Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats
Abstract
:1. Introduction
2. Results
2.1. Body Weight Gain
2.2. Evaluation of Anti-Anxiolytic Behaviour
2.3. Hippocampal Water Content Change Based on MRI Measurements
2.4. MRS Data Quality and Fitting Accuracy
2.5. MRS-Based Concentrations of Neurometabolites—Standard Approach of Data Analysis
2.6. MRS-Based Concentrations of Neurometabolites Normalized to R1
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Procedure
4.3. Chronic Unpredictable Mild Stress Protocol
4.4. Probiotic Preparation and Treatment
4.5. Behavioural Study
4.6. In Vivo MRI and MRS
4.6.1. Longitudinal Relaxation Rate, R1 Measurements
4.6.2. MRS
4.7. MRI and MRS Data Analysis
4.7.1. Water Content Change Estimation Based on R1 Measurements
4.7.2. MRS Data Analysis
4.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forsythe, P.; Sudo, N.; Dinan, T.; Taylor, V.H.; Bienenstock, J. Mood and Gut Feelings. Brain Behav. Immun. 2010, 24, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Julio-Pieper, M.; Forsythe, P.; Kunze, W.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Communication between Gastrointestinal Bacteria and the Nervous System. Curr. Opin. Pharmacol. 2012, 12, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; et al. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis: Role of Serotonin and Catecholamines in Gut/Brain Axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.G.; Sharpley, C.F. Gut Microbiome and Depression: What We Know and What We Need to Know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; McVey Neufeld, K.-A. Gut–Brain Axis: How the Microbiome Influences Anxiety and Depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, J.; Gui, X.; Shi, X.; Bao, Z.; Han, H.; Li, M.D. Updated Review of Research on the Gut Microbiota and Their Relation to Depression in Animals and Human Beings. Mol. Psychiatry 2020, 25, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Sanacora, G.; Gueorguieva, R.; Epperson, C.N.; Wu, Y.-T.; Appel, M.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Subtype-Specific Alterations of Gamma-Aminobutyric Acid and Glutamate in Patients with Major Depression. Arch. Gen. Psychiatry 2004, 61, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Choudary, P.V.; Molnar, M.; Evans, S.J.; Tomita, H.; Li, J.Z.; Vawter, M.P.; Myers, R.M.; Bunney, W.E.; Akil, H.; Watson, S.J.; et al. Altered Cortical Glutamatergic and GABAergic Signal Transmission with Glial Involvement in Depression. Proc. Natl. Acad. Sci. USA 2005, 102, 15653–15658. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.B.; Waagepetersen, H.S.; Bak, L.K.; Schousboe, A.; Sonnewald, U. The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochem. Res. 2015, 40, 402–409. [Google Scholar] [CrossRef]
- Boku, S.; Nakagawa, S.; Toda, H.; Hishimoto, A. Neural Basis of Major Depressive Disorder: Beyond Monoamine Hypothesis. Psychiatry Clin. Neurosci. 2018, 72, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Na, K.-S.; Myint, A.-M.; Leonard, B.E. The Role of Pro-Inflammatory Cytokines in Neuroinflammation, Neurogenesis and the Neuroendocrine System in Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and Depression: A Review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharwani, A.; Mian, M.F.; Surette, M.G.; Bienenstock, J.; Forsythe, P. Oral Treatment with Lactobacillus Rhamnosus Attenuates Behavioural Deficits and Immune Changes in Chronic Social Stress. BMC Med. 2017, 15, 7. [Google Scholar] [CrossRef] [Green Version]
- Barros-Santos, T.; Silva, K.S.O.; Libarino-Santos, M.; Cata-Preta, E.G.; Reis, H.S.; Tamura, E.K.; de Oliveira-Lima, A.J.; Berro, L.F.; Uetanabaro, A.P.T.; Marinho, E.A.V. Effects of Chronic Treatment with New Strains of Lactobacillus Plantarum on Cognitive, Anxiety- and Depressive-like Behaviors in Male Mice. PLoS ONE 2020, 15, e0234037. [Google Scholar] [CrossRef]
- Tian, P.; O’Riordan, K.J.; Lee, Y.; Wang, G.; Zhao, J.; Zhang, H.; Cryan, J.F.; Chen, W. Towards a Psychobiotic Therapy for Depression: Bifidobacterium Breve CCFM1025 Reverses Chronic Stress-Induced Depressive Symptoms and Gut Microbial Abnormalities in Mice. Neurobiol. Stress 2020, 12, 100216. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A Novel Class of Psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Kochalska, K.; Oakden, W.; Słowik, T.; Chudzik, A.; Pankowska, A.; Łazorczyk, A.; Kozioł, P.; Andres-Mach, M.; Pietura, R.; Rola, R.; et al. Dietary Supplementation with Lactobacillus Rhamnosus JB-1 Restores Brain Neurochemical Balance and Mitigates the Progression of Mood Disorder in a Rat Model of Chronic Unpredictable Mild Stress. Nutr. Res. 2020, 82, 44–57. [Google Scholar] [CrossRef]
- Janik, R.; Thomason, L.A.M.; Stanisz, A.M.; Forsythe, P.; Bienenstock, J.; Stanisz, G.J. Magnetic Resonance Spectroscopy Reveals Oral Lactobacillus Promotion of Increases in Brain GABA, N-Acetyl Aspartate and Glutamate. NeuroImage 2016, 125, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Bharwani, A.; West, C.; Champagne-Jorgensen, K.; McVey Neufeld, K.-A.; Ruberto, J.; Kunze, W.A.; Bienenstock, J.; Forsythe, P. The Vagus Nerve Is Necessary for the Rapid and Widespread Neuronal Activation in the Brain Following Oral Administration of Psychoactive Bacteria. Neuropharmacology 2020, 170, 108067. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.R.; Doraiswamy, P.M.; Figiel, G.S.; Husain, M.M.; Shah, S.A.; Na, C.; Boyko, O.B.; McDonald, W.M.; Nemeroff, C.B.; Ellinwood, E.H. Hippocampal Abnormalities in Depression. J. Neuropsychiatry Clin. Neurosci. 1991, 3, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Czéh, B.; Kole, M.H.P.; Michaelis, T.; Lucassen, P.J. Alterations of Neuroplasticity in Depression: The Hippocampus and Beyond. Eur. Neuropsychopharmacol. 2004, 14 (Suppl. S5), S481–S490. [Google Scholar] [CrossRef]
- Sapolsky, R.M. The Possibility of Neurotoxicity in the Hippocampus in Major Depression: A Primer on Neuron Death. Biol. Psychiatry 2000, 48, 755–765. [Google Scholar] [CrossRef]
- Fatouros, P.P.; Marmarou, A.; Kraft, K.A.; Inao, S.; Schwarz, F.P. In Vivo Brain Water Determination by T1 Measurements: Effect of Total Water Content, Hydration Fraction, and Field Strength. Magn. Reson. Med. 1991, 17, 402–413. [Google Scholar] [CrossRef]
- De Souza, S.W.; Dobbing, J. Cerebral Edema in Developing Brain: I. Normal Water and Cation Content in Developing Rat Brain and Postmortem Changes. Exp. Neurol. 1971, 32, 431–438. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liu, A.-H.; Xu, Y.; Tie, L.; Yu, H.-M.; Li, X.-J. Effect of Chronic Unpredictable Mild Stress on Brain–Pancreas Relative Protein in Rat Brain and Pancreas. Behav. Brain Res. 2005, 165, 63–71. [Google Scholar] [CrossRef]
- Sequeira-Cordero, A.; Salas-Bastos, A.; Fornaguera, J.; Brenes, J.C. Behavioural Characterisation of Chronic Unpredictable Stress Based on Ethologically Relevant Paradigms in Rats. Sci. Rep. 2019, 9, 17403. [Google Scholar] [CrossRef]
- Hu, C.; Luo, Y.; Wang, H.; Kuang, S.; Liang, G.; Yang, Y.; Mai, S.; Yang, J. Re-Evaluation of the Interrelationships among the Behavioral Tests in Rats Exposed to Chronic Unpredictable Mild Stress. PLoS ONE 2017, 12, e0185129. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Steinhausen, K.; Bharwani, A.; Mian, M.F.; McVey Neufeld, K.-A.; Forsythe, P. Increased Persistence of Avoidance Behaviour and Social Deficits with L.Rhamnosus JB-1 or Selective Serotonin Reuptake Inhibitor Treatment Following Social Defeat. Sci. Rep. 2020, 10, 13485. [Google Scholar] [CrossRef]
- Hädel, S.; Wirth, C.; Rapp, M.; Gallinat, J.; Schubert, F. Effects of Age and Sex on the Concentrations of Glutamate and Glutamine in the Human Brain. J. Magn. Reson. Imaging 2013, 38, 1480–1487. [Google Scholar] [CrossRef]
- Cleeland, C.; Pipingas, A.; Scholey, A.; White, D. Neurochemical Changes in the Aging Brain: A Systematic Review. Neurosci. Biobehav. Rev. 2019, 98, 306–319. [Google Scholar] [CrossRef]
- de Groot, J.C.; de Leeuw, F.-E.; Oudkerk, M.; Hofman, A.; Jolles, J.; Breteler, M.M.B. Cerebral White Matter Lesions and Depressive Symptoms in Elderly Adults. Arch. Gen. Psychiatry 2000, 57, 1071–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkáč, I.; Rao, R.; Georgieff, M.K.; Gruetter, R. Developmental and Regional Changes in the Neurochemical Profile of the Rat Brain Determined by in Vivo 1H NMR Spectroscopy. Magn. Reson. Med. 2003, 50, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Ramu, J.; Konak, T.; Liachenko, S. Magnetic Resonance Spectroscopic Analysis of Neurometabolite Changes in the Developing Rat Brain at 7T. Brain Res. 2016, 1651, 114–120. [Google Scholar] [CrossRef]
- Morgan, J.J.; Kleven, G.A.; Tulbert, C.D.; Olson, J.; Horita, D.A.; Ronca, A.E. Longitudinal 1H MR Spectroscopy of Rat Forebrain from Infancy to Adulthood Reveals Adolescence as a Distinctive Phase of Neurometabolite Development. NMR Biomed. 2013, 26, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Pouwels, P.J.; Brockmann, K.; Kruse, B.; Wilken, B.; Wick, M.; Hanefeld, F.; Frahm, J. Regional Age Dependence of Human Brain Metabolites from Infancy to Adulthood as Detected by Quantitative Localized Proton MRS. Pediatr. Res. 1999, 46, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, R.; Novais, A.; Barrière, D.A.; Marques, P.; Marques, F.; Sousa, J.C.; Cerqueira, J.J.; Cachia, A.; Jay, T.M.; Bottlaender, M.; et al. A Resting-State Functional MR Imaging and Spectroscopy Study of the Dorsal Hippocampus in the Chronic Unpredictable Stress Rat Model. J. Neurosci. 2019, 39, 3640–3650. [Google Scholar] [CrossRef] [Green Version]
- Behar, K.L.; Rothman, D.L.; Spencer, D.D.; Petroff, O.A.C. Analysis of Macromolecule Resonances in 1H NMR Spectra of Human Brain. Magn. Reson. Med. 1994, 32, 294–302. [Google Scholar] [CrossRef]
- Oliveira, T.G.; Chan, R.B.; Bravo, F.V.; Miranda, A.; Silva, R.R.; Zhou, B.; Marques, F.; Pinto, V.; Cerqueira, J.J.; Di Paolo, G.; et al. The Impact of Chronic Stress on the Rat Brain Lipidome. Mol. Psychiatry 2016, 21, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, R.; Santana, M.M.; Aveleira, C.A.; Simões, C.; Maciel, E.; Melo, T.; Santinha, D.; Oliveira, M.M.; Peixoto, F.; Domingues, P.; et al. Alterations in Phospholipidomic Profile in the Brain of Mouse Model of Depression Induced by Chronic Unpredictable Stress. Neuroscience 2014, 273, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, S.; Yang, X.; Li, W.; Si, J.; Yang, X. The Antidepressant Potential of Lactobacillus Casei in the Postpartum Depression Rat Model Mediated by the Microbiota-Gut-Brain Axis. Neurosci. Lett. 2022, 774, 136474. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Ma, F.; Sun, M.; Song, Y.; Xu, D.; Mu, G.; Tuo, Y. Lactobacillus Plantarum Y44 Alleviates Oxidative Stress by Regulating Gut Microbiota and Colonic Barrier Function in Balb/C Mice with Subcutaneous d-Galactose Injection. Food Funct. 2021, 12, 373–386. [Google Scholar] [CrossRef]
- Xi, G.; Hui, J.; Zhang, Z.; Liu, S.; Zhang, X.; Teng, G.; Chan, K.C.; Wu, E.X.; Nie, B.; Shan, B.; et al. Learning and Memory Alterations Are Associated with Hippocampal N-Acetylaspartate in a Rat Model of Depression as Measured by 1H-MRS. PLoS ONE 2011, 6, e28686. [Google Scholar] [CrossRef] [Green Version]
- Hemanth Kumar, B.S.; Mishra, S.K.; Rana, P.; Singh, S.; Khushu, S. Neurodegenerative Evidences during Early Onset of Depression in CMS Rats as Detected by Proton Magnetic Resonance Spectroscopy at 7T. Behav. Brain Res. 2012, 232, 53–59. [Google Scholar] [CrossRef]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, M.A.A. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef] [Green Version]
- Yildiz-Yesiloglu, A.; Ankerst, D.P. Review of 1H Magnetic Resonance Spectroscopy Findings in Major Depressive Disorder: A Meta-Analysis. Psychiatry Res. 2006, 147, 1–25. [Google Scholar] [CrossRef]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M.; et al. Glutamatergic Neurometabolite Levels in Major Depressive Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Groote, L.D.; Linthorst, A.C. Exposure to Novelty and Forced Swimming Evoke Stressor-Dependent Changes in Extracellular GABA in the Rat Hippocampus. Neuroscience 2007, 148, 794–805. [Google Scholar] [CrossRef]
- Guan, J.; Ding, Y.; Rong, Y.; Geng, Y.; Lai, L.; Qi, D.; Tang, Y.; Yang, L.; Li, J.; Zhou, T.; et al. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats. ACS Chem. Neurosci. 2020, 11, 4169–4178. [Google Scholar] [CrossRef] [PubMed]
- Drouet, J.-B.; Fauvelle, F.; Maunoir-Regimbal, S.; Fidier, N.; Maury, R.; Peinnequin, A.; Denis, J.; Buguet, A.; Canini, F. Differences in Prefrontal Cortex GABA/Glutamate Ratio after Acute Restraint Stress in Rats Are Associated with Specific Behavioral and Neurobiological Patterns. Neuroscience 2015, 285, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kilb, W.; Fukuda, A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front. Cell. Neurosci. 2017, 11, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez-Diaz, P.; Miranda-Contreras, L.; Mendoza-Briceño, R.V.; Peña-Contreras, Z.; Palacios-Prü, E. Prenatal and Postnatal Contents of Amino Acid Neurotransmitters in Mouse Parietal Cortex. DNE 2003, 25, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-W.; Gao, H.-Y.; Liu, J. The Role of Taurine in Improving Neural Stem Cells Proliferation and Differentiation. Nutr. Neurosci. 2017, 20, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xia, S.; He, J.; Lu, G.; Xie, Z.; Han, H. Roles of Taurine in Cognitive Function of Physiology, Pathologies and Toxication. Life Sci. 2019, 231, 116584. [Google Scholar] [CrossRef]
- Pellow, S.; File, S.E. Anxiolytic and Anxiogenic Drug Effects on Exploratory Activity in an Elevated Plus-Maze: A Novel Test of Anxiety in the Rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef]
- Hogg, S. A Review of the Validity and Variability of the Elevated Plus-Maze as an Animal Model of Anxiety. Pharmacol. Biochem. Behav. 1996, 54, 21–30. [Google Scholar] [CrossRef]
- Tkáč, I.; Gruetter, R. Methodology of H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields. Appl. Magn. Reson. 2005, 29, 139–157. [Google Scholar] [CrossRef]
- Wise, T.; Taylor, M.J.; Herane-Vives, A.; Gammazza, A.M.; Cappello, F.; Lythgoe, D.J.; Williams, S.C.; Young, A.H.; Cleare, A.J.; Arnone, D. Glutamatergic Hypofunction in Medication-Free Major Depression: Secondary Effects of Affective Diagnosis and Relationship to Peripheral Glutaminase. J. Affect. Disord. 2018, 234, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Ajilore, O.; Haroon, E.; Kumaran, S.; Darwin, C.; Binesh, N.; Mintz, J.; Miller, J.; Thomas, M.A.; Kumar, A. Measurement of Brain Metabolites in Patients with Type 2 Diabetes and Major Depression Using Proton Magnetic Resonance Spectroscopy. Neuropsychopharmacology 2007, 32, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.P.; Venkatasubramanian, G.; Gangadhar, B.N. Proton Magnetic Resonance Spectroscopy in Depression. Indian J. Psychiatry 2011, 53, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, W.; Li, Y.; Wu, X.; Shi, X.; Geng, D. Effects of Antidepressant Treatment on N-Acetyl Aspartate and Choline Levels in the Hippocampus and Thalami of Post-Stroke Depression Patients: A Study Using (1)H Magnetic Resonance Spectroscopy. Psychiatry Res. 2010, 182, 48–52. [Google Scholar] [CrossRef]
- Binesh, N.; Kumar, A.; Hwang, S.; Mintz, J.; Thomas, M.A. Neurochemistry of Late-Life Major Depression: A Pilot Two-Dimensional MR Spectroscopic Study. J. Magn. Reson. Imaging 2004, 20, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Hasler, G.; van der Veen, J.W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W.C. Reduced Prefrontal Glutamate/Glutamine and Gamma-Aminobutyric Acid Levels in Major Depression Determined Using Proton Magnetic Resonance Spectroscopy. Arch. Gen. Psychiatry 2007, 64, 193–200. [Google Scholar] [CrossRef] [Green Version]
- in ’t Zandt, H.; van Der Graaf, M.; Heerschap, A. Common Processing of in Vivo MR Spectra. NMR Biomed. 2001, 14, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, B.R.; Masaki, C.; Sharpley, A.L.; Cowen, P.J.; Emir, U.E. Brain Glutamate in Medication-Free Depressed Patients: A Proton MRS Study at 7 Tesla. Psychol. Med. 2018, 48, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-P.; Dai, H.-Y.; Dai, Z.-Z.; Xu, C.-T.; Wu, R.-H. Anterior Cingulate Cortex and Cerebellar Hemisphere Neurometabolite Changes in Depression Treatment: A 1H Magnetic Resonance Spectroscopy Study. Psychiatry Clin. Neurosci. 2014, 68, 357–364. [Google Scholar] [CrossRef]
- Rydberg, J.N.; Riederer, S.J.; Rydberg, C.H.; Jack, C.R. Contrast Optimization of Fluid-Attenuated Inversion Recovery (Flair) Imaging. Magn. Reson. Med. 1995, 34, 868–877. [Google Scholar] [CrossRef]
- Stefan, D.; Cesare, F.D.; Andrasescu, A.; Popa, E.; Lazariev, A.; Vescovo, E.; Strbak, O.; Williams, S.; Starcuk, Z.; Cabanas, M.; et al. Quantitation of Magnetic Resonance Spectroscopy Signals: The JMRUI Software Package. Meas. Sci. Technol. 2009, 20, 104035. [Google Scholar] [CrossRef]
- Starčuk, Z.; Starčuková, J. Quantum-Mechanical Simulations for in Vivo MR Spectroscopy: Principles and Possibilities Demonstrated with the Program NMRScopeB. Anal. Biochem. 2017, 529, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; J. Wiley and Sons: Chichester, UK, 1994; ISBN 0-471-93094-6. [Google Scholar]
- Chauvenet, W. A Manual of Spherical and Practical Astronomy, 5th ed.; Reprint of 1891; Dover, N.Y., Philadelphia, J.B., Eds.; Lippincott & Co.: London, UK; Trübner & Co.: London, UK, 1960. [Google Scholar]
METABOLITE | CRLB |
---|---|
Cho | 2 ± 1% |
Cr | 3 ± 2% |
GABA | 5 ± 2% |
Glu | 2 ± 0% |
Gln | 3 ± 1% |
GSH | 5 ± 1% |
MM | 1 ± 0% |
m-Ins | 2 ± 0% |
NAA | 1 ± 0% |
NAAG | 23 ± 13% |
PCr | 3 ± 1% |
Tau | 2 ± 0% |
Metabolites (mM*s) | After Five Weeks of Stress | After Eight Weeks of Stress | ||||
---|---|---|---|---|---|---|
JB-1 | Placebo (N = 9) | JB-1 | Placebo (N = 9) | |||
Positive Response (N = 9) | Negative Response (N = 1) | Positive Response (N = 6) | Negative Response (N = 4) | |||
tCho | 2.9 ± 0.9 | 2.2 | 2.5 ± 0.4 | 2.7 ± 0.3 | 2.2 ± 0.1 ** | 2.3 ± 0.3 * |
tCr | 15.5 ± 1.5 | 15.0 | 14.7 ± 1.5 | 15.3 ± 1.3 | 13.5 ± 1.2 | 14.5 ± 1.0 |
GABA | 3.6 ± 0.7 | 2.6 | 2.9 ± 0.6 | 3.5 ± 0.8 | 2.6 ± 0.5 * | 2.7 ± 0.3 * |
Glu | 16.2 ± 1.5 | 14.3 | 15.2 ± 1.1 | 16.5 ± 1.1 | 15.0 ± 0.9 | 15.1 ± 1.4 |
Gln | 6.7 ± 0.9 | 7.4 | 6.5 ± 0.3 | 6.9 ± 0.7 | 6.0 ± 1.1 | 6.4 ± 0.6 |
GSH | 2.6 ± 0.8 | 1.6 | 2.0 ± 0.3 | 2.2 ± 0.1 | 1.8 ± 0.6 | 1.9 ± 0.2 |
Gln + GSH | 9.3 ± 0.9 | 9.0 | 8.4 ± 0.4 * | 9.1 ± 0.9 | 7.8 ± 0.8 * | 8.3 ± 0.6 |
Glx | 22.9 ± 1.8 | 21.7 | 21.5 ± 1.3 | 23.4 ± 1.5 | 20.9 ± 1.9 * | 21.2 ± 1.5 * |
m-Ins | 11.9 ± 2.2 | 11.7 | 11.0 ± 0.9 | 11.3 ± 0.7 | 10.5 ± 0.8 | 11.2 ± 0.8 |
NAA | 14.4 ± 1.3 | 11.6 | 12.9 ± 1.2 * | 13.9 ± 0.5 | 13.4 ± 0.7 | 13.2 ± 0.9 |
NAAG | 0.3 ± 0.2 | 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
tNAA | 14.7 ± 1.2 | 11.8 | 13.3 ± 1.2 * | 14.2 ± 0.6 | 13.6 ± 0.8 | 13.2 ± 0.5 * |
Tau | 13.2 ± 1.7 | 13.3 | 12.1 ± 1.2 | 12.5 ± 1.7 | 11.0 ± 0.9 | 11.6 ± 0.7 |
MM | 86.3 ± 12.1 | 124.6 | 86.1 ± 9.1 | 93.3 ± 7.1 | 88.2 ± 8.8 | 88.8 ± 10.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudzik, A.; Słowik, T.; Kochalska, K.; Pankowska, A.; Łazorczyk, A.; Andres-Mach, M.; Rola, R.; Stanisz, G.J.; Orzyłowska, A. Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. Int. J. Mol. Sci. 2022, 23, 5173. https://doi.org/10.3390/ijms23095173
Chudzik A, Słowik T, Kochalska K, Pankowska A, Łazorczyk A, Andres-Mach M, Rola R, Stanisz GJ, Orzyłowska A. Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. International Journal of Molecular Sciences. 2022; 23(9):5173. https://doi.org/10.3390/ijms23095173
Chicago/Turabian StyleChudzik, Agata, Tymoteusz Słowik, Katarzyna Kochalska, Anna Pankowska, Artur Łazorczyk, Marta Andres-Mach, Radosław Rola, Greg J. Stanisz, and Anna Orzyłowska. 2022. "Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats" International Journal of Molecular Sciences 23, no. 9: 5173. https://doi.org/10.3390/ijms23095173
APA StyleChudzik, A., Słowik, T., Kochalska, K., Pankowska, A., Łazorczyk, A., Andres-Mach, M., Rola, R., Stanisz, G. J., & Orzyłowska, A. (2022). Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. International Journal of Molecular Sciences, 23(9), 5173. https://doi.org/10.3390/ijms23095173