Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Porous Carbon Monolith with Tailored Pore Structure
2.2. Characterization of the Functionalized Porous Carbon Monolith
2.3. Adsorption/Decontamination Performances of the Functionalized Porous Carbon Monolith
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Monodispersed Silica Microparticles
3.3. Surface Modification of the Silica Particles
3.4. Preparation of Porous Exfoliated Graphene Monolith
3.5. Fabrication of Prussian Blue Decorated Porous Carbon Monolith
3.6. Radioactive Material Extraction Test
3.7. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A Lyczko, M.; Wiaderek, B.; Bilewicz, A. Separation of radionuclides from spent decontamination fluids via adsorption onto titanium dioxide nanotubes after photocatalytic degradation. Nanomaterials 2020, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
- Obaid, S.S.; Gaikwad, D.K.; Sayyed, M.I.; Al-Rashdi, K.; Pawar, P.P. Heavy metal ions removal from waste water by the nat-ural zeolites. Mater. Today 2018, 5, 17930–17934. [Google Scholar]
- El-Deen, S.E.A.S.; El-Deen, G.E.S.; Jamil, T.S. Sorption behavior of co-radionuclides from radioactive waste solution on gra-phene enhanced by immobilized sugarcane and carboxy methyl cellulose. Radiochimica Acta 2019, 107, 397–413. [Google Scholar] [CrossRef]
- Janusz, W.; Skwarek, E. Study of sorption processes of strontium on the synthetic hydroxyapatite. Adsoption 2016, 22, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Olatunji, M.A.; Khandaker, M.U.; Mahmud, H.E.; Amin, Y.M. Influence of adsorption parameters on caesium uptake from aqueous solutions-a brief review. RSC Advances 2015, 5, 71658–71683. [Google Scholar] [CrossRef]
- Li, J.; Zan, Y.; Zhang, Z.; Dou, M.; Wang, F. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porouscarbon network for efficient sorption of radioactive cesium. J. Hazard. Mater. 2020, 385, 121568. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q. Separation of radionuclides from a rare earth-containing solution by zeolite Adsorption. Minerals 2021, 11, 20. [Google Scholar] [CrossRef]
- Boulanger, N.; Kuzenkova, A.S.; Iakunkov, A.; Romanchuk, A.Y.; Trigub, A.V.; Egorov, A.V.; Bauters, S.; Amidani, L.; Re-tegan, M.; Kvashnina, K.O.; et al. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Appl. Mater. Interfaces 2020, 12, 45122–45135. [Google Scholar] [CrossRef]
- Skwarek, E.; Janusz, W. Adsorption of Ba2+ ions at the hydroxyapatite/NaCl solution interface. Adsoption 2019, 25, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Majidnia, Z.; Idris, A. Evaluation of caesium removal from radioactive waste water using maghemite PVA–alginate beads. Chem. Eng. J. 2015, 262, 372–382. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Pholosi, A.; Naidoo, E.B. Kinetics and competitive modelling of caesium biosortion onto chemically modified pine cone powder. J. Taiwan Inst. Chem. Eng. 2013, 44, 943–951. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Caesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol. 2020, 52, 328–336. [Google Scholar] [CrossRef]
- Hong, J.Y.; Bak, B.M.; Wie, J.J.; Kong, J.; Park, H.S. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting condition. Adv. Funct. Mater. 2015, 25, 1053–1062. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yu, X.; Bak, B.M.; Pang, C.; Park, H.S. Bio-inspired functionalization and redox charge transfer of graphene oxide sponges for pseudocapacitive electrodes. Carbon 2015, 83, 71–78. [Google Scholar] [CrossRef]
- Hong, J.Y.; Sohn, E.H.; Park, S.; Park, H.S. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem. Eng. J. 2015, 269, 229–235. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yun, S.; Wie, J.J.; Zhang, X.; Dresselhaus, M.S.; Kong, J.; Park, H.S. Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale 2016, 8, 12900–12909. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Shao, G.; Wang, S. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909265. [Google Scholar] [CrossRef]
- Oh, Y.J.; Shin, M.C.; Kim, J.H.; Yang, S.J. Facile preparation of ZnO quantum dots@porous carbon composites through direct carbonization of metal–organic complex for high-performance lithium ion batteries. Carbon Lett. 2021, 31, 323–329. [Google Scholar] [CrossRef]
- Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chem. Rev. 2017, 117, 1515–1563. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, L.H.; Li, Y.; Rooke, J.C.; Sanchez, C.; Su, B.L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, J.; Tang, X.; Wang, Y.; Yang, B.; Wang, K.; Zhang, D. Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self activation of biomass: Excellent rate capability and cycle stability. Carbon Lett. 2019, 29, 585–594. [Google Scholar] [CrossRef]
- Othman, F.E.C.; Ismail, M.S.; Yusof, N.; Samitsu, S.; Yusop, M.Z.; Arifn, N.F.T.; Alias, N.H.; Jaafar, J.; Aziz, F.; Salleh, W.N.W.; et al. Methane adsorption by porous graphene derived from rice husk ashes under various stabilization temperatures. Carbon Lett. 2020, 30, 535–543. [Google Scholar] [CrossRef]
- Yan, R.; Wang, K.; Tian, X.; Li, X.; Yang, T.; Xu, X.; He, Y.; Lei, S.; Song, Y. Heteroatoms in situ doped hierarchical porous hollow activated carbons for high performance supercapacitor. Carbon Lett. 2020, 30, 331–344. [Google Scholar] [CrossRef]
- Xu, X.; Feng, X.; Liu, Z.; Xue, S.; Zhang, L. 3D flower-liked Fe3O4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs. Microchim. Acta 2021, 188, 52. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lv, Y.; Zhu, T. Silane coupling agent assisting dopamine-functionalized biomass porous carbons for enhanced adsorption of organic acids: Effects of acid–alkali activation on microstructure. Carbon Lett. 2021, 31, 29–37. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, Z.; Zhao, X.; Chen, X.; Zhu, Y.; Chu, H. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Lett. 2021, 31, 57–65. [Google Scholar] [CrossRef]
- Lee, B.M.; Choi, B.S.; Lee, J.Y.; Hong, S.K.; Lee, J.S.; Choi, J.H. Fabrication of porous carbon beads from polyacrylonitrile as electrode materials for electric double-layer capacitors. Carbon Lett. 2021, 31, 67–74. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, I.; Lee, T.S.; Lee, E.; Lee, K.J. Porous hydrogel contaning Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. J. Ind. Eng. Chem. 2018, 60, 146–155. [Google Scholar] [CrossRef]
- Vaucher, S.; Li, M.; Mann, S. Synthesis of prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed. 2000, 39, 1793–1796. [Google Scholar] [CrossRef]
- Yang, H.M.; Jang, S.C.; Hong, S.B.; Lee, K.W.; Roh, C.H.; Huh, Y.S.; Seo, B.K. Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive caesium from water. J. Alloys Compd. 2016, 657, 387–393. [Google Scholar] [CrossRef]
- Samain, L.; Grandjean, F.; Long, G.J.; Martinetto, P.; Bordet, P.; Strivay, D. Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers. J. Phys. Chem. C. 2013, 117, 9693–9712. [Google Scholar] [CrossRef]
- Oh, D.M.; Kim, B.S.; Kang, S.W.; Kim, Y.S.; Yoo, S.J.; Kim, S.; Chung, Y.S.; Choung, S.W.; Han, J.H.; Jung, S.H.; et al. Enhanced immobilization of prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive caesium adsorption. Sci. Rep. 2019, 9, 16334. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Tanaka, H.; Minami, K.; Noda, K.; Ishizaki, M.; Kurihara, M.; Ogawac, H.; Kawamoto, T. Unveiling Cs-adsorption mechanism of prussian blue analogs: Cs+-percolation via vacancies to complete dehydrated state. RSC Adv. 2018, 8, 34808–34816. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Oh, W.K.; Shin, K.Y.; Kwon, O.S.; Son, S.; Jang, J. Spatially controlled carbon sponge for targeting internalized radioactive materials in human body. Biomaterials 2012, 33, 5056–5066. [Google Scholar] [CrossRef] [PubMed]
- Nilchi, A.; Saberi, R.; Moradi, M.; Azizpour, H.; Zarghami, R. Adsorption of caesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem. Eng. J. 2011, 172, 572–580. [Google Scholar] [CrossRef]
- Sheha, R.R. Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of caesium from radioactive waste solutions. J. Colloid Interface Sci. 2012, 388, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Barré, Y.; Vincent, T.; Taulemesse, J.M.; Robitzer, M.; Guibal, E. Chitin-prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions. J. Hazard. Mater. 2015, 28, 171–179. [Google Scholar] [CrossRef]
- Chen, G.-R.; Chang, Y.-R.; Liu, X.; Kawamoto, T.; Tanaka, H.; Parajuli, D.; Kawasaki, T.; Kawatsu, Y.; Kobayashi, T.; Chen, M.-L.; et al. Cesium removal from drinking water using Prussian blue adsorption followed by anion exchange process. Sep. Purif. Technol. 2017, 172, 147–151. [Google Scholar] [CrossRef]
- Ishizaki, M.; Akiba, S.; Ohtani, A.; Hoshi, Y.; Ono, K.; Matsuba, M.; Togashi, T.; Kananizuka, K.; Sakamoto, M.; Takahashi, A.; et al. Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans. 2013, 42, 16049–16055. [Google Scholar] [CrossRef]
- Vipin, A.K.; Fugetsu, B.; Sakata, I.; Isogai, A.; Endo, M.; Li, M.; Dresselhaus, M.S. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep. 2016, 6, 37009. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Yamamoto, Y.; Akashi, M. Prussian blue as an agent for decontamination of 137Cs in radiation accidents. Jpn. J. Health Phys. 1998, 33, 323–330. [Google Scholar] [CrossRef]
- Jang, S.C.; Hong, S.B.; Yang, H.M.; Lee, K.W.; Moon, J.K.; Seo, B.K.; Huh, Y.S.; Roh, C. Removal of radioactive cesium using prussian blue magnetic nanoparticles. Nanomaterials 2014, 4, 894–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, G.E.; Bae, J.; Park, H.S.; Hong, J.Y. Development of the functionalized nanocomposite materials for adsorption/decontamination of radioactive pollutants. Materials 2021, 14, 2896. [Google Scholar] [CrossRef] [PubMed]
- Vipin, A.K.; Hu, B.; Fugetsu, B. Prussian blue caged in alginate/calcium beads as adsorbents for removal of caesium ions from contaminated water. J. Hazard. Mater. 2013, 258, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, F.; Samain, L.; Long, G.J. Characterization and utilization of prussian blue and its pigments. Dalton Trans. 2016, 45, 18018–18044. [Google Scholar] [CrossRef] [PubMed]
- Kjeldgaard, S.; Dugulan, I.; Mamakhel, A.; Wagemaker, M.; Iversen, B.B.; Bentien, A. Strategies for synthesis of prussian blue analogues. R. Soc. Open Sci. 2021, 8, 201779. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [CrossRef] [Green Version]
- Freundlich, H.; Heller, W. The adsorption of cis-and trans-azobenzene. J. Am. Chem. Soc. 1939, 61, 2228–2230. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 2009, 170, 969–977. [Google Scholar] [CrossRef]
- Ho, Y.S.; Wase, D.J.; Forster, C.F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ. Technol. 1996, 17, 71–77. [Google Scholar] [CrossRef]
- Mckay, G. Bino, M.J.; Altamemi, A.R. The adsorption of various pollutants from aqueous solutions on to activated carbon. Water Res. 1985, 19, 491–495. [Google Scholar] [CrossRef]
- Kim, B.; Oh, D.; Kang, S.; Kim, Y.; Kim, S.; Chung, Y.; Seo, Y.; Hwang, Y. Reformation of the surface of powdered activated carbon (PAC) using covalent organic polymers (COPs) and synthesis of a Prussian blue impregnated adsorbent for the decontamination of radioactive cesium. J. Alloys Compd. 2019, 785, 46–52. [Google Scholar] [CrossRef]
- Yang, H.; Sun, L.; Zhai, J.; Li, H.; Zhao, Y.; Yu, H. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A 2014, 2, 326–332. [Google Scholar] [CrossRef]
- Thammawong, C.; Opaprakasit, P.; Tangboriboonrat, P.; Sreearunothai, P. Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J. Nanopart. Res. 2013, 15, 1689–1699. [Google Scholar] [CrossRef]
- Jang, S.C.; Haldorai, Y.; Lee, G.W.; Hwang, S.K.; Han, Y.K.; Roh, C.; Huh, Y.S. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive (137)Cs. Sci. Rep. 2015, 5, 17510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Li, X.; Ma, F.; Liu, R.; Fu, G.; Xing, S.; Yue, X. Prussian blue functionalized microcapsules for effective removal of cesium in a water environment. RSC Adv. 2016, 6, 34399–34410. [Google Scholar] [CrossRef]
- Jia, Z.; Cheng, X.; Guo, Y.; Tu, L. In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chem. Eng. J. 2017, 325, 513–520. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Kwon, Y.; Park, H.S.; Lee, J.U. Mass-produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system. Adv. Mater. Interfaces 2019, 6, 1900095. [Google Scholar] [CrossRef]
Sample [a] | Bulk Density | Total Pore Area | Specific Surface Area | Porosity | Avg. Pore Diameter |
---|---|---|---|---|---|
(g/mL) | (m2/g) | (m2/g) | (%) | (μm) | |
PCM | 0.41 | 21.76 | 43.49 | 78.04 | 0.35 |
PB@PCM | 0.46 | 20.23 | 128.76 | 61.82 | 0.27 |
Langmuir [a] | Freundlich [a] | |||||
---|---|---|---|---|---|---|
qm (μmol/g) | b (L/mg) | R2 | Kf (μmol/g) | n | R2 | |
133Cs [b] | 793.651 | 0.136 | 0.999 | 478.631 | 10.782 | 0.984 |
Pseudo-First-Order [a] | Pseudo-Second-Order [a] | |||||
---|---|---|---|---|---|---|
K1 (1/min) | qe1 (mmol/g) | R2 | K2 (g/mmol·min) | qe2 (mmol/g) | R2 | |
133Cs [b] | 0.228 | 0.424 | 0.936 | 2.395 | 0.755 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Gu, G.E.; Kwon, Y.J.; Lee, J.U.; Hong, J.-Y. Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances. Int. J. Mol. Sci. 2022, 23, 5116. https://doi.org/10.3390/ijms23095116
Bae J, Gu GE, Kwon YJ, Lee JU, Hong J-Y. Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances. International Journal of Molecular Sciences. 2022; 23(9):5116. https://doi.org/10.3390/ijms23095116
Chicago/Turabian StyleBae, Joonwon, Gyo Eun Gu, Yeon Ju Kwon, Jea Uk Lee, and Jin-Yong Hong. 2022. "Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances" International Journal of Molecular Sciences 23, no. 9: 5116. https://doi.org/10.3390/ijms23095116
APA StyleBae, J., Gu, G. E., Kwon, Y. J., Lee, J. U., & Hong, J. -Y. (2022). Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive Substances. International Journal of Molecular Sciences, 23(9), 5116. https://doi.org/10.3390/ijms23095116