Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose
Abstract
:1. Introduction
2. Results
2.1. E. cloacae Combined with a High Glucose Diet-Induced Lipid Accumulation in C. elegans
2.2. Effects of E. cloacae Combined with High Glucose on Fatty Acids Composition and Expression of Fat Metabolism-Related Genes
2.3. Antagonistic Activity of LAB
2.4. Screening of LAB with Anti-Lipid Accumulation Activity by Using HGD-E. cloacae Model
2.5. MJM60383 Reduced Fat Deposition and TG Content Only in HGD-E. cloacae Model
2.6. MJM60383 Altered Desaturation Index and Gene Expression
2.7. Adhesion of LAB to the Caco-2 Cell and Bacterial Colonization in the Gut of C. elegans
3. Discussion
4. Materials and Methods
4.1. C. elegans Culture and Bacterial Growth Conditions
4.2. Establishment of the Induced-Obesity Model by Feeding E. cloacae Combined with a High-Glucose Diet (HGD)
4.3. Oil Red O Staining and Quantification
4.4. Fatty Acids Composition
4.5. Antagonistic Activity of LAB
4.6. Screening of LAB with Inhibitory Activity for Lipid Accumulation
4.7. Triglyceride (TG)
4.8. RNA Extraction and Quantitative Real-Time PCR
4.9. Adherence of LAB to Caco-2 Cell
4.10. Counting of Bacteria in the Gut of C. elegans
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwashita, S.; Tanida, M.; Terui, N.; Ootsuka, Y.; Shu, M.; Kang, D.; Suzuki, M. Direct measurement of renal sympathetic nervous activity in high-fat diet-related hypertensive rats. Life Sci. 2002, 71, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.A.; Velazquez, K.T.; Herbert, K.M. Influence of High-Fat-Diet on Gut Microbiota: A Driving Force for Chronic Disease Risk. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 515–520. [Google Scholar] [CrossRef]
- Fei, N.; Zhao, L. An opportunistic pathogen isolated from the gut of obese humgerm-frees obesity in germfree mice. ISME J. 2013, 7, 880–884. [Google Scholar] [CrossRef] [PubMed]
- DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 2008, 83, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.-M.; Jeong, J.-J.; Woo, K.H.; Han, M.J.; Kim, D.-H. Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr. Res. 2016, 36, 337–348. [Google Scholar] [CrossRef]
- Shen, P.; Yue, Y.; Park, Y. A living model for obesity and aging research: Caenorhabditis elegans. Crit. Rev. Food Sci. Nutr. 2017, 58, 741–754. [Google Scholar] [CrossRef]
- Lemieux, G.A.; Liu, J.; Mayer, N.; Bainton, R.J.; Ashrafi, K.; Werb, Z. A whole-organism screen identifies new regulators of fat storage. Nat. Chem. Biol. 2011, 7, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Spanier, B.; Lasch, K.; Marsch, S.; Benner, J.; Liao, W.; Hu, H.; Kienberger, H.; Eisenreich, W.; Daniel, H. How the Intestinal Peptide Transporter PEPT-1 Contributes to an Obesity Phenotype in Caenorhabditits elegans. PLoS ONE 2009, 4, e6279. [Google Scholar] [CrossRef]
- Brock, T.J.; Browse, J.; Watts, J.L. Fatty Acid Desaturation and the Regulation of Adiposity in Caenorhabditis elegans. Genetics 2007, 176, 865–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Greenway, F.L. Caenorhabditis elegans as a model for obesity research. Int. J. Obes. 2011, 36, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gilst, M.R.; Hadjivassiliou, H.; Jolly, A.; Yamamoto, K.R. Nuclear Hormone Receptor NHR-49 Controls Fat Consumption and Fatty Acid Composition in C. elegans. PLoS Biol. 2005, 3, e53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noverr, M.C.; Huffnagle, G.B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 2004, 12, 562–568. [Google Scholar] [CrossRef]
- Duerkop, B.A.; Vaishnava, S.; Hooper, L.V. Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity 2009, 31, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Delzenne, N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 2009, 15, 1546–1558. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kumar, A.; Nagpal, R.; Mohania, D.; Behare, P.; Verma, V.; Kumar, P.; Poddar, D.; Aggarwal, P.K.; Henry, C.J.K.; et al. Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr. 2010, 61, 473–496. [Google Scholar] [CrossRef]
- Mennigen, R.; Bruewer, M. Effect of Probiotics on Intestinal Barrier Function. Ann. N. Y. Acad. Sci. 2009, 1165, 183–189. [Google Scholar] [CrossRef]
- Won, S.-M.; Chen, S.; Lee, S.Y.; Lee, K.E.; Park, K.W.; Yoon, J.-H. Lactobacillus sakei ADM14 Induces Anti-Obesity Effects and Changes in Gut Microbiome in High-Fat Diet-Induced Obese Mice. Nutrients 2020, 12, 3703. [Google Scholar] [CrossRef]
- Kobyliak, N.; Conte, C.; Cammarota, G.; Haley, A.P.; Styriak, I.; Gaspar, L.; Fusek, J.; Rodrigo, L.; Kruzliak, P. Probiotics in prevention and treatment of obesity: A critical view. Nutr. Metab. 2016, 13, 14. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-A.; Gu, W.; Lee, I.-A.; Joh, E.-H.; Kim, D.-H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.P.B.; Texeira, T.F.S.; Ferreira, A.B.; Peluzio, M.C.G.; Alfenas, R.C.G. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 2012, 108, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Tan, C.; Sun, X.; Zhao, Y.; Zhang, J.; Zhu, Y.; Bai, J.; Dong, Y.; Zho, X. Fermented barley β-glucan regulates fat deposition in Caenorhabditis elegans. J. Sci. Food Agric. 2020, 100, 3408–3417. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wei, Z.; Luo, H.; Yang, Y.; Wu, Z.; Gan, L.; Yang, X. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 5207–5214. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 2009, 20, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrandt, M.A.; Hoffmann, C.; Sherrill–Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.-Y.; Knight, R.; Ahima, R.S.; Bushman, F.; Wu, G.D. High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology 2009, 137, 1716–1724. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Yen, C.A.; Curran, S.P. Gene-diet interactions and aging in C. elegans. Exp. Gerontol. 2016, 86, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Carroll, K.; Gomez, C.; Shapiro, L. Tubby proteins: The plot thickens. Nat. Rev. Mol. Cell Biol. 2004, 5, 55–64. [Google Scholar] [CrossRef]
- Kleyn, P.W.; Fan, W.; Kovats, S.G.; Lee, J.J.; Pulido, J.C.; Wu, Y.; Berkemeier, L.R.; Misumi, D.J.; Holmgren, L.; Charlat, O.; et al. Identification and Characterization of the Mouse Obesity Gene tubby: A Member of a Novel Gene Family. Cell 1996, 85, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, A.; Deplancke, B.; Walhout, A.J.; Tissenbaum, H.A.C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab. 2005, 2, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chun, L.; Liu, J. A Comprehensive Understanding of Dietary Effects on C. elegans Physiology. Curr. Med. Sci. 2019, 39, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Nehrke, K. A reduction in intestinal cell pHi due to loss of the Caenorhabditis elegans Na+/H+ exchanger NHX-2 increases life span. J. Biol. Chem. 2003, 278, 44657–44660. [Google Scholar] [CrossRef] [Green Version]
- Jose, N.M.; Bunt, C.R.; McDowell, A.; Chiu, J.Z.; Hussain, M.A. Short communication: A study of Lactobacillus isolates’ adherence to and influence on membrane integrity of human Caco-2 cells. J. Dairy Sci. 2017, 100, 7891–7896. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.-Y.; Wan, L.; Wang, T.-X.; Jiang, J.-G. Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1 cells and Caenorhabditis elegans and prevented obesity in high-fat diet-fed mice. Pharmacol. Res. 2019, 147, 104347. [Google Scholar] [CrossRef]
- Escorcia, W.; Ruter, D.L.; Nhan, J.; Curran, S.P. Quantification of Lipid Abundance and Evaluation of Lipid Distribution in Caenorhabditis elegans by Nile Red and Oil Red O Staining. J. Vis. Exp. 2018, 133, e57352. [Google Scholar] [CrossRef]
- Farias-Pereira, R.; Zhang, Z.; Park, C.; Kim, D.; Kim, K.; Park, Y. Butein inhibits lipogenesis in Caenorhabditis elegans. BioFactors 2020, 46, 777–787. [Google Scholar] [CrossRef]
- Antimicrobial Activity of a Multispecies Probiotic (Ecologic 641) against Pathogens Isolated from Infected Pancreatic Necrosis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/17944834/ (accessed on 17 May 2022).
- Li, C.; Ning, L.; Cui, X.; Ma, X.; Li, J.; Wang, Z. Recombinant buckwheat trypsin inhibitor decreases fat accumulation via the IIS pathway in Caenorhabditis elegans. Exp. Gerontol. 2019, 128, 110753. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2(–ΔΔCT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Uccelletti, D.; Zanni, E.; Marcellini, L.; Palleschi, C.; Barra, D.; Mangoni, M.L. Anti-Pseudomonas Activity of Frog Skin Antimicrobial Peptides in a Caenorhabditis elegans Infection Model: A Plausible Mode of Action In Vitro and In Vivo. Antimicrob. Agents Chemother. 2010, 54, 3853–3860. [Google Scholar] [CrossRef] [PubMed]
Strain | Species * | Inhibition Zone (mm) |
---|---|---|
LGG | L. rhamnosus GG | 26 |
MJM60298 | L. pentosus | 28 |
MJM60335 | L. plantarum | 28 |
MJM60371 | Leuconostoc mesenteriodes | 2 |
MJM60376 | L. mesenteriodes | 21 |
MJM60381 | L. plantarum subsp | 19 |
MJM60383 | L. pentosus | 30 |
MJM60385 | L. rhamnosus | 18 |
MJM60390 | L. brevis | 18 |
MJM60395 | L. helveticus | 20 |
MJM60396 | L. paracasei | 18 |
MJM60397 | L. fermentum | 26 |
MJM60405 | Pediococcus pentasaceous | 17 |
MJM60419 | L. helveticus | 17 |
MJM60427 | L. acidophilus | 16 |
MJM60429 | L. plantarum | 25 |
MJM60432 | L. casei | 16 |
MJM60433 | L. casei | 23 |
MJM60434 | L. paracasei | 22 |
MJM60436 | L. zeae | 22 |
MJM60437 | L. helveticus | 22 |
MJM60439 | L. fermentum | 25 |
MJM60448 | L. rhamnosus | 25 |
MJM40494 | L. plantarum | 0 |
MJM60556 | L. sakei | 15 |
MJM60454 | L. rhamnosus | 16 |
MJM60456 | L. salivarius | 2 |
MJM60458 | L. reuteri | 18 |
MJM60559 | L. brevis | 2 |
MJM60460 | L. paracasei subsp.Paracasei | 17 |
MJM60461 | L. plantarum | 17 |
KACC12311 | Pediococcus pentosaceus | 15 |
Gene | Primer Sequence (5’→3’) | Amplicon (bp) | Tm (°C) |
---|---|---|---|
fat-6 | F: TCA ACA GCG CTG CTC ACT AT | 170 | 54 |
R: TTC GAC TGG GGT AAT TGA GG | |||
fat-7 | F: CAA CAG CGC TGC TCA CTA | 362 | 57 |
R: CAC CAA CGG CTA CAA CTG | |||
acs-2 | F: GCC TTG GAT GGG ATA GAG | 122 | 52 |
R: TGA TGG GAA GAC CAC AGT | |||
tub-1 | F: CCA CAG CAA GTT CAA GAG TC | 301 | 55 |
R: AGC CAC TAC ATC AGT GTT CC | |||
pept-1 | F: GTG TTC GGA GAA GTA TCT CG | 176 | 56 |
R: CAA GAG CAC AGT CGT GAG TA | |||
nhr-49 | F: GCT CTC AAG GCT CTG ACT C | 134 | 56 |
R: GAG AGC AGA GAA TCC ACC T | |||
act-1 | F: GAG CGT GGT TAC TCT TTC A | 68 | 54 |
R: CAG AGC TTC TCC TTG ATG TC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, M.; Werlinger, P.; Cho, J.-H.; Jang, N.; Choi, S.S.; Suh, J.-W.; Cheng, J. Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose. Int. J. Mol. Sci. 2023, 24, 280. https://doi.org/10.3390/ijms24010280
Gu M, Werlinger P, Cho J-H, Jang N, Choi SS, Suh J-W, Cheng J. Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose. International Journal of Molecular Sciences. 2023; 24(1):280. https://doi.org/10.3390/ijms24010280
Chicago/Turabian StyleGu, Mingkun, Pia Werlinger, Joo-Hyung Cho, Nari Jang, Shin Sik Choi, Joo-Won Suh, and Jinhua Cheng. 2023. "Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose" International Journal of Molecular Sciences 24, no. 1: 280. https://doi.org/10.3390/ijms24010280
APA StyleGu, M., Werlinger, P., Cho, J. -H., Jang, N., Choi, S. S., Suh, J. -W., & Cheng, J. (2023). Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose. International Journal of Molecular Sciences, 24(1), 280. https://doi.org/10.3390/ijms24010280