Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process
Abstract
:1. Introduction
2. Results
2.1. Accumulation of Anthocyanins in Detached Leaves of K. blossfeldiana
2.2. Primary Metabolites in Detached Leaves of K. blossfeldiana during Accumulation of Anthocyanins
2.3. Histological Observations of Detached Leaves of K. blossfeldiana during Anthocyanin Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Materials and the Application of Methyl Jasmonate (JA-Me)
4.2. Analyses of Total Anthocyanins and Proanthocyanidins
4.3. Polar Metabolite Analyses
4.4. Histological Analyses of the Local Occurrence of Anthocyanins in Leaves
4.5. Statitistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, G.F.; Shtein, R. A Review of Horticulturally Desirable Characters in Kalanchoe (Crassulaceae subfam. Kalanchooideae): Variable and Deviating Vegetative and Reproductive Morphologies Useful in Breeding Programmes. Haseltonia 2022, 28, 106–119. [Google Scholar] [CrossRef]
- Brulfert, J.; Guclu, S.; Taybi, T.; Pierre, J.-N. Enzymatic responses to water-stress in detached leaves of the CAM plant Kalanchoe blossfeldiana Poelln. Plant Physiol. Biochem. 1993, 31, 491–497. [Google Scholar]
- Niseida, K. Studies on Stoiuatal Movement of Crassulacean Plants in Relation to the Acid Metabolism. Physiol. Plant. 1963, 16, 281–310. [Google Scholar] [CrossRef]
- Zabka, G.G.; Chaturvedi, S.N. Water conservation in Kalanchoe blossfeldiana in relation to carbon dioxide dark fixation. Plant Physiol. 1975, 55, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Lüttge, U. Day-night changes of citric-acid levels in crassulacean acid metabolism: Phenomenon and ecophysiological significance. Plant Cell. Environ. 1988, 11, 445–451. [Google Scholar] [CrossRef]
- Lüttge, U.; Ball, E. Proton and malate fluxes in cells of Bryophyllum daigremontianum leaf slices in relation to potential osmotic pressure of the medium. Z. Pflanzenphysiol. 1974, 73, 326–338. [Google Scholar] [CrossRef]
- Lüttge, U.; Ball, E. Mineral ion fluxes in slices of acidified and de-acidified leaves of the CAM plant Bryophyllum daigremontianum. Z. Pflanzenphysiol. 1974, 73, 339–348. [Google Scholar] [CrossRef]
- Winter, K.; Smith, J.A.C. CAM photosynthesis: The acid test. New Phytol. 2022, 233, 599–609. [Google Scholar] [CrossRef]
- Balsa, C.; Albert, G.; Brulfert, J.; Queiroz, O.; Boudet, A.M. Photoperiodic control of phenolic metabolism in Kalanchoe blossfeldiana. Phytochemistry 1979, 18, 1159–1163. [Google Scholar] [CrossRef]
- Hayashi, T.; Konishi, K. Inflorescence development and composition of Kalanchoe (Kalanchoe blossfeldiana Poelln.). J. Jpn. Soc. Hort. Sci. 1991, 60, 167–173. [Google Scholar] [CrossRef]
- Saniewski, M.; Horbowicz, M.; Puchalski, J.; Ueda, J. Methyl jasmonate stimulates the formation and accumulation of anthocyanins in Kalanchoe blossfeldiana. Acta Phys. Plant. 2003, 25, 143–149. [Google Scholar] [CrossRef]
- Grotewold, E. The genetics and biochemistry of flora pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyland, M.; Ng, Y.L.; Thimann, K.V. Formation of anthocyanin in leaves of Kalanchoe blossfeldiana—A photoperiodic response. Plant Physiol. 1963, 38, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Butelli, E.; Martin, C. Engineering anthocyanin biosynthesis in plants. Curr. Opin. Plant Biol. 2014, 19, 81–90. [Google Scholar] [CrossRef]
- Boldt, J.K.; Meyer, M.H.; Erwin, J.E. Foliar anthocyanins: A horticultural review. Hortic. Rev. 2014, 42, 209–251. [Google Scholar] [CrossRef]
- Saniewski, M.; Miyamoto, K.; Ueda, J. Methyl jasmonate induces gums and stimulates anthocyanin formation in peach shoots. J. Plant Growth Regul. 1998, 17, 121–124. [Google Scholar] [CrossRef]
- Saniewski, M.; Miszczak, A.; Kawa-Miszczak, L.; Węgrzynowicz-Lesiak, E.; Miyamoto, K.; Ueda, J. Effect of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. J. Plant Growth Regul. 1998, 17, 33–37. [Google Scholar] [CrossRef]
- Saniewski, M.; Horbowicz, M.; Puchalski, J. Induction of anthocyanins accumulation by methyl jasmonate in shoots of Crassula multicava Lam. Acta Agrobot. 2006, 59, 43–50. [Google Scholar] [CrossRef]
- Góraj-Koniarska, J.; Stochmal, A.; Oleszek, W.; Mołdoch, J.; Saniewski, M. Elicitation of anthocyanin production in roots of Kalanchoe blossfeldiana by methyl jasmonate. Acta Biol. Crac. Ser. Bot. 2015, 57, 141–148. [Google Scholar] [CrossRef]
- Horbowicz, M.; Mioduszewska, H.; Koczkodaj, D.; Saniewski, M. The effect of cis-jasmone, jasmonic acid and methyl jasmonate on accumulation of anthocyanins and procyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc. Bot. Pol. 2009, 78, 271–277. [Google Scholar] [CrossRef]
- Horbowicz, M.; Grzesiuk, A.; Dębski, H.; Koczkodaj, D.; Saniewski, M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Crac. Ser. Bot. 2008, 50, 71–78. [Google Scholar]
- Dixon, R.A.; Xie, D.Y.; Sharma, S.B. Proanthocyanidins—A Final Frontier in Flavonoid Research? New Phytol. 2005, 165, 9–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Ju, Y.; Ma, T.; Zhang, J.; Fang, Y.; Sun, X. New Perspectives on the Biosynthesis, Transportation, Astringency Perception and Detection Methods of Grape Proanthocyanidins. Crit. Rev. Food Sci. Nutr. 2021, 61, 2372–2398. [Google Scholar] [CrossRef]
- Bogs, J.; Downey, M.O.; Harvey, J.S.; Ashton, A.R.; Tanner, G.J.; Robinson, S.P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 2005, 139, 652–663. [Google Scholar] [CrossRef] [Green Version]
- Mellway, R.D.; Constabel, C.P. Metabolic engineering and potential functions of proanthocyanidins in poplar. Plant Signal. Behav. 2009, 4, 790–792. [Google Scholar] [CrossRef] [Green Version]
- Lavola, A. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol. 1998, 18, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223. [Google Scholar] [CrossRef]
- Peters, D.J.; Constabel, C.P. Molecular analysis of herbivore—Induced condensed tannin synthesis: Cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J. 2002, 32, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A.; Liu, C.; Jun, J.H. Metabolic Engineering of Anthocyanins and Condensed Tannins in Plants. Curr. Opin. Biotechnol. 2013, 24, 329–335. [Google Scholar] [CrossRef]
- Szwabe, W.W. Studies on the role of the leaf epiderm in photoperiodic perception in Kalanchoe blossfeldiana. J. Exp. Bot. 1968, 19, 108–113. [Google Scholar] [CrossRef]
- Woo-Gyu, J.; Kim, J.-S.; Kim, C.-S.D.; Sung, M.-W. Epidermal structure and stomatal types in various parts of each organ of Kalanchoe. Korean J. Bot. 1987, 30, 79–94. [Google Scholar]
- Sipos, M.; Bunta, D. Histo-anatomy of vegetative organs at Kalanchoe blossfeldiana Poellnitz. An. Univ. Craiova Ser. Biol. Hortic. Tehnol. Prelucr. Prod. Agric. Ing. Mediu. 2011, 26, 380–393. [Google Scholar]
- Laskar, A.R.; Islam, T.; Hasan, N.; Das, S.K.; Hossain, M. Comparative morpho-anatomical analysis of Kalanchoe Adans. Species from Bangladesh. Bangladesh J. Bot. 2022, 51, 229–235. [Google Scholar] [CrossRef]
- Phillips, R.D.; Jennings, D.H. Succulence, cations and organic acids in leaves of Kalanchoe daigremontiana grown in long and short days in soil and water culture. New Phytol. 1976, 77, 599–611. [Google Scholar] [CrossRef]
- Morrison, R.J.; Dekock, P.C. Glyceric acid in broad bean (Vicia faba L.). Nature 1959, 184, 819. [Google Scholar] [CrossRef]
- Palmer, J.K. Occurrence of d-glyceric acid in tobacco leaves. Science 1956, 123, 41. [Google Scholar] [CrossRef]
- Tewfik, S.; Stumpf, P.K. Carbohydrate metabolism in higher plants: IV. Observations on triose phosphate dehydrogenase. J. Biol. Chem. 1951, 192, 519–526. [Google Scholar] [CrossRef]
- Isherwood, F.A.; Chen, Y.T.; Mapson, L.W. Isolation of d-glyceric acid from cress seedlings and its relationship to the synthesis of L-ascorbic acid. Biochem. J. 1953, 56, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Munemasa, S.; Uraji, M.; Nakamura, Y.; Mori, I.C.; Murata, Y. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 2011, 156, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Munemasa, S.; Mori, I.C.; Murata, Y. Methyl jasmonatye signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav. 2011, 6, 939–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhita, D.; Raghavendra, A.S.; Kwak, J.M.; Vavasseur, A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl-jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 2004, 134, 1536–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feys, B.J.F.; Benedetti, C.E.; Penfold, C.N.; Turner, J.G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 1994, 6, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Smith, M.A.L.; Pépin, M.-F. Effects of exogenous methyl jasmonate in elicited anthocyanin-production cell cultures of ohelo (Vaccinium pahalae). In Vitro Cell. Dev. Biol. Plant 1999, 35, 106–113. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Grimes, H.D. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 1991, 88, 6745–6749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.; Yan, F.; Hu, Z.; Wei, S.; Lai, J.; Chen, G. Accumulation of anthocyanin and its associated gene expression in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee) sprouts when exposed to light, dark, sugar, and methyl jasmonate. J. Agric. Food Chem. 2019, 67, 856–866. [Google Scholar] [CrossRef]
- Creelman, R.A.; Mullet, J.E. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic stress. Proc. Natl. Acad. Sci. USA 1995, 92, 4114–4119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rózsavölgyi, T.; Lechoczki, E.; Mihalik, E. Preliminary studies on some chlorophyll fluorescence parameters in Crassulaceae species of different leaf characters under water stress. Acta Biol. Szeg. 2005, 49, 223–225. [Google Scholar]
- Sato, C.; Aikawa, K.; Sugiyama, S.; Nabeta, K.; Masuta, C.; Matsuura, H. Distal transport of exogenously applied jasmonoyl-isoleucinne with wounding stress. Plant Cell Physiol. 2011, 52, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.S.; Song, J.T.; Cherong, J.-J.; Lee, Y.-H.; Lee, Y.-W.; Hwang, I.; Lee, J.S.; Choi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 2001, 98, 4788–4793. [Google Scholar] [CrossRef] [Green Version]
- Tomogami, S.; Node, K.; Abe, M.; Agrawal, G.K.; Rakwal, R. Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signal. Behav. 2012, 7, 1378–1381. [Google Scholar] [CrossRef] [Green Version]
- Jarecka Boncela, A.; Saniewska, A.; Góraj, J.; Saniewski, M. The possible causes of leaf spotting of Kalanchoe blossfeldiana: Metabolic and potential methods of their control. Prog. Plant Prot. 2012, 52, 629–633. [Google Scholar]
- Saniewski, M.; Saniewska, A.; Urbanek, H. Inhibition of anthocyanins accumulation in detached leaves of Crassula multicava Lem. Around the infected spots caused by Pestalotia sp. Zesz Probl. Post. Nauk Rol. 2008, 524, 393–400. [Google Scholar]
- Horbowicz, M.; Kosson, R.; Sempruch, C.; Dębski, H.; Koczkodaj, D. Effect of methyl jasmonate vapors on level of anthocyanins, biogenic amines and decarboxylases activity in seedlings of chosen vegetable species. Acta Sci. Pol. Hort. Cult. 2014, 13, 3–15. [Google Scholar]
- López, R.; Portu, J.; González-Arenzana, L.; Garijo, P.; Gutiérrez, A.R.; Santamaría, P. Ethephon foliar application: Impact on the phenolic and technological Tempranillo grapes maturity. J. Food Sci. 2021, 86, 803–812. [Google Scholar] [CrossRef]
- Li, J.; Ma, N.; An, Y.; Wang, L. FcMADS9 of fig regulates anthocyanin biosynthesis. Sci. Hortic. 2021, 278, 109820. [Google Scholar] [CrossRef]
- Mancinelli, A.L. Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiol. 1984, 75, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Szablińska-Piernik, J.; Lahuta, L.B.; Stałanowska, K.; Horbowicz, M. The Imbibition of Pea (Pisum sativum L.) Seeds in Silver Nitrate Reduces Seed Germination, Seedlings Development and Their Metabolic Profile. Plants 2022, 11, 1877. [Google Scholar] [CrossRef]
- Sun, X.; Weckwerth, W. COVAIN: A toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 2012, 8, 81–93. [Google Scholar] [CrossRef]
Leaf Type | Small Leaves | Large Leaves |
---|---|---|
On plant | 13.52 ± 0.38 a | 11.56 ± 0.18 b |
Kept in the normal (natural) position | 13.95 ± 0.33 a | 11.81 ± 0.46 b |
Kept in the inverted position | 14.19 ± 0.09 a | 11.12 ± 0.15 b |
Leaf Type | Mean ± SD |
---|---|
On plant | 8.39 ± 0.09 b |
Kept in the normal (natural) position | 7.35 ± 0.27 d |
Kept in the inverted position | 7.81 ± 0.33 cd |
Treated with lanolin and kept in the inverted position | 9.88 ± 0.17 a |
Treated with 1% JA-Me and kept in the inverted position | 9.55 ± 0.29 a |
Treated with 0.5% JA-Me and kept in the inverted position | 9.26 ± 0.19 a |
Treated with 0.25% JA-Me and kept in the inverted position | 8.20 ± 0.41 abcd |
Treated with 0.1% JA-Me and kept in the inverted position | 8.42 ± 0.05 bc |
Carbohydrate | Left on Plant | Normal Position | Inverted Position | Left on Plant | Normal Position | Inverted Position |
---|---|---|---|---|---|---|
Large leaves | Small leaves | |||||
Fructose | 0.95 ± 0.05 b | 2.02 ± 0.09 a | 2.34 ± 0.15 a | 0.72 ± 0.01 c | 2.06 ± 0.13 a | 2.54 ± 0.15 a |
Glucose | 0.97 ± 0.05 b | 1.88 ± 0.16 a | 2.17 ± 0.12 a | 0.98 ± 0.04 b | 2.64 ± 0.17 a | 2.68 ± 0.15 a |
Galactose | 0.90 ± 0.02 b | 1.32 ± 0.08 a | 1.55 ± 0.06 a | 0.68 ± 0.03 c | 1.41 ± 0.13 a | 1.59 ± 0.08 a |
myo-Inositol | 0.29 ± 0.01 b | 0.61 ± 0.02 a | 0.62 ± 0.03 a | 0.26 ± 0.01 b | 0.67 ± 0.01 a | 0.67 ± 0.01 a |
Sucrose | 2.82 ± 0.05 c | 4.00 ± 0.09 a | 3.36 ± 0.07 b | 1.38 ± 0.12 d | 0.73 ± 0.06 f | 0.95 ± 0.04 e |
Acid | Left on Plant | Normal Position | Inverted Position | Left on Plant | Normal Position | Inverted Position |
---|---|---|---|---|---|---|
Large leaves | Small leaves | |||||
Succinic | 0.26 ± 0.01 a | 0.14 ± 0.01 b | 0.15 ± 0.02 b | 0.28 ± 0.01 a | 0.11 ± 0.01 b | 0.12 ± 0.01 b |
Fumaric | 0.13 ± 0.02 a | 0.09 ± 0.01 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a | 0.08 ± 0.02 a | 0.08 ± 0.01 a |
Citric | 12.99 ± 0.26 b | 16.25 ± 0.44 a | 17.29 ± 0.57 a | 6.59 ± 0.17 c | 12.65 ± 0.81 b | 14.02 ± 0.56 b |
Malic | 43.69 ± 4.06 ab | 19.22 ± 0.57 c | 21.55 ± 1.13 c | 32.60 ± 0.30 b | 20.72 ± 0.20 c | 21.96 ± 0.89 c |
Shikimic | 0.15 ± 0.02 b | 0.10 ± 0.01 b | 0.10 ± 0.01 b | 0.35 ± 0.04 a | 0.27 ± 0.01 a | 0.24 ± 0.01 a |
Glyceric | 0.72 ± 0.06 b | 0.05 ± 0.01 d | 0.05 ± 0.01 d | 2.29 ± 0.01 a | 0.20 ± 0.01 c | 0.21 ± 0.01 c |
Lactic | 0.19 ± 0.02 a | 0.25 ± 0.08 a | 0.19 ± 0.06 a | 0.25 ± 0.10 a | 0.11 ± 0.07 a | 0.18 ± 0.07 a |
Oxalic | 0.76 ± 0.12 a | 0.36 ± 0.09 ab | 0.33 ± 0.01 b | 0.55 ± 0.02 a | 0.32 ± 0.01 b | 0.31 ± 0.03 b |
Phosphoric | 2.94 ± 0.35 a | 2.46 ± 0.21 a | 2.74 ± 0.16 a | 1.81 ± 0.08 b | 2.71 ± 0.09 a | 3.01 ± 0.08 a |
Carbohydrate | A | B | C0 | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|
Fructose | 1.20 ± 0.02 d | 1.88 ± 0.03 c | 3.31 ± 0.32 c | 12.68 ± 2.43 b | 21.74 ± 0.92 a | 24.10 ± 1.12 a | 13.16 ± 3.49 ab |
Glucose | 1.35 ± 0.28 c | 2.05 ± 0.05 c | 3.41 ± 0.26 c | 9.56 ± 1.05 b | 15.10 ± 0.53 a | 16.26 ± 0.82 a | 9.19 ± 1.63 bc |
Galactose | 0.57 ± 0.02 c | 1.52 ± 0.03 b | 0.52 ± 0.15 c | 2.43 ± 0.48 ab | 0.55 ± 0.23 c | 0.38 ± 0.15 bc | 0.97 ± 0.48 abc |
Inositol | 0.21 ± 0.02 a | 0.26 ± 0.01 a | 0.26 ± 0.01 a | 0.21 ± 0.02 a | 0.14 ± 0.01 b | 0.15 ± 0.02 a | 0.13 ± 0.03 a |
Sucrose | 3.76 ± 0.10 c | 3.66 ± 0.02 c | 4.27 ± 0.21 b | 6.27 ± 0.46 a | 4.45 ± 0.13 b | 3.34 ± 0.25 bc | 3.84 ± 0.27 b |
Acid | A | B | C0 | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|
Succinic | 0.21 ± 0.03 b | 0.27 ± 0.02 b | 0.15 ± 0.01 b | 0.35 ± 0.01 a | 0.35 ± 0.00 ab | 0.37 ± 0.01 a | 0.33 ± 0.02 ab |
Fumaric | 0.13 ± 0.09 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.08 ± 0.02 a | 0.09 ± 0.01 a | 0.10 ± 0.02 a | 0.09 ± 0.02 a |
Citric | 9.24 ± 0.17 b | 13.27 ± 0.68 a | 13.91 ± 0.21 a | 8.86 ± 0.68 b | 7.80 ± 0.15 b | 9.30 ± 0.44 b | 9.87 ± 1.04 b |
Malic | 27.98 ± 0.62 a | 13.53 ± 2.33 bc | 13.39 ± 5.01 abc | 18.81 ± 0.17 b | 17.95 ± 0.79 b | 9.33 ± 2.94 c | 5.78 ± 1.70 c |
Shikimic | 0.05 ± 0.02 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.05 ± 0.02 a |
Glyceric | 0.74 ± 0.02 a | 0.05 ± 0.01 c | 0.06 ± 0.01 c | 0.43 ± 0.08 b | 0.48 ± 0.02 b | 0.55 ± 0.01 b | 0.44 ± 0.06 b |
Lactic | 0.66 ± 0.10 ab | 0.14 ± 0.06 cd | 0.11 ± 0.03 d | 0.07 ± 0.02 d | 0.14 ± 0.02 b | 0.13 ± 0.05 cd | 0.15 ± 0.03 d |
Oxalic | 0.55 ± 0.02 a | 0.22 ± 0.04 b | 0.13 ± 0.02 b | 0.13 ± 0.03 b | 0.06 ± 0.00 b | 0.05 ± 0.03 b | 0.06 ± 0.04 b |
Phosphoric | 1.30 ± 0.08 b | 1.42 ± 0.03 b | 1.77 ± 0.02 a | 0.68 ± 0.16 c | 1.03 ± 0.02 bc | 1.40 ± 0.05 b | 1.93 ± 0.36 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saniewski, M.; Szablińska-Piernik, J.; Marasek-Ciołakowska, A.; Mitrus, J.; Góraj-Koniarska, J.; Lahuta, L.B.; Wiczkowski, W.; Miyamoto, K.; Ueda, J.; Horbowicz, M. Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process. Int. J. Mol. Sci. 2023, 24, 626. https://doi.org/10.3390/ijms24010626
Saniewski M, Szablińska-Piernik J, Marasek-Ciołakowska A, Mitrus J, Góraj-Koniarska J, Lahuta LB, Wiczkowski W, Miyamoto K, Ueda J, Horbowicz M. Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process. International Journal of Molecular Sciences. 2023; 24(1):626. https://doi.org/10.3390/ijms24010626
Chicago/Turabian StyleSaniewski, Marian, Joanna Szablińska-Piernik, Agnieszka Marasek-Ciołakowska, Joanna Mitrus, Justyna Góraj-Koniarska, Lesław B. Lahuta, Wiesław Wiczkowski, Kensuke Miyamoto, Junichi Ueda, and Marcin Horbowicz. 2023. "Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process" International Journal of Molecular Sciences 24, no. 1: 626. https://doi.org/10.3390/ijms24010626
APA StyleSaniewski, M., Szablińska-Piernik, J., Marasek-Ciołakowska, A., Mitrus, J., Góraj-Koniarska, J., Lahuta, L. B., Wiczkowski, W., Miyamoto, K., Ueda, J., & Horbowicz, M. (2023). Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process. International Journal of Molecular Sciences, 24(1), 626. https://doi.org/10.3390/ijms24010626