rodríguez, J. M., & Gibello, A. (2022). Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. International Journal of Molecular Sciences, 23(9), 4685. https://doi.org/10.3390/ijms23094685