Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid
Abstract
:1. Introduction
2. Results
2.1. PAA Inhibited Pseudotyped SARS-CoV-2 Infectivity
2.2. Computational Analysis Showed That PAA Cleaves the Disulfide Bridges in the SARS-CoV-2 Spike Protein
2.3. PAA Led to the Destabilization of the SARS-CoV-2 Spike Protein
2.4. PAA Reduced the RBD-ACE2 Interaction
2.5. PAA Reduced Authentic Viral Load of SARS-CoV-2
3. Discussion
4. Materials and Methods
4.1. Cells and Reagents
4.2. Preparation of Pseudotyped SARS-CoV-2
4.3. Luciferase Assay for Pseudotyped Virus Infection
4.4. Cell Counting Kit-8 (CCK-8) Assay
4.5. Computational Analysis
4.6. Western Blot Analysis
4.7. Preparation of Recombinant RBD and Soluble ACE2
4.8. ELISA for In Vitro Binding Assay
4.9. SARS-CoV-2 Viral RNA Extraction and qRT-PCR
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and Forecasting the Potential Domestic and International Spread of the 2019-NCoV Outbreak Originating in Wuhan, China: A Modelling Study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The Continuing 2019-NCoV Epidemic Threat of Novel Coronaviruses to Global Health—The Latest 2019 Novel Coronavirus Outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.Q.; Peng, H.J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and Other Coronaviruses in the Environment and on Common Touch Surfaces and the Influence of Climatic Conditions: A Review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Wolff, M.H.; Sattar, S.A.; Adegbunrin, O.; Tetro, J. Environmental survival and microbicide inactivation of coronaviruses. In Coronaviruses with Special Emphasis on First Insights Concerning SARS; Birkhäuser Advances in Infectious Diseases BAID; Birkhäuser: Basel, Switzerland, 2005; pp. 201–212. [Google Scholar] [CrossRef] [Green Version]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Dev Kumar, G.; Mishra, A.; Dunn, L.; Townsend, A.; Oguadinma, I.C.; Bright, K.R.; Gerba, C.P. Biocides and Novel Antimicrobial Agents for the Mitigation of Coronaviruses. Front. Microbiol. 2020, 11, 1351. [Google Scholar] [CrossRef]
- Mondelli, M.U.; Colaneri, M.; Seminari, E.M.; Baldanti, F.; Bruno, R. Low Risk of SARS-CoV-2 Transmission by Fomites in Real-Life Conditions. Lancet Infect. Dis. 2021, 21, e112. [Google Scholar] [CrossRef]
- Meister, T.L.; Fortmann, J.; Todt, D.; Heinen, N.; Ludwig, A.; Brüggemann, Y.; Elsner, C.; Dittmer, U.; Steinmann, J.; Pfaender, S.; et al. Comparable Environmental Stability and Disinfection Profiles of the Currently Circulating SARS-CoV-2 Variants of Concern B.1.1.7 and B.1.351. J. Infect. Dis. 2021, 224, 420–424. [Google Scholar] [CrossRef]
- Jeong, G.U.; Yoon, G.Y.; Moon, H.W.; Lee, W.; Hwang, I.; Kim, H.; do Kim, K.; Kim, C.; Ahn, D.G.; Kim, B.T.; et al. Comparison of Plaque Size, Thermal Stability, and Replication Rate among SARS-CoV-2 Variants of Concern. Viruses 2022, 14, 55. [Google Scholar] [CrossRef]
- Hirose, R.; Itoh, Y.; Ikegaya, H.; Miyazaki, H.; Watanabe, N.; Yoshida, T.; Bandou, R.; Daidoji, T.; Nakaya, T. Differences in Environmental Stability among SARS-CoV-2 Variants of Concern: Both Omicron BA.1 and BA.2 Have Higher Stability. Clin. Microbiol. Infect. 2022, 28, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Guercia, K.A.; Sullivan, L.; Havill, N.L.; Fekieta, R.; Kozakiewicz, J.; Goffman, D. Prospective Cluster Controlled Crossover Trial to Compare the Impact of an Improved Hydrogen Peroxide Disinfectant and a Quaternary Ammonium-Based Disinfectant on Surface Contamination and Health Care Outcomes. Am. J. Infect. Control 2017, 45, 1006–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutts, T.; Kasloff, S.; Safronetz, D.; Krishnan, J. Decontamination of Common Healthcare Facility Surfaces Contaminated with SARS-CoV-2 Using Peracetic Acid Dry Fogging. J. Hosp. Infect. 2021, 109, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hilgren, J.; Swanson, K.M.J.; Diez-Gonzalez, F.; Cords, B. Inactivation of Bacillus Anthracis Spores by Liquid Biocides in the Presence of Food Residue. Appl. Environ. Microbiol. 2007, 73, 6370–6377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregersen, J.P.; Roth, B. Inactivation of Stable Viruses in Cell Culture Facilities by Peracetic Acid Fogging. Biologicals 2012, 40, 282–287. [Google Scholar] [CrossRef]
- Stauf, R.; Todt, D.; Steinmann, E.; Rath, P.M.; Gabriel, H.; Steinmann, J.; Brill, F.H.H. In-Vitro Activity of Active Ingredients of Disinfectants against Drug-Resistant Fungi. J. Hosp. Infect. 2019, 103, 468–473. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, K.M.; Kim, D.B.; Go, S.E.; Ko, S.; Kang, Y.; Hong, S. Efficacy of Peracetic Acid (EndoPA®) for Disinfection of Endoscopes. Korean J. Gastroenterol. 2018, 71, 319–323. [Google Scholar] [CrossRef]
- Haimi, S.; Vienonen, A.; Hirn, M.; Pelto, M.; Virtanen, V.; Suuronen, R. The Effect of Chemical Cleansing Procedures Combined with Peracetic Acid–Ethanol Sterilization on Biomechanical Properties of Cortical Bone. Biologicals 2008, 36, 99–104. [Google Scholar] [CrossRef]
- Rybka, A.; Gavel, A.; Kroupa, T.; Meloun, J.; Prazak, P.; Draessler, J.; Pavlis, O.; Kubickova, P.; Kratzerova, L.; Pejchal, J. Peracetic Acid-Based Disinfectant Is the Most Appropriate Solution for a Biological Decontamination Procedure of Responders and Healthcare Workers in the Field Environment. J. Appl. Microbiol. 2021, 131, 1240–1248. [Google Scholar] [CrossRef]
- Ansaldi, F.; Durando, P.; Sticchi, L.; Gasparini, R. SARS-CoV, Influenza A and Syncitial Respiratory Virus Resistance against Common Disinfectants and Ultraviolet Irradiation. J. Prev. Med. Hyg. 2004, 45, 5–8. [Google Scholar]
- Wang, X.W.; Li, J.S.; Jin, M.; Zhen, B.; Kong, Q.X.; Song, N.; Xiao, W.J.; Yin, J.; Wei, W.; Wang, G.J.; et al. Study on the Resistance of Severe Acute Respiratory Syndrome-Associated Coronavirus. J. Virol. Methods 2005, 126, 171–177. [Google Scholar] [CrossRef]
- Lu, G.; Wang, Q.; Gao, G.F. Bat-to-Human: Spike Features Determining “host Jump” of Coronaviruses SARS-CoV, MERS-CoV, and Beyond. Trends Microbiol. 2015, 23, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Letko, M.; Marzi, A.; Munster, V. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yao, Z.; Yang, L.; Zhang, H.; Qi, Y.; Gou, L.; Xi, W.; Liu, D.; Zhang, L.; Cheng, Y.; et al. Plasma-Activated Water: An Alternative Disinfectant for S Protein Inactivation to Prevent SARS-CoV-2 Infection. Chem. Eng. J. 2021, 421, 127742. [Google Scholar] [CrossRef] [PubMed]
- Teifke, J.P.; Scheinemann, H.; Schinköthe, J.; Eschbaumer, M.; Melüh, A.; Streitz, M.; Freese, H.; Reiche, S. Dry-fog Decontamination of Microbiological Safety Cabinets after Activities with SARS-CoV-2: Cycle Development and Process Validation for Dry Fogging with Peroxyacetic acid. GMS Hyg. Infect. Control 2021, 16, Doc26. [Google Scholar] [CrossRef]
- Grishin, A.M.; Dolgova, N.V.; Landreth, S.; Fisette, O.; Pickering, I.J.; George, G.N.; Falzarano, D.; Cygler, M. Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-Binding Domain of the SARS-CoV-2 Spike Antigen. J. Mol. Biol. 2022, 434, 167357. [Google Scholar] [CrossRef]
- Yoo, J.H. Review of Disinfection and Sterilization—Back to the Basics. Infect. Chemother. 2018, 50, 101–109. [Google Scholar] [CrossRef]
- Adhikari, S.; Crehuet, R.; Anglada, J.M.; Francisco, J.S.; Xia, Y. Two-Step Reaction Mechanism Reveals New Antioxidant Capability of Cysteine Disulfides against Hydroxyl Radical Attack. Proc. Natl. Acad. Sci. USA 2020, 117, 18216–18223. [Google Scholar] [CrossRef]
- Akhter, J.; Quéromès, G.; Pillai, K.; Kepenekian, V.; Badar, S.; Mekkawy, A.H.; Frobert, E.; Valle, S.J.; Morris, D.L. The Combination of Bromelain and Acetylcysteine (Bromac) Synergistically Inactivates SARS-CoV-2. Viruses 2021, 13, 425. [Google Scholar] [CrossRef]
- Wang, H.I.; Chuang, Z.S.; Kao, Y.T.; Lin, Y.L.; Liang, J.J.; Liao, C.C.; Liao, C.L.; Lai, M.M.C.; Yu, C.Y. Small Structural Proteins e and m Render the SARS-CoV-2 Pseudovirus More Infectious and Reveal the Phenotype of Natural Viral Variants. Int. J. Mol. Sci. 2021, 22, 9087. [Google Scholar] [CrossRef]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A Neutralizing Human Antibody Binds to the N-Terminal Domain of the Spike Protein of SARS-CoV-2. Science 2020, 369, 650–655. [Google Scholar] [CrossRef]
- Zheng, G.; Filippelli, G.M.; Salamova, A. Increased Indoor Exposure to Commonly Used Disinfectants during the COVID-19 Pandemic. Environ. Sci. Technol. Lett. 2020, 7, 760–765. [Google Scholar] [CrossRef]
- Eldeirawi, K.; Huntington-Moskos, L.; Nyenhuis, S.M.; Polivka, B. Increased Disinfectant Use among Adults with Asthma in the Era of COVID-19. J. Allergy Clin. Immunol. Pract. 2021, 9, 1378–1380.e2. [Google Scholar] [CrossRef]
- Koksoy Vayisoglu, S.; Oncu, E. The Use of Cleaning Products and Its Relationship with the Increasing Health Risks during the COVID-19 Pandemic. Int. J. Clin. Pract. 2021, 75, e14534. [Google Scholar] [CrossRef]
- Ghafoor, D.; Khan, Z.; Khan, A.; Ualiyeva, D.; Zaman, N. Excessive Use of Disinfectants against COVID-19 Posing a Potential Threat to Living Beings. Curr. Res. Toxicol. 2021, 2, 159–168. [Google Scholar] [CrossRef]
- Mahmood, A.; Eqan, M.; Pervez, S.; Alghamdi, H.A.; Tabinda, A.B.; Yasar, A.; Brindhadevi, K.; Pugazhendhi, A. COVID-19 and Frequent Use of Hand Sanitizers; Human Health and Environmental Hazards by Exposure Pathways. Sci. Total Environ. 2020, 742, 140561. [Google Scholar] [CrossRef]
- Osama, H.; Abdelrahman, M.A. Sanitizer-Associated Systemic Side Effects in the Era of COVID-19: A Pharmacovigilance Study. Beni. Suef. Univ. J. Basic. Appl. Sci. 2022, 11, 79. [Google Scholar] [CrossRef]
- Kitis, M. Disinfection of Wastewater with Peracetic Acid: A Review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Amini Tapouk, F.; Nabizadeh, R.; Mirzaei, N.; Hosseini Jazani, N.; Yousefi, M.; Valizade Hasanloei, M.A. Comparative Efficacy of Hospital Disinfectants against Nosocomial Infection Pathogens. Antimicrob. Resist. Infect. Control 2020, 9, 115. [Google Scholar] [CrossRef]
- Montagna, M.T.; Triggiano, F.; Barbuti, G.; Bartolomeo, N.; de Giglio, O.; Diella, G.; Lopuzzo, M.; Rutigliano, S.; Serio, G.; Caggiano, G. Study on the in Vitro Activity of Five Disinfectants against Nosocomial Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 1895. [Google Scholar] [CrossRef] [Green Version]
- Cadnum, J.L.; Jencson, A.L.; O’Donnell, M.C.; Flannery, E.R.; Nerandzic, M.M.; Donskey, C.J. An Increase in Healthcare-Associated Clostridium Difficile Infection Associated with Use of a Defective Peracetic Acid-Based Surface Disinfectant. Infect. Control Hosp. Epidemiol. 2017, 38, 300–305. [Google Scholar] [CrossRef]
- Du, P.; Liu, W.; Cao, H.; Zhao, H.; Huang, C.H. Oxidation of Amino Acids by Peracetic Acid: Reaction Kinetics, Pathways and Theoretical Calculations. Water Res. X 2018, 1, 100002. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Kohn, T. Virus Disinfection Mechanisms: The Role of Virus Composition, Structure, and Function. Curr. Opin. Virol. 2012, 2, 84–89. [Google Scholar] [CrossRef]
- Schmitz, B.W.; Wang, H.; Schwab, K.; Jacangelo, J. Selected Mechanistic Aspects of Viral Inactivation by Peracetic Acid. Environ. Sci. Technol. 2021, 55, 16120–16129. [Google Scholar] [CrossRef]
- Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; et al. Receptor Binding and Complex Structures of Human ACE2 to Spike RBD from Omicron and Delta SARS-CoV-2. Cell 2022, 185, 630–640.e10. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, L.; Mo, M.; Liu, T.; Wu, C.; Gong, C.; Lu, K.; Gong, L.; Zhu, W.; Xu, Z. SARS-CoV-2 Omicron RBD Shows Weaker Binding Affinity than the Currently Dominant Delta Variant to Human ACE2. Signal Transduct. Target. 2022, 7, 8. [Google Scholar] [CrossRef]
- Schubert, M.; Bertoglio, F.; Steinke, S.; Heine, P.A.; Ynga-Durand, M.A.; Maass, H.; Sammartino, J.C.; Cassaniti, I.; Zuo, F.; Du, L.; et al. Human Serum from SARS-CoV-2-Vaccinated and COVID-19 Patients Shows Reduced Binding to the RBD of SARS-CoV-2 Omicron Variant. BMC Med. 2022, 20, 102. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yue, K.Y. Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-like Disease. Clin. Microbiol. Rev. 2015, 28, 465–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, V.C.C.; Hung, I.F.N.; Tang, B.S.F.; Chu, C.M.; Wong, M.M.L.; Chan, K.H.; Wu, A.K.L.; Tse, D.M.W.; Chan, K.S.; Zheng, B.J.; et al. Viral Replication in the Nasopharynx Is Associated with Diarrhea in Patients with Severe Acute Respiratory Syndrome. Clin. Infect. Dis. 2004, 38, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef]
- Spencer-Williams, I.; Theobald, A.; Cypcar, C.C.; Casson, L.W.; Haig, S.J. Examining the Antimicrobial Efficacy of Granulated Tetraacetylethylenediamine Derived Peracetic Acid and Commercial Peracetic Acid in Urban Wastewaters. Water Environ. Res. 2022, 94, e10688. [Google Scholar] [CrossRef]
- Murae, M.; Shimizu, Y.; Yamamoto, Y.; Kobayashi, A.; Houri, M.; Inoue, T.; Irie, T.; Gemba, R.; Kondo, Y.; Nakano, Y.; et al. The Function of SARS-CoV-2 Spike Protein Is Impaired by Disulfide-Bond Disruption with Mutation at Cysteine-488 and by Thiol-Reactive N-Acetyl-Cysteine and Glutathione. Biochem. Biophys. Res. Commun. 2022, 597, 30–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, Y.; Nakano, Y.; Murae, M.; Shimizu, Y.; Sakai, S.; Ogawa, M.; Mizukami, T.; Inoue, T.; Onodera, T.; Takahashi, Y.; et al. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. Int. J. Mol. Sci. 2023, 24, 20. https://doi.org/10.3390/ijms24010020
Yamamoto Y, Nakano Y, Murae M, Shimizu Y, Sakai S, Ogawa M, Mizukami T, Inoue T, Onodera T, Takahashi Y, et al. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. International Journal of Molecular Sciences. 2023; 24(1):20. https://doi.org/10.3390/ijms24010020
Chicago/Turabian StyleYamamoto, Yuichiro, Yoshio Nakano, Mana Murae, Yoshimi Shimizu, Shota Sakai, Motohiko Ogawa, Tomoharu Mizukami, Tetsuya Inoue, Taishi Onodera, Yoshimasa Takahashi, and et al. 2023. "Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid" International Journal of Molecular Sciences 24, no. 1: 20. https://doi.org/10.3390/ijms24010020
APA StyleYamamoto, Y., Nakano, Y., Murae, M., Shimizu, Y., Sakai, S., Ogawa, M., Mizukami, T., Inoue, T., Onodera, T., Takahashi, Y., Wakita, T., Fukasawa, M., Miyazaki, S., & Noguchi, K. (2023). Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. International Journal of Molecular Sciences, 24(1), 20. https://doi.org/10.3390/ijms24010020