Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease
Abstract
:1. Introduction
2. Results
2.1. Clinical Data
2.2. Genome-Wide DNA Methylation Study
2.3. miRNA-Sequencing Data
2.4. Integrated Analysis of miRNA-Sequencing and Genome-Wide Methylation Results
2.5. Validation of the Integrated miRNA-Sequencing and Genome-Wide Methylation Results on Four Selected Patients
2.6. Validation of Integrated miRNA-Sequencing and Genome-Wide Methylation Results in All-Case Study
2.7. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Patient Recruitment and Sample Collection
4.2. DNA Extraction from Whole Blood Samples
4.3. PBMCs Isolation
4.4. Total RNA Extraction from PBMCs and Reverse Transcription of miRNAs
4.5. Genome-Wide Methylation Study and miRNA Sequencing
4.6. Integrated Analysis of miRNA-Sequencing and Genome-Wide Methylation Results
4.7. Methylation Analysis of Selected CpG Sites Differentially Methylated (DMCs) by Pyrosequencing
4.8. MiRNA-Specific Expression by Quantitative Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- European Heart References Network (EHN). European Cardiovascular Disease Statistics. 2017. Available online: https://ehnheart.org/cvd-statistics.html (accessed on 21 January 2022).
- Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Summerhill, V.I.; Grechko, A.V.; Yet, S.F.; Sobenin, I.A.; Orekhov, A.N. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 3561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak, G.K.; Cieślar, G.; Stanek, A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants 2022, 11, 856. [Google Scholar] [CrossRef]
- Tcheandjieu, C.; Zhu, X.; Hilliard, A.T.; Clarke, S.L.; Napolioni, V.; Ma, S.; Lee, K.M.; Fang, H.; Chen, F.; Lu, Y.; et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat. Med. 2022, 28, 1679–1692. [Google Scholar] [CrossRef]
- Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017, 49, 1385–1391. [Google Scholar] [CrossRef]
- Slunecka, J.L.; van der Zee, M.D.; Beck, J.J.; Johnson, B.N.; Finnicum, C.T.; Pool, R.; Hottenga, J.J.; de Geus, E.J.C.; Ehli, E.A. Implementation and implications for polygenic risk scores in healthcare. Hum. Genom. 2021, 15, 46. [Google Scholar] [CrossRef]
- Kessler, T.; Schunkert, H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl. Sci. 2021, 6, 610–623. [Google Scholar] [CrossRef]
- Wu, C.T.; Morris, J.R. Genes, Genetics, and Epigenetics: A Correspondence. Science 2001, 293, 1103–1105. [Google Scholar] [CrossRef]
- van der Harst, P.; de Windt, L.J.; Chambers, J.C. Translational Perspective on Epigenetics in Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 70, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Rienstra, M.; Benjamin, E.J. Cardiovascular Epigenetics: Basic concepts and results from animal and human studies. Circ. Cardiovasc. Genet. 2010, 3, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creemers, E.E.; Tijsen, A.J.; Pinto, Y.M. Circulating MicroRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 2012, 110, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi, K.C. The emerging role of epigenetics in cardiovascular disease. Ther. Adv. Chronic Dis. 2014, 5, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Prandi, F.R.; Lecis, D.; Illuminato, F.; Milite, M.; Celotto, R.; Lerakis, S.; Romeo, F.; Barillà, F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int. J. Mol. Sci. 2022, 23, 4589. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, Y. DNA methylation in human diseases. Genes Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef]
- Muka, T.; Koromani, F.; Portilla, E.; O’Connor, A.; Bramer, W.M.; Troup, J.; Chowdhury, R.; Dehghan, A.; Franco, O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016, 212, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Rizzacasa, B.; Amati, F.; Romeo, F.; Novelli, G.; Mehta, J.L. Epigenetic Modification in Coronary Atherosclerosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 1352–1365. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzacasa, B.; Morini, E.; Mango, R.; Vancheri, C.; Budassi, S.; Massaro, G.; Maletta, S.; Macrini, M.; D’Annibale, S.; Romeo, F.; et al. MiR-423 is differentially expressed in patients with stable and unstable coronary artery disease: A pilot study. PLoS ONE 2019, 14, e0216363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Fan, G.C. Whether Circulating miRNAs or miRNA-Carriers Serve as Biomarkers for Acute Myocardial Infarction. J. Biomark. Drug Dev. 2012, 1, 1000e103. [Google Scholar] [CrossRef]
- Fichtlscherer, S.; Zeiher, A.M.; Dimmeler, S. Circulating MicroRNAs: Biomarkers or mediators of cardiovascular diseases? Arter. Thromb. Vasc. Biol. 2011, 31, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Vancheri, C.; Morini, E.; Prandi, F.R.; Alkhoury, E.; Celotto, R.; Romeo, F.; Novelli, G.; Amati, F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes 2021, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.P.; Aavik, E.; Ylä-Herttuala, S. Epigenetics and atherosclerosis. Biochim. Biophys. Acta 2009, 1790, 886–891. [Google Scholar] [CrossRef]
- Sharma, P.; Garg, G.; Kumar, A.; Mohammad, F.; Kumar, S.R.; Tanwar, V.S.; Sati, S.; Sharma, A.; Karthikeyan, G.; Brahmachari, V.; et al. Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene 2014, 541, 31–40. [Google Scholar] [CrossRef]
- Fernández-Sanlés, A.; Sayols-Baixeras, S.; Subirana, I.; Degano, I.R.; Elosua, R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis 2017, 263, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magenta, A.; Ciarapica, R.; Capogrossi, M.C. The Emerging Role of miR-200 Family in Cardiovascular Diseases. Circ. Res. 2017, 120, 1399–1402. [Google Scholar] [CrossRef]
- Magenta, A.; Cencioni, C.; Fasanaro, P.; Zaccagnini, G.; Greco, S.; Sarra-Ferraris, G.; Antonini, A.; Martelli, F.; Capogrossi, M.C. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011, 18, 1628–1639. [Google Scholar] [CrossRef]
- Ottaviani, L.; Juni, R.P.; de Abreu, R.C.; Sansonetti, M.; Sampaio-Pinto, V.; Halkein, J.; Hegenbarth, J.C.; Ring, N.; Knoops, K.; Kocken, J.M.M.; et al. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol. Ther. 2022, 30, 2257–2273. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, C.; Chen, I.; Yang, M.; Afzal, T.A.; An, W.; Maguire, E.M.; He, S.; Luo, I.; Wang, X.; et al. miRNA-200c-3ppromotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts. J. Pathol. 2021, 253, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, H.; Gupta, M. Creatinine Clearance. In StatPearls [Internet]; StatPearls Publishing LLC: Treasure Island, FL, USA, 2021. [Google Scholar]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing Kidney Function—Measured and Estimated Glomerular Filtration Rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura-Clapier, R.; Vassort, G. The hypodynamic state of the frog heart. Further evidence for a phosphocreatine—Creatine pathway. J. Physiol. 1980, 76, 583–589. [Google Scholar]
- Balestrino, M. Role of Creatine in the Heart: Health and Disease. Nutrients 2021, 13, 1215. [Google Scholar] [CrossRef]
- Hunter, A. Monographs on Biochemistry: Creatine and Creatinine. J. Chem. Educ. 1928, 5, 902. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 1983, 37, 478–494. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, R.; Pomerene, E. Recovery of Creatinine After Ingestion and After Intravenous Injection in Man. SAGE J. 1945, 32, 26–28. [Google Scholar] [CrossRef]
- Goldman, R. Creatinine Excretion in Renal Failure. Proc Soc. Exp. Biol. Med. 1954, 85, 446–448. [Google Scholar] [CrossRef]
- Shemesh, O.; Golbetz, H.; Kriss, J.P.; Myers, B.D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985, 28, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary Artery Disease in Patients with Chronic Kidney Disease: A Clinical Update. Curr. Cardiol. Rev. 2013, 9, 331–339. [Google Scholar] [CrossRef]
- Ix, J.H.; de Boer, I.H.; Wassel, C.L.; Criqui, M.H.; Shlipak, M.G.; Whooley, M.A. Urinary Creatinine Excretion Rate and Mortality in Persons With Coronary Artery Disease: The Heart and Soul Study. Circulation 2010, 121, 1295–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M. Dyslipidemia and cardiovascular risk: The importance of early prevention. QJM Int. J. Med. 2009, 102, 657–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.B.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzacasa, B.; Morini, E.; Pucci, S.; Murdocca, M.; Novelli, G.; Amati, F. LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int. J. Mol. Sci. 2017, 18, 290. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, S.; Chen, G.; He, S. MiR-200c-3p regulates pyroptosis by targeting SLC30A7 in diabetic retinopathy. Hum. Exp. Toxicol. 2022, 41, 9603271221099589. [Google Scholar] [CrossRef]
- Tuncay, E.; Bitirim, C.V.; Olgar, Y.; Durak, A.; Rutter, G.A.; Turan, B. Zn(2+)-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion 2019, 44, 41–52. [Google Scholar] [CrossRef]
- Nunemaker, C.S.; Benninger, R.K.P. Zinc Transport Gets Its Zing Back: Double-Knockout of ZnT7 and ZnT8 Reveals the Importance of Zinc Transporters to Insulin Secretion. Endocrinology 2016, 157, 4542–4544. [Google Scholar] [CrossRef]
- Chou, C.H.; Chang, N.W.; Shrestha, S.; Hsu, S.D.; Lin, Y.L.; Lee, W.H.; Yang, C.D.; Hong, H.C.; Wei, T.Y.; Tu, S.J.; et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016, 44, D239–D247. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Fontana, L.; Maiorca, F.; Centofanti, F.; Massa, R.; Silvestri, G.; Novelli, G.; Botta, A. Expanded [CCTG]n repetitions are not associated with abnormal methylation at the CNBP locus in myotonic dystrophy type 2 (DM2) patients. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Delgado-Cruzata, L.; Flom, J.D.; Kappil, M.; Ferris, J.S.; Liao, Y.; Santella, R.M.; Terry, M.B. Global methylation profiles in DNA from different blood cell types. Epigenetics 2011, 6, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houseman, E.A.; Kim, S.; Kelsey, K.T.; Wiencke, J.K. DNA Methylation in Whole Blood: Uses and Challenges. Curr. Environ. Health Rep. 2015, 2, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Cruzata, L.; Vin-Raviv, N.; Tehranifar, P.; Flom, J.; Reynolds, D.; Gonzalez, K.; Santella, R.M.; Terry, M.B. Correlations in global DNA methylation measures in peripheral blood mononuclear cells and granulocytes. Epigenetics 2014, 9, 1504–1510. [Google Scholar] [CrossRef] [Green Version]
- Koestler, D.C.; Christensen, B.C.; Karagas, M.R.; Marsit, C.J.; Langevin, S.M.; Kelsey, K.T.; Wiencke, J.L.; Houseman, E.A. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A validation analysis. Epigenetics 2013, 8, 816–826. [Google Scholar] [CrossRef]
- Martin-Trujillo, A.; Patel, N.; Richter, F.; Jadhav, B.; Garg, P.; Morton, S.U.; McKean, D.M.; DePalma, S.R.; Goldmuntz, E.; Gruber, D.; et al. Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLOS Genet. 2020, 16, e1009189. [Google Scholar] [CrossRef]
- Pontemezzo, E.; Foglio, E.; Vernucci, E.; Magenta, A.; D’Agostino, M.; Sileno, S.; Astanina, E.; Bussolino, F.; Pellegrini, L.; Germani, A.; et al. miR-200c-3p Regulates Epitelial-to-Mesenchymal Transition in Epicardial Mesothelial Cells by Targeting Epicardial Follistatin-Related Protein 1. Int. J. Mol. Sci. 2021, 22, 4971. [Google Scholar] [CrossRef]
CTR Subjects | CAD Patients | p-Value | |
---|---|---|---|
Age (years) | 67.5 ± 9.3 | 66.6 ± 9.8 | n.s. |
Gender | |||
Male (%) | 66.6 | 84.7 | p-value < 0.05 |
Hypertension (%) | 69.6 | 77.5 | n.s. |
Diabetes (%) | 21.7 | 39.4 | n.s. |
Dyslipidemia (%) | 47.8 | 88.7 | p-value < 0.0005 |
Smoking history | |||
Present (%) | 17.4 | 23.9 | n.s. |
Past (%) | 43.5 | 39.4 | n.s. |
Number of affected vessels | |||
1 vessel disease (%) | 0 | 45.1 | |
2 vessel disease (%) | 0 | 29.6 | |
3 vessel disease (%) | 0 | 25.4 | |
Type of affected vessel | |||
LAD (%) | 0 | 54.9 | |
CFX (%) | 0 | 31 | |
RCA (%) | 0 | 38 |
CTR Subjects (n = 2) | CAD Patients (n = 2) | p-Value | |
---|---|---|---|
Age (years) | 70.5 ± 11.1 | 71.5 ± 4.9 | n.s. |
Gender | |||
Male (%) | 100 | 100 | n.s. |
Hypertension (%) | 100 | 100 | n.s. |
Diabetes (%) | 0 | 50 | n.s. |
Dyslipidemia (%) | 100 | 100 | n.s. |
Smoking history | |||
Present (%) | 0 | 0 | n.s. |
Past (%) | 0 | 100 | p-value < 0.05 |
Number of affected vessels | |||
1 vessel disease (%) | 0 | 50 | n.s |
2 vessel disease (%) | 0 | 0 | n.s. |
3 vessel disease (%) | 0 | 50 | n.s. |
Type of affected vessel | |||
LAD (%) | 0 | 50 | n.s. |
CFX (%) | 0 | 100 | p-value < 0.05 |
RCA (%) | 0 | 50 | n.s. |
miRNAs | Methylation | |||||||
---|---|---|---|---|---|---|---|---|
miR Coordinates | hsa-miR ID | Regulation | FC | p-Value | DMSs | Genomic Coordinates (GRCh38) | Status | p-Value |
chr12:7072362-7073429 | miR-200c-3p | down | −2.97 | 0.009 | 2 | chr12:7073122-7073122 chr12:7072599-7072599 | Hypermethylated | 0.024 0.046 |
chr14:101515387- 101516483 | miR-655-3p | down | −3.6 | 0.016 | 1 | chr14:101515591-101515591 | Hypermethylated | 0.004 |
chr7:1062069-1063162 | miR-339-5p | up | 2.15 | 0.041 | 1 | chr7:1063097-1063097 | Hypermethylated | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vancheri, C.; Morini, E.; Prandi, F.R.; Barillà, F.; Romeo, F.; Novelli, G.; Amati, F. Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease. Int. J. Mol. Sci. 2023, 24, 1112. https://doi.org/10.3390/ijms24021112
Vancheri C, Morini E, Prandi FR, Barillà F, Romeo F, Novelli G, Amati F. Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease. International Journal of Molecular Sciences. 2023; 24(2):1112. https://doi.org/10.3390/ijms24021112
Chicago/Turabian StyleVancheri, Chiara, Elena Morini, Francesca Romana Prandi, Francesco Barillà, Francesco Romeo, Giuseppe Novelli, and Francesca Amati. 2023. "Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease" International Journal of Molecular Sciences 24, no. 2: 1112. https://doi.org/10.3390/ijms24021112
APA StyleVancheri, C., Morini, E., Prandi, F. R., Barillà, F., Romeo, F., Novelli, G., & Amati, F. (2023). Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease. International Journal of Molecular Sciences, 24(2), 1112. https://doi.org/10.3390/ijms24021112