A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max)
Abstract
:1. Introduction
2. Results
2.1. Seed Content, Composition and Selection of Lines for DE
2.2. RNA-seq and DE Output Quality
2.3. High vs. Low Seed Protein Content DE
2.4. High vs. Low 11S Content DE
2.5. Gene Ontology
2.6. East vs. West Analysis
3. Discussion
4. Materials and Methods
4.1. Lines, Locations, and Planting
4.2. Sampling and RNA Extraction
4.3. RNA-seq Library Preparation, Alignment, Read Mapping, Read Counting, and DE
4.4. Determination of Soybean Sample Seed Content
4.5. Candidate Gene Selection
4.6. Gene Ontology and Pathway Analysis
4.7. Expression Profile Matrices and Heatmaps
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
11S | Glycinin |
7S | β-Conglycinin |
ABA | Abscisic acid |
Ac | Activator |
ACP | Enoyl-Acyl Carrier Protein |
Arf | ADP-ribosylation factor |
Avr | Avirulence |
B | Brandon |
BLASTP | Basic Local Alignment Search Tool |
BP | Biological process |
bZip | Basic Leucine Zipper domain |
Cys | Cysteine |
DE | Differential Expression/Differentially Expressed |
Din | Dark Inducible |
DPE | Disproportionating Enzyme |
DUF | Domain of Unknown Function |
EMB | Embryo defective |
ETI | Effector Triggered Immunity |
GO | Gene Ontology |
hAT | Histone Acetyltransferases |
JA | Jasmonic Acid |
log2FC | log2 fold change |
LRR | Leucine Rich Repeat |
M | Morden |
Met | Methionine |
MF | Molecular Function |
NAD(P) | Nicotinamide Adenine Dinucleotide Phosphate |
NTR | Nitrate Transporter |
O | Ottawa |
OPDA | Oxylipin 12-Oxophytodienoic Acid |
OPR | 12-Oxophytodienoate Reductase |
PC | Principle Component |
PFAM | Protein Family database |
PPI | Protein-Protein Interaction |
PPR | Pentatricopeptide Repeat |
PTR | Peptide Transporter |
QTL | Quantitative Trait Loci |
R | Resistance |
R5 | Reproductive stage 5 |
RNA-seq | RNA-sequencing |
ROM1 | Regulator of MAT1 |
S | Saskatoon |
SA | Salicylic Acid |
SBT | Subtilase |
SPL | Squamosa Promoter-binding protein-like |
TAIR10 | The Arabidopsis Information Resource |
TIR | Toll-Interleukin-1-Receptor |
TP | Total seed storage Protein |
TPP2 | Tripeptidyl-Peptidase II |
TPR | Tetratricopeptide Repeat |
TTF | Transposes Transcription Factor |
WNK | With no lysine |
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprent, J.I.; Sprent, P. Nitrogen Fixing Organisms, 1st ed.; Sprent, J.I., Ed.; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-0-412-34690-3. [Google Scholar]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Ma, Y.; Kan, G.; Zhang, X.; Wang, Y.; Zhang, W.; Du, H.; Yu, D. Quantitative Trait Loci (QTL) Mapping for Glycinin and β-Conglycinin Contents in Soybean (Glycine Max L. Merr.). J. Agric. Food Chem. 2016, 64, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Mori, Y.; Yasue, K.; Maruyama, N.; Kitamura, K.; Abe, J. Knockdown of the 7S Globulin Subunits Shifts Distribution of Nitrogen Sources to the Residual Protein Fraction in Transgenic Soybean Seeds. Plant Cell Rep. 2014, 33, 1963–1976. [Google Scholar] [CrossRef] [Green Version]
- Breene, W.M.; Lin, S.; Hardman, L.; Orf, J. Protein and Oil Content of Soybeans from Different Geographic Locations. J. Am. Oil Chem. Soc. 1988, 65, 1927–1931. [Google Scholar] [CrossRef]
- Hooker, J.C.; Nissan, N.; Luckert, D.; Zapata, G.; Hou, A.; Mohr, R.M.; Glenn, A.J.; Barlow, B.; Daba, K.A.; Warkentin, T.D.; et al. GmSWEET29 and Paralog GmSWEET34 Are Differentially Expressed between Soybeans Grown in Eastern and Western Canada. Plants 2022, 11, 2337. [Google Scholar] [CrossRef]
- Zhang, H.; Goettel, W.; Song, Q.; Jiang, H.; Hu, Z.; Wang, M.L.; Charles An, Y.Q. Selection of GmSWEET39 for Oil and Protein Improvement in Soybean. PLoS Genet. 2020, 16, e1009114. [Google Scholar] [CrossRef]
- Borisjuk, L.; Nguyen, T.H.; Neuberger, T.; Rutten, T.; Tschiersch, H.; Claus, B.; Feussner, I.; Webb, A.G.; Jakob, P.; Weber, H.; et al. Gradients of Lipid Storage, Photosynthesis and Plastid Differentiation in Developing Soybean Seeds. New Phytol. 2005, 167, 761–776. [Google Scholar] [CrossRef]
- Rawsthorne, S. Carbon Flux and Fatty Acid Synthesis in Plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef]
- Herman, E.M.; Larkins, B.A. Protein Storage Bodies and Vacuoles. Plant Cell 1999, 11, 601–613. [Google Scholar] [CrossRef]
- Peng, I.C.; Quass, D.W.; Dayton, W.R.; Allen, C.E. Physico Chemical Properties of Soybean 11S Globulin-A Review. Cereal Chem. 1984, 61, 480–490. [Google Scholar]
- Tsukada, Y.; Kitamura, K.; Harada, K.; Kaizuma, N. Genetic Analysis of Subunits of Two Major Storage Proteins (β-Conglycinin and Glycinin) in Soybean Seeds. Jpn. J. Breed. 1986, 36, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, H.B.; Jez, J.M. Review: The Promise and Limits for Enhancing Sulfur-Containing Amino Acid Content of Soybean Seed. Plant Sci. 2018, 272, 14–21. [Google Scholar] [CrossRef]
- Panthee, D.R.; Kwanyuen, P.; Sams, C.E.; West, D.R.; Saxton, A.M.; Pantalone, V.R. Quantitative Trait Loci for β-Conglycinin (7S) and Glycinin (11S) Fractions of Soybean Storage Protein. JAOCS J. Am. Oil Chem. Soc. 2004, 81, 1005–1012. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Han, F.; Yan, S.; Wang, L.; Sun, J. Evaluation of the Chemical Quality Traits of Soybean Seeds, as Related to Sensory Attributes of Soymilk. Food Chem. 2015, 173, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.C.; Dickinson, C.D.; Cho, T.J.; Thanh, V.H.; Scallon, B.J.; Fischer, R.L.; Sims, T.L.; Drews, G.N.; Goldberg, R.B. Characterization of the Glycinin Gene Family in Soybean. Plant Cell 1989, 1, 313–328. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.M. Molecular Evolution of Glycinin and β-Conglycinin Gene Families in Soybean (Glycine Max L. Merr.). Heredity 2011, 106, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Hao, W.; Gao, S.; Ma, X.; Zheng, Y.; Meng, F.; Fan, X.; Wang, Y.; Wang, Y.; Wang, S. Gene mining of sulfur-containing amino acid metabolic enzymes in soybean. Yi Chuan 2014, 36, 934–942. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, A.; Zhao, Q.; Li, Z.; Lamboro, A.; He, H.; Li, Y.; Jiao, S.; Guan, S.; Liu, S.; et al. Genome-Wide Identification and Analysis of Long Non-Coding RNAs Involved in Fatty Acid Biosynthesis in Young Soybean Pods. Sci. Rep. 2021, 11, 7603. [Google Scholar] [CrossRef]
- Canadian Grain Commission. Quality of Canadian Oilseed-Type Soybeans; Canadian Grain Commission: Winnipeg, MB, Canada, 2021.
- Soybase. Available online: https://soybase.org/ (accessed on 17 May 2022).
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. Revigo Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [Green Version]
- Revigo. Available online: http://revigo.irb.hr/ (accessed on 17 May 2022).
- Schaller, A.; Stintzi, A.; Graff, L. Subtilases–Versatile Tools for Protein Turnover, Plant Development, and Interactions with the Environment. Physiol. Plant. 2012, 145, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Lanoix, J.; Ouwendijk, J.; Lin, C.C.; Stark, A.; Love, H.D.; Ostermann, J.; Nilsson, T. GTP Hydrolysis by Arf-1 Mediates Sorting and Concentration of Golgi Resident Enzymes into Functional COP I Vesicles. EMBO J. 1999, 18, 4935–4948. [Google Scholar] [CrossRef] [PubMed]
- Dascher, C.; Balch, W.E. Dominant Inhibitory Mutants of ARF1 Block Endoplasmic Reticulum to Golgi Transport and Trigger Disassembly of the Golgi Apparatus. J. Biol. Chem. 1994, 269, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Hillmer, S.; Movafeghi, A.; Robinson, D.G.; Hinz, G. Vacuolar Storage Proteins Are Sorted in the Cis-Cisternae of the Pea Cotyledon Golgi Apparatus. J. Cell Biol. 2001, 152, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hara-Nishimura, I.; Shimada, T.; Hatano, K.; Takeuchi, Y.; Nishimura, M. Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large Precursor-Accumulating Vesicles. Plant Cell 1998, 10, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Okazaki, Y.; Zhang, R.; Saito, K.; Nikolau, B.J. Dual-Localized Enzymatic Components Constitute the Fatty Acid Synthase Systems in Mitochondria and Plastids. Plant Physiol. 2020, 183, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Léran, S.; Varala, K.; Boyer, J.-C.; Chiurazzi, M.; Crawford, N.; Daniel-Vedele, F.; David, L.; Dickstein, R.; Fernandez, E.; Forde, B.; et al. A Unified Nomenclature of Nitrate Transporter 1/Peptide Transporter Family Members in Plants. Trends Plant Sci. 2014, 19, 5–9. [Google Scholar] [CrossRef]
- Huang, W.; Bai, G.; Wang, J.; Zhu, W.; Zeng, Q.; Lu, K.; Sun, S.; Fang, Z. Two Splicing Variants of OsNPF7.7 Regulate Shoot Branching and Nitrogen Utilization Efficiency in Rice. Front. Plant Sci. 2018, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Suo, H.; Zheng, Y.; Liu, K.; Zhuang, C.; Kahle, K.T.; Ma, H.; Yan, X. The Soybean Root-Specific Protein Kinase GmWNK1 Regulates Stress-Responsive ABA Signaling on the Root System Architecture. Plant J. 2010, 64, 230–242. [Google Scholar] [CrossRef]
- Chern, M.S.; Eiben, H.G.; Bustos, M.M. The Developmentally Regulated BZIP Factor ROM1 Modulates Transcription from Lectin and Storage Protein Genes in Bean Embryos. Plant J. 1996, 10, 135–148. [Google Scholar] [CrossRef]
- Bordo, D.; Bork, P. The Rhodanese/Cdc25 Phosphatase Superfamily. Sequence-Structure-Function Relations. EMBO Rep. 2002, 3, 741–746. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Xue, D.; Wang, J.; Yan, M.; Liu, G.; Dong, G.; Zeng, D.; Lu, Z.; Zhu, X.; et al. Regulation of OsSPL14 by OsmiR156 Defines Ideal Plant Architecture in Rice. Nat. Genet. 2010, 42, 541–544. [Google Scholar] [CrossRef]
- Burton, J.W.; Wilcox, C.R. Soybeans: Improvement, Production, and Uses. Agronomy 1987, 16, 211–247. [Google Scholar]
- Manna, S. An Overview of Pentatricopeptide Repeat Proteins and Their Applications. Biochimie 2015, 113, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Herridge, R.P.; Day, R.C.; Macknight, R.C. The Role of the MCM2-7 Helicase Complex during Arabidopsis Seed Development. Plant Mol. Biol. 2014, 86, 69–84. [Google Scholar] [CrossRef]
- Schaller, F.; Biesgen, C.; Müssig, C.; Altmann, T.; Weiler, E.W. 12-Oxophytodienoate Reductase 3 (OPR3) Is the Isoenzyme Involved in Jasmonate Biosynthesis. Planta 2000, 210, 979–984. [Google Scholar] [CrossRef]
- Vick, B.A.; Zimmerman, D.C. Biosynthesis of Jasmonic Acid by Several Plant Species 1. Plant Physiol. 1984, 75, 458–461. [Google Scholar] [CrossRef] [Green Version]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Improving Amino Acid Composition of Soybean under Salt Stress by Salicylic Acid and Jasmonic Acid. J. Appl. Bot. Food Qual. 2016, 89, 243–248. [Google Scholar] [CrossRef]
- Markovič, O.; Janeček, Š. Pectin Degrading Glycoside Hydrolases of Family 28: Sequence-Structural Features, Specificities and Evolution. Protein Eng. Des. Sel. 2001, 14, 615–631. [Google Scholar] [CrossRef]
- Hadfield, K.A.; Bennett, A.B. Polygalacturonases: Many Genes in Search of a Function 1. Plant Physiol. 1998, 117, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhang, D.; Liu, J.; Liu, Q.Q.; Liu, H.; Tian, L.; Jiang, L.; Qu, L.Q. Plastidial Disproportionating Enzyme Participates in Starch Synthesis in Rice Endosperm by Transferring Maltooligosyl Groups from Amylose and Amylopectin to Amylopectin. Plant Physiol. 2015, 169, 2496–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schapire, A.L.; Valpuesta, V.; Botella, M.A. TPR Proteins in Plant Hormone Signaling. Plant Physiol. 2006, 1, 229–230. [Google Scholar] [CrossRef] [PubMed]
- Stirnimann, C.U.; Petsalaki, E.; Russell, R.B.; Müller, C.W. WD40 Proteins Propel Cellular Networks. Trends Biochem. Sci. 2010, 35, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, A. DUF538 Protein Superfamily Is Predicted to Be Chlorophyll Hydrolyzing Enzymes in Plants. Physiol. Mol. Biol. Plants 2016, 22, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch-Smith, T.M.; Schiff, M.; Caplan, J.L.; Tsao, J.; Czymmek, K.; Dinesh-Kumar, S.P. A Novel Role for the TIR Domain in Association with Pathogen-Derived Elicitors. PLOS Biol. 2007, 5, e68. [Google Scholar] [CrossRef] [Green Version]
- Voldeng, H.D.; Guillemette, R.J.D.; Leonard, D.A.; Cober, E.R. AC Harmony Soybean. Can. J. Plant Sci. 1996, 76, 477–478. [Google Scholar] [CrossRef]
- Cober, E.R.; Bing, D.; Voldeng, H.D.; Soper, J.; Guillemette, R.J.D.; Sloan, A.; Hedges, B.R. 90A01 Soybean. Can. J. Plant Sci. 2006, 86, 481–482. [Google Scholar] [CrossRef]
- Voldeng, H.D.; Guillemette, R.J.D.; Leonard, D.A.; Cober, E.R. AC Proteus Soybean. Can. J. Plant Sci. 1996, 76, 153–154. [Google Scholar] [CrossRef]
- Cober, E.R.; Daba, K.A.; Warkentin, T.D.; Tomasiewicz, D.J.; Mooleki, P.S.; Karppinen, E.M.; Frey, J.; Mohr, R.M.; Glenn, A.J.; Shaw, L.; et al. Soybean Seed Protein Content Is Lower but Protein Quality Is Higher in Western Canada Compared to Eastern Canada. 2022; unpublished. [Google Scholar]
- Soybean Growth and Development. 2014. Available online: https://store.extension.iastate.edu/product/Soybean-Growth-and-Development (accessed on 17 May 2022).
- Sayols, S.; Scherzinger, D.; Klein, H. DupRadar: A Bioconductor Package for the Assessment of PCR Artifacts in RNA-Seq Data. BMC Bioinform. 2016, 17, 428. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- García-Alcalde, F.; Okonechnikov, K.; Carbonell, J.; Cruz, L.M.; Götz, S.; Tarazona, S.; Dopazo, J.; Meyer, T.F.; Conesa, A. Qualimap: Evaluating next-Generation Sequencing Alignment Data. Bioinformatics 2012, 28, 2678–2679. [Google Scholar] [CrossRef] [Green Version]
- Daley, T.; Smith, A.D. Modeling Genome Coverage in Single-Cell Sequencing. Bioinformatics 2014, 30, 3159–3165. [Google Scholar] [CrossRef]
- Wang, L.; Nie, J.; Sicotte, H.; Li, Y.; Eckel-Passow, J.E.; Dasari, S.; Vedell, P.T.; Barman, P.; Wang, L.; Weinshiboum, R.; et al. Measure Transcript Integrity Using RNA-Seq Data. BMC Bioinform. 2016, 17, 58. [Google Scholar] [CrossRef] [Green Version]
- Bourgey, M.; Dali, R.; Eveleigh, R.; Chen, K.C.; Letourneau, L.; Fillon, J.; Michaud, M.; Caron, M.; Sandoval, J.; Lefebvre, F.; et al. GenPipes: An Open-Source Framework for Distributed and Scalable Genomic Analyses. Gigascience 2019, 8, giz037. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq-A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M. False Discovery Rates: A New Deal. Biostatistics 2017, 18, 275–294. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 3 October 2022).
- QuickGO. Available online: https://www.ebi.ac.uk/QuickGO/ (accessed on 17 May 2022).
- Huang, S.; Yu, J.; Li, Y.; Wang, J.; Wang, X.; Qi, H.; Xu, M.; Qin, H.; Yin, Z.; Mei, H.; et al. Identification of Soybean Genes Related to Soybean Seed Protein Content Based on Quantitative Trait Loci Collinearity Analysis. J. Agric. Food Chem. 2019, 67, 258–274. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-Enabled Heat Mapping for All. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef] [PubMed]
- Heatmapper. Available online: http://www.heatmapper.ca/ (accessed on 14 June 2022).
- Anders, S.; Huber, W. Differential Expression Analysis for Sequence Count Data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
High and Low TP Lines for DE | High and Low 11S Lines for DE | |||||||
---|---|---|---|---|---|---|---|---|
Line | TP | oil | Line | 11S | 7S | 11S:7S | ||
Low TP | 1 | 37.5 | 22.1 | Low 11S | 1 | 68.9 | 30.8 | 2.38 |
2 | 36.7 | 22.4 | 5 | 69.0 | 30.2 | 2.37 | ||
3 | 38.9 | 21.2 | 9 | 68.0 | 30.8 | 2.28 | ||
High TP | 8 | 44.6 | 18.5 | High 11S | 2 | 74.1 | 24.9 | 3.19 |
9 | 43.0 | 19.0 | 4 | 72.5 | 25.8 | 2.97 | ||
10 | 46.9 | 16.5 | 8 | 72.4 | 27.3 | 2.78 | ||
p-value | 0.010 | 0.018 | p-value | 0.005 | 0.016 | 0.027 |
log2foldchange | −25 | −20 | −15 | −10 | −5 | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|
High Total Protein vs. Low Total Protein | |||||||||||
Gene_id | 18.B | 18.M | 18.O | 19.B | 19.M | 19.O | 19.S | 20.M | 20.O | 20.S | Total |
Glyma.03G057800 | 18.6 | 22.0 | 24.3 | 27.5 | 5.93 | 5.14 | 25.7 | 5.51 | 8 | ||
Glyma.10G092400 | 8.62 | 5.08 | 8.83 | 5.36 | 22.9 | 24.2 | 10.8 | 25.5 | 8 | ||
Glyma.16G081500 | 23.8 | 28.5 | 29.6 | 31.0 | 29.5 | 31.8 | 30.8 | 30.2 | 8 | ||
Glyma.01G179100 | 24.7 | 24.5 | 9.37 | 7.41 | 7.05 | 5.65 | 2.53 | 7 | |||
Glyma.02G060600 | 26.7 | 27.6 | 34.3 | 35.7 | 35.9 | 35.1 | 34.8 | 7 | |||
Glyma.10G092300 | 25.6 | 4.84 | 25.0 | 22.5 | 25.0 | 12.4 | 27.1 | 7 | |||
Glyma.19G140200 | 18.4 | 21.2 | 21.5 | 22.8 | 22.1 | 21.2 | 21.5 | 7 | |||
Glyma.09G184300 | 22.6 | 23.6 | 23.2 | 22.8 | 23.5 | 5 | |||||
Glyma.16G060600 | 23.2 | 23.6 | 23.8 | 24.3 | 23.0 | 5 | |||||
Glyma.16G082200 | 18.9 | 7.32 | 6.50 | 5.06 | 5.00 | 5 | |||||
Glyma.18G060700 | 20.8 | 21.5 | 23.5 | 21.1 | 20.4 | 5 | |||||
Glyma.13G077600 | −13.4 | −35.2 | −34.7 | −35.4 | −32.6 | −35.1 | −31.7 | 7 | |||
Glyma.15G246500 | −19.2 | −20.8 | −26.0 | −26.3 | −24.2 | −22.5 | 6 | ||||
Glyma.02G197100 | −11.3 | −33.3 | −36.7 | −42.7 | −38.1 | 5 | |||||
Glyma.03G053500 | −22.4 | −9.52 | −25.8 | −25.9 | −24.1 | 5 | |||||
Glyma.03G054100 | −23.4 | −25.9 | −10.2 | −24.6 | −22.2 | 5 | |||||
Glyma.03G068900 | −23.9 | −24.6 | −24.3 | −24.0 | −23.2 | 5 | |||||
Glyma.06G205700 | −18.1 | −20.7 | −21.8 | −23.9 | −19.6 | 5 |
log2foldchange | −25 | −20 | −15 | −10 | −5 | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|
High 11S vs. Low 11S | |||||||||||
Gene_id | 18.B | 18.M | 18.O | 19.B | 19.M | 19.O | 19.S | 20.M | 20.O | 20.S | Total |
Glyma.19G084500 | 24.7 | 22.3 | 25.3 | 22.9 | 27.2 | 21.5 | 27.5 | 27.3 | 24.7 | 9 | |
Glyma.02G077300 | 16.9 | 22.0 | 16.1 | 21.8 | 19.0 | 22.0 | 22.2 | 22.2 | 8 | ||
Glyma.17G209900 | 6.31 | 7.44 | 6.16 | 7.63 | 5.89 | 8.24 | 10.6 | 3.45 | 8 | ||
Glyma.01G091300 | 7.43 | 4.93 | 7.25 | 9.21 | 6.86 | 5 | |||||
Glyma.06G287800 | 18.6 | 13.8 | 22.1 | 18.7 | 21.2 | 5 | |||||
Glyma.10G141200 | 18.9 | 20.7 | 17.0 | 11.5 | 4.50 | 5 | |||||
Glyma.14G204900 | 23.6 | 22.4 | 22.3 | 22.7 | 22.2 | 5 | |||||
Glyma.18G112500 | 20.3 | 20.8 | 23.8 | 24.0 | 24.8 | 5 | |||||
Glyma.13G077600 | −33.2 | −33.5 | −30.8 | −33.5 | −30.6 | −32.8 | −29.6 | 7 | |||
Glyma.17G261800 | −15.0 | −38.6 | −40.0 | −46.0 | −44.9 | −42.4 | −42.0 | 7 | |||
Glyma.01G127800 | −40.2 | −43.2 | −45.2 | −43.5 | −41.6 | 5 | |||||
Glyma.03G054100 | −18.6 | −42.7 | −46.1 | −7.29 | −48.3 | 5 | |||||
Glyma.12G156500 | −20.6 | −20.9 | −21.3 | −22.6 | −20.8 | 5 | |||||
Glyma.18G082700 | −39.8 | −42.2 | −43.9 | −41.0 | −38.7 | 5 |
Gene ID (Wm82.a2) | NCBI Gene ID |
---|---|
Glyma.01G091300 | NA |
Glyma.01G127800 | NA |
Glyma.01G179100 | 102669100 |
Glyma.02G060600 | 100808728 |
Glyma.02G077300 | NA |
Glyma.02G197100 | NA |
Glyma.03G053500 | NA |
Glyma.03G054100 | NA |
Glyma.03G057800 | 100780425 |
Glyma.03G068900 | 100527900 |
Glyma.06G205700 | NA |
Glyma.06G287800 | NA |
Glyma.09G184300 | 106794632 |
Glyma.10G092300 | NA |
Glyma.10G092400 | 100805392 |
Glyma.10G141200 | NA |
Glyma.12G156500 | NA |
Glyma.13G077600 | NA |
Glyma.14G204900 | NA |
Glyma.15G246500 | 100812621 |
Glyma.16G060600 | NA |
Glyma.16G081500 | NA |
Glyma.16G082200 | 100791376 |
Glyma.17G209900 | 100817099 |
Glyma.17G261800 | 100794722 |
Glyma.18G060700 | NA |
Glyma.18G082700 | NA |
Glyma.18G112500 | 100787722 |
Glyma.19G084500 | NA |
Glyma.19G140200 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooker, J.C.; Nissan, N.; Luckert, D.; Charette, M.; Zapata, G.; Lefebvre, F.; Mohr, R.M.; Daba, K.A.; Warkentin, T.D.; Hadinezhad, M.; et al. A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max). Int. J. Mol. Sci. 2023, 24, 222. https://doi.org/10.3390/ijms24010222
Hooker JC, Nissan N, Luckert D, Charette M, Zapata G, Lefebvre F, Mohr RM, Daba KA, Warkentin TD, Hadinezhad M, et al. A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max). International Journal of Molecular Sciences. 2023; 24(1):222. https://doi.org/10.3390/ijms24010222
Chicago/Turabian StyleHooker, Julia C., Nour Nissan, Doris Luckert, Martin Charette, Gerardo Zapata, François Lefebvre, Ramona M. Mohr, Ketema A. Daba, Thomas D. Warkentin, Mehri Hadinezhad, and et al. 2023. "A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max)" International Journal of Molecular Sciences 24, no. 1: 222. https://doi.org/10.3390/ijms24010222
APA StyleHooker, J. C., Nissan, N., Luckert, D., Charette, M., Zapata, G., Lefebvre, F., Mohr, R. M., Daba, K. A., Warkentin, T. D., Hadinezhad, M., Barlow, B., Hou, A., Golshani, A., Cober, E. R., & Samanfar, B. (2023). A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max). International Journal of Molecular Sciences, 24(1), 222. https://doi.org/10.3390/ijms24010222