Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Ascertainment of PAD
4.3. Sample Collection and Metabolomic Analysis
4.4. Covariates
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golledge, J.; Fernando, M.E.; Armstrong, D.G. Current Management of Peripheral Artery Disease: Focus on Pharmacotherapy. Drugs 2022, 82, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.A.; Williams, L.J.; Mensah, G.A.; et al. Comparison of Global Estimates of Prevalence and Risk Factors for Peripheral Artery Disease in 2000 and 2010: A Systematic Review and Analysis. Lancet 2013, 382. [Google Scholar] [CrossRef] [PubMed]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.K.; Skali, H.; Claggett, B.; Kasabov, R.; Cheng, S.; Shah, A.M.; Loehr, L.R.; Heiss, G.; Nambi, V.; Aguilar, D.; et al. Heart Failure Risk Across the Spectrum of Ankle-Brachial Index: The ARIC Study (Atherosclerosis Risk In Communities). JACC Heart Fail 2014, 2, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Wong, C.X.; Hsiao, A.J.; Altman, D.G.; Peters, S.A.E.; Woodward, M.; Odutayo, A.A. Atrial Fibrillation as Risk Factor for Cardiovascular Disease and Death in Women Compared with Men: Systematic Review and Meta-Analysis of Cohort Studies. BMJ 2016, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neal, W.T.; Efird, J.T.; Nazarian, S.; Alonso, A.; Heckbert, S.R.; Soliman, E.Z. Peripheral Arterial Disease and Risk of Atrial Fibrillation and Stroke: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.T.; Criqui, M.H.; Treat-Jacobson, D.; Regensteiner, J.G.; Creager, M.A.; Olin, J.W.; Krook, S.H.; Hunninghake, D.B.; Comerota, A.J.; Walsh, M.E.; et al. Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care. JAMA 2001, 286, 1317–1324. [Google Scholar] [CrossRef]
- Sigvant, B.; Lundin, F.; Wahlberg, E. The Risk of Disease Progression in Peripheral Arterial Disease Is Higher than Expected: A Meta-Analysis of Mortality and Disease Progression in Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Breek, J.C.; Hamming, J.F.; de Vries, J.; Aquarius, A.E.A.M.; van Berge Henegouwen, D.P. Quality of Life in Patients with Intermittent Claudication Using The World Health Organisation (WHO) Questionnaire. Eur. J. Vasc. Endovasc. Surg. 2001, 21, 118–122. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.G.; Fried, L.; Simonsick, E.; Ling, S.; Guralnik, J.M. Asymptomatic Peripheral Arterial Disease Is Independently Associated With Impaired Lower Extremity Functioning. Circulation 2000, 101, 1007–1012. [Google Scholar] [CrossRef]
- Tendera, M.; Aboyans, V.; Bartelink, M.L.; Baumgartner, I.; Clment, D.; Collet, J.P.; Cremonesi, A.; de Carlo, M.; Erbel, R.; Fowkes, F.G.R.; et al. ESC Guidelines on the Diagnosis and Treatment of Peripheral Artery DiseasesDocument Covering Atherosclerotic Disease of Extracranial Carotid and Vertebral, Mesenteric, Renal, Upper and Lower Extremity ArteriesThe Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.G.R.; Aboyans, V.; Fowkes, F.J.I.; McDermott, M.M.; Sampson, U.K.A.; Criqui, M.H. Peripheral Artery Disease: Epidemiology and Global Perspectives. Nat. Rev. Cardiol. 2016, 14, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Hutson, S.M.; Sweatt, A.J.; LaNoue, K.F. Branched-Chain Amino Acid Metabolism: Implications for Establishing Safe Intakes. J. Nutr. 2005, 135, 1557S–1564S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvado, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem. 2016, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Yang, R.; Zhang, W.; Wang, S.; Mu, H.; Li, H.; Dong, J.; Chen, W.; Yu, X.; Ji, F. Serum Glutamate and Glutamine-to-Glutamate Ratio Are Associated with Coronary Angiography Defined Coronary Artery Disease. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hu, F.B.; Ruiz-Canela, M.; Clish, C.B.; Dennis, C.; Salas-Salvado, J.; Hruby, A.; Liang, L.; Toledo, E.; Corella, D.; et al. Metabolites of Glutamate Metabolism Are Associated With Incident Cardiovascular Events in the PREDIMED PREvención Con DIeta MEDiterránea (PREDIMED) Trial. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulo, G.; Vollset, S.E.; Nygard, O.; Midttun, O.; Ueland, P.M.; Eussen, S.J.P.M.; Pedersen, E.R.; Tell, G.S. Neopterin and Kynurenine-Tryptophan Ratio as Predictors of Coronary Events in Older Adults, the Hordaland Health Study. Int. J. Cardiol. 2013, 168, 1435–1440. [Google Scholar] [CrossRef]
- Liu, J.J.; Movassat, J.; Portha, B. Emerging Role for Kynurenines in Metabolic Pathologies. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 82–90. [Google Scholar] [CrossRef]
- Gáspár, R.; Halmi, D.; Demján, V.; Berkecz, R.; Pipicz, M.; Csont, T. Kynurenine Pathway Metabolites as Potential Clinical Biomarkers in Coronary Artery Disease. Front. Immunol. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Razquin, C.; Ruiz-Canela, M.; Toledo, E.; Hernández-Alonso, P.; Clish, C.B.; Guasch-Ferré, M.; Li, J.; Wittenbecher, C.; Dennis, C.; Alonso-Gómez, A.; et al. Metabolomics of the Tryptophan–Kynurenine Degradation Pathway and Risk of Atrial Fibrillation and Heart Failure: Potential Modification Effect of Mediterranean Diet. Am. J. Clin. Nutr. 2021, 114, 1646. [Google Scholar] [CrossRef]
- Yu, E.; Ruiz-Canela, M.; Guasch-Ferré, M.; Zheng, Y.; Toledo, E.; Clish, C.B.; Salas-Salvadó, J.; Liang, L.; Wang, D.D.; Corella, D.; et al. Increases in Plasma Tryptophan Are Inversely Associated with Incident Cardiovascular Disease in the Prevención Con Dieta Mediterránea (PREDIMED) Study. J. Nutr. 2017, 147, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, R.; Forteza, M.J.; Ketelhuth, D.F.J. The Interplay between Cytokines and the Kynurenine Pathway in Inflammation and Atherosclerosis. Cytokine 2019, 122, 154148. [Google Scholar] [CrossRef] [PubMed]
- Poredoš, P.; Šabovič, M.; Božič Mijovski, M.; Nikolajević, J.; Antignani, P.L.; Paraskevas, K.I.; Mikhailidis, D.P.; Blinc, A. Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int. J. Mol. Sci. 2022, 23, 12054. [Google Scholar] [CrossRef]
- Brevetti, G.; Giugliano, G.; Brevetti, L.; Hiatt, W.R. Inflammation in Peripheral Artery Disease. Circulation 2010, 122, 1862–1875. [Google Scholar] [CrossRef] [PubMed]
- Naderi Maralani, M.; Movahedian, A.; Haghjooy Javanmard, S. Antioxidant and Cytoprotective Effects of L-Serine on Human Endothelial Cells. Res. Pharm. Sci. 2012, 7, 209. [Google Scholar]
- Mishra, R.C.; Tripathy, S.; Desai, K.M.; Quest, D.; Lu, Y.; Akhtar, J.; Gopalakrishnan, V. Nitric Oxide Synthase Inhibition Promotes Endothelium-Dependent Vasodilatation and the Antihypertensive Effect of L-Serine. Hypertension 2008, 51, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; He, J.; Li, C.; Lu, X.; He, W.J.; Cao, J.; Chen, J.; Chen, J.C.; Bazzano, L.A.; Li, J.X.; et al. Metabolomics Study of Blood Pressure Salt-Sensitivity and Hypertension. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Liu, J.; Deng, Q.J.; Qi, Y.; Wang, M.; Wang, Y.; Zhang, X.G.; Zhao, D. Association between Plasma Essential Amino Acids and Atherogenic Lipid Profile in a Chinese Population: A Cross-Sectional Study. Atherosclerosis 2019, 286, 7–13. [Google Scholar] [CrossRef]
- Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; et al. Metabolite Profiling Identifies Pathways Associated with Metabolic Risk in Humans. Circulation 2012, 125, 2222–2231. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Canela, M.; Estruch, R.; Corella, D.; Salas-Salvadó, J.; Martínez-González, M.A. Association of Mediterranean Diet with Peripheral Artery Disease: The PREDIMED Randomized Trial. JAMA 2014, 311, 415–417. [Google Scholar] [CrossRef]
- Vernon, S.T.; Tang, O.; Kim, T.; Chan, A.S.; Kott, K.A.; Park, J.; Hansen, T.; Koay, Y.C.; Grieve, S.M.; O’sullivan, J.F.; et al. Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study. Cells 2021, 10, 980. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Gail, M.H. Biased Selection of Controls for Case-Control Analyses of Cohort Studies. Biometrics 1984, 40, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Paynter, N.P.; Balasubramanian, R.; Giulianini, F.; Wang, D.D.; Tinker, L.F.; Gopal, S.; Deik, A.A.; Bullock, K.; Pierce, K.A.; Scott, J.; et al. Metabolic Predictors of Incident Coronary Heart Disease in Women. Circulation 2018, 137, 841–853. [Google Scholar] [CrossRef]
- Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.; Cheng, S.; Rhee, E.P.; et al. 2-Aminoadipic Acid Is a Biomarker for Diabetes Risk. J. Clin. Investig. 2013, 123, 4309–4317. [Google Scholar] [CrossRef] [Green Version]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef]
- Blom, G. Statistical Estimates and Transformed Beta-Variables; John Wiley & Sons A/S: New York, NY, USA, 1958. [Google Scholar]
- Simes, R. An Improved Bonferroni Procedure for Multiple Tests of Significance. Biometrika 1986, 73, 751–754. [Google Scholar] [CrossRef]
Controls (Non-Cases) (n = 250) | PAD Cases (n = 167) | |
---|---|---|
Age (years) | 68.0 (6.8) | 67.6 (6.8) |
Body mass index (kg/m2) | 29.2 (3.3) | 29.2 (3.6) |
Leisure time physical activity (METs-min/d) | 285.0 (288) | 223.0 (221) |
Female (%) | 29.2 | 31.1 |
Hypertension (%) | 79.2 | 77.2 |
Dyslipidemia (%) | 65.2 | 61.1 |
Type 2 diabetes (%) | 52.4 | 65.3 |
Smoking | ||
Never (%) | 43.2 | 35.9 |
Former (%) | 20.8 | 28.7 |
Current (%) | 36 | 35.3 |
Intervention group | ||
Control (low-fat) (%) | 30.8 | 38.9 |
MedDiet+EVOO (%) | 39.6 | 27.5 |
MedDiet+nuts (%) | 29.6 | 33.5 |
Education | ||
Primary or less (%) | 73.2 | 71.9 |
Secondary (%) | 17.6 | 22.8 |
University graduate (%) | 9.2 | 5.39 |
Q1 | Q2 | Q3 | Q4 | p-Value for Linear Trend | Per 1 SD | FDR ** Corrected p-Values (Per 1 SD) | |
---|---|---|---|---|---|---|---|
Glycine | Ref. | 0.78 (0.42–1.45) | 0.92 (0.49–1.71) | 0.92 (0.48–1.76) | 0.866 | 0.93 (0.73–1.18) | 0.871 |
Alanine | Ref. | 0.70 (0.37–1.35) | 0.96 (0.49–1.88) | 0.97 (0.51–1.85) | 0.840 | 1.02 (0.81–1.29) | 0.958 |
Valine | Ref. | 0.77 (0.40–1.48) | 0.50 (0.25–0.99) | 1.01 (0.54–1.87) | 0.948 | 1.00 (0.79–1.26) | 0.991 |
Leucine | Ref. | 1.62 (0.84–3.12) | 1.28 (0.63–2.61) | 1.10 (0.56–2.17) | 0.918 | 1.04 (0.82–1.32) | 0.945 |
Isoleucine | Ref. | 1.10 (0.57–2.12) | 1.29 (0.66–2.53) | 0.84 (0.42–1.70) | 0.627 | 0.99 (0.79–1.28) | 0.991 |
Phenylalanine | Ref. | 1.33 (0.68–2.59) | 1.44 (0.75–2.79) | 1.76 (0.90–3.44) | 0.099 | 1.09 (0.87–1.36) | 0.871 |
Tryptophan | Ref. | 1.12 (0.60–2.11) | 0.65 (0.33–1.29) | 0.76 (0.38–1.52) | 0.264 | 0.78 (0.61–0.99) | 0.315 |
Methionine | Ref. | 0.59 (0.30–1.14) | 0.60 (0.31–1.16) | 0.85 (0.45–1.61) | 0.709 | 0.93 (0.73–1.19) | 0.871 |
Proline | Ref. | 1.48 (0.76–2.89) | 1.28 (0.65–2.54) | 1.54 (0.78–3.02) | 0.286 | 1.17 (0.92–1.49) | 0.697 |
Serine | Ref. | 0.84 (0.46–1.54) | 0.55 (0.29–1.02) | 0.41 (0.20–0.84) | 0.015 | 0.68 (0.53–0.88) | 0.065 |
Threonine | Ref. | 0.77 (0.42–1.42) | 0.41 (0.20–0.84) | 0.56 (0.29–1.07) | 0.026 | 0.76 (0.60–0.97) | 0.264 |
Tyrosine | Ref. | 0.90 (0.49–1.64) | 0.68 (0.35–1.32) | 1.19 (0.64–2.23) | 0.792 | 1.02 (0.81–1.29) | 0.958 |
Asparagine | Ref. | 0.46 (0.23–0.93) | 0.72 (0.37–1.38) | 0.77 (0.41–1.44) | 0.795 | 0.91 (0.72–1.16) | 0.871 |
Glutamine | Ref. | 0.65 (0.34–1.24) | 0.70 (0.35–1.39) | 0.81 (0.42–1.55) | 0.556 | 0.93 (0.72–1.18) | 0.871 |
Glutamate | Ref. | 0.41 (0.21–0.79) | 0.62 (0.34–1.27) | 0.42 (0.20–0.88) | 0.029 | 0.78 (0.59–1.03) | 0.381 |
Histidine | Ref. | 0.74 (0.38–1.45) | 0.66 (0.34–1.15) | 1.16 (0.61–2.19) | 0.684 | 1.10 (0.87–1.40) | 0.871 |
Lysine | Ref. | 0.68 (0.36–1.26) | 0.84 (0.45–1.55) | 0.81 (0.44–1.50) | 0.625 | 0.95 (0.76–1.20) | 0.945 |
Arginine | Ref. | 1.52 (0.82–2.81) | 1.22 (0.66–2.26) | 1.45 (0.74–2.83) | 0.387 | 1.11 (0.88–1.40) | 0.871 |
Q1 | Q2 | Q3 | Q4 | p-Value for Linear Trend | Per 1 SD | |
---|---|---|---|---|---|---|
Tryptophan | Ref. | 1.12 (0.60–2.11) | 0.65 (0.33–1.29) | 0.76 (0.38–1.52) | 0.264 | 0.78 (0.61–0.99) |
Kynurenine | Ref. | 1.16 (0.61–2.24) | 1.30 (0.65–2.59) | 1.74 (0.87–3.47) | 0.177 | 1.23 (0.94–1.59) |
Ratio Kyn/Trp ** | Ref. | 1.75 (0.87–3.52) | 1.72 (0.84–3.50) | 3.11 (1.42–6.82) | 0.012 | 1.50 (1.14–1.98) |
Kynurenic acid | Ref. | 0.85 (0.44–1.65) | 0.83 (0.44–1.58) | 1.50 (0.80–2.83) | 0.284 | 1.20 (0.96–1.51) |
Hydroxyanthranilic acid | Ref. | 0.64 (0.33–1.23) | 1.27 (0.67–2.40) | 0.82 (0.38–1.77) | 0.779 | 0.92 (0.69–1.22) |
Quinolinic acid | Ref. | 0.76 (0.38–1.50) | 0.69 (0.35–1.35) | 1.08 (0.52–2.22) | 0.988 | 0.90 (0.69–1.18) |
Serotonin | Ref. | 1.56 (0.77–3.14) | 1.35 (0.70–2.60) | 2.30 (1.12–4.73) | 0.049 | 1.18 (0.91–1.53) |
Serotonin/Trp ratio | Ref. | 1.53 (0.77–3.02) | 1.24 (0.62–2.48) | 1.82 (0.92–3.60) | 0.140 | 1.22 (0.95–1.57) |
Q1 | Q2 | Q3 | Q4 | p-Value for Linear Trend | Per 1 SD | |
---|---|---|---|---|---|---|
Serine | Ref. | 0.84 (0.46–1.54) | 0.55 (0.29–1.02) | 0.41 (0.20–0.84) | 0.015 | 0.67 (0.51–0.86) |
Glycine | Ref. | 0.78 (0.42–1.45) | 0.92 (0.49–1.71) | 0.92 (0.48–1.76) | 0.866 | 0.93 (0.73–1.18) |
Threonine | Ref. | 0.77 (0.42–1.42) | 0.41 (0.20–0.84) | 0.56 (0.29–1.07) | 0.026 | 0.75 (0.59–0.95) |
Choline | Ref. | 0.89 (0.47–1.68) | 0.69 (0.36–1.32) | 1.14 (0.60–2.19) | 0.823 | 1.02 (0.80–1.29) |
Betaine | Ref. | 1.04 (0.57–1.91) | 0.92 (0.49–1.76) | 0.95 (0.45–2.04) | 0.821 | 1.03 (0.80–1.32) |
Dimethylglycine | Ref. | 0.74 (0.38–1.42) | 0.93 (0.48–1.78) | 0.77 (0.39–1.53) | 0.552 | 0.96 (0.76–1.21) |
Q1 | Q2 | Q3 | Q4 | p-Value for Linear Trend | Per 1 SD | |
---|---|---|---|---|---|---|
Glutamine | Ref. | 0.65 (0.34–1.24) | 0.70 (0.35–1.39) | 0.81 (0.42–1.55) | 0.556 | 0.93 (0.73–1.18) |
Glutamate | Ref. | 0.41 (0.21–0.79) | 0.62 (0.34–1.15) | 0.42 (0.20–0.88) | 0.029 | 0.78 (0.59–1.03) |
Gln/Glt ratio * | Ref. | 1.35 (0.68–2.69) | 1.21 (0.57–2.56) | 2.03 (0.99–4.15) | 0.059 | 1.22 (0.92–1.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razquin, C.; Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Guasch-Ferré, M.; García-Gavilán, J.F.; Wittenbecher, C.; Alonso-Gómez, A.; Fitó, M.; Liang, L.; et al. Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial. Int. J. Mol. Sci. 2023, 24, 270. https://doi.org/10.3390/ijms24010270
Razquin C, Ruiz-Canela M, Toledo E, Clish CB, Guasch-Ferré M, García-Gavilán JF, Wittenbecher C, Alonso-Gómez A, Fitó M, Liang L, et al. Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial. International Journal of Molecular Sciences. 2023; 24(1):270. https://doi.org/10.3390/ijms24010270
Chicago/Turabian StyleRazquin, Cristina, Miguel Ruiz-Canela, Estefania Toledo, Clary B. Clish, Marta Guasch-Ferré, Jesús F. García-Gavilán, Clemens Wittenbecher, Angel Alonso-Gómez, Montse Fitó, Liming Liang, and et al. 2023. "Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial" International Journal of Molecular Sciences 24, no. 1: 270. https://doi.org/10.3390/ijms24010270
APA StyleRazquin, C., Ruiz-Canela, M., Toledo, E., Clish, C. B., Guasch-Ferré, M., García-Gavilán, J. F., Wittenbecher, C., Alonso-Gómez, A., Fitó, M., Liang, L., Corella, D., Gómez-Gracia, E., Estruch, R., Fiol, M., Santos-Lozano, J. M., Serra-Majem, L., Ros, E., Aros, F., Salas-Salvadó, J., ... Martínez-González, M. A. (2023). Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial. International Journal of Molecular Sciences, 24(1), 270. https://doi.org/10.3390/ijms24010270