How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway
Abstract
:1. Introduction
Development of a Silent Synapse
2. How Is a Silent Synapse Converted?
- Electrophysiological properties of the conversion from a silent to a functional synapse
- What Triggers the Birth of Silent Synapses?
3. Does Wnt signaling Trigger Silent Synapse Formation?
3.1. The Relevance of Wnt Signaling in the CNS
3.1.1. Control of the Presynaptic Region: The Role of Wnt
3.1.2. Control of the Postsynaptic Region: The Role of Wnt
4. A Model for Silent Synapse Conversion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McAllister, A.K. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 2007, 30, 425–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Sheng, M. Some assembly required: The development of neuronal synapses. Nat. Rev. Mol. Cell Biol. 2003, 4, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Semyanov, A.; Verkhratsky, A. Astrocytic processes: From tripartite synapses to the active milieu. Trends Neurosci. 2021, 44, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Groc, L.; Gustafsson, B.; Hanse, E. Early establishment of multiple release site connectivity between interneurons and pyramidal neurons in the developing hippocampus. Eur. J. Neurosci. 2003, 17, 1873–1880. [Google Scholar] [CrossRef]
- Hanse, E.; Gustafsson, B. Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J. Physiol. 2001, 531 Pt 2, 467–480. [Google Scholar] [CrossRef]
- Hsia, A.Y.; Malenka, R.C.; Nicoll, R.A. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 1998, 79, 2013–2024. [Google Scholar] [CrossRef]
- Isaac, J.T.; Nicoll, R.A.; Malenka, R.C. Evidence for silent synapses: Implications for the expression of LTP. Neuron 1995, 15, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Hessler, N.A.; Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995, 375, 400–404. [Google Scholar] [CrossRef]
- Raastad, M.; Storm, J.F.; Andersen, P. Putative Single Quantum and Single Fibre Excitatory Postsynaptic Currents Show Similar Amplitude Range and Variability in Rat Hippocampal Slices. Eur. J. Neurosci. 1992, 4, 113–117. [Google Scholar] [CrossRef]
- Groc, L.; Gustafsson, B.; Hanse, E. AMPA signalling in nascent glutamatergic synapses: There and not there! Trends Neurosci. 2006, 29, 132–139. [Google Scholar] [CrossRef]
- Hanse, E.; Taira, T.; Lauri, S.; Groc, L. Glutamate synapse in developing brain: An integrative perspective beyond the silent state. Trends Neurosci. 2009, 32, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Zhang, X.; O'Brien, R.; Ehlers, M.D.; Huganir, R.L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 1999, 2, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Pickard, L.; Noel, J.; Duckworth, J.K.; Fitzjohn, S.M.; Henley, J.M.; Collingridge, G.L.; Molnar, E. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology 2001, 41, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Klingauf, J.; Tsien, R.W. Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’. Nat. Neurosci. 2000, 3, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, S.; Saviane, C.; Voronin, L.L.; Cherubini, E. Silent synapses in the developing hippocampus: Lack of functional AMPA receptors or low probability of glutamate release? Proc. Natl. Acad. Sci. USA 2000, 97, 9741–9746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voronin, L.L.; Cherubini, E. 'Deaf, mute and whispering' silent synapses: Their role in synaptic plasticity. J. Physiol. 2004, 557 Pt 1, 3–12. [Google Scholar] [CrossRef]
- Balland, B.; Lachamp, P.; Kessler, J.P.; Tell, F. Silent synapses in developing rat nucleus tractus solitarii have AMPA receptors. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 4624–4634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busetto, G.; Higley, M.J.; Sabatini, B.L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. 2008, 586, 1519–1527. [Google Scholar] [CrossRef]
- Cabezas, C.; Buno, W. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses. J. Neurophysiol. 2006, 95, 3024–3034. [Google Scholar] [CrossRef] [Green Version]
- Kerchner, G.A.; Nicoll, R.A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 2008, 9, 813–825. [Google Scholar] [CrossRef]
- Liao, D.; Scannevin, R.H.; Huganir, R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J. Neurosci. 2001, 21, 6008–6017. [Google Scholar] [CrossRef] [Green Version]
- Petralia, R.S.; Esteban, J.A.; Wang, Y.X.; Partridge, J.G.; Zhao, H.M.; Wenthold, R.J.; Malinow, R. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci. 1999, 2, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, T.; Hughes, D.I.; Polgar, E.; Nagy, G.G.; Watanabe, M.; Riddell, J.S.; Todd, A.J. Evidence against AMPA receptor-lacking glutamatergic synapses in the superficial dorsal horn of the rat spinal cord. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 13401–13409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Regehr, W.G. Developmental remodeling of the retinogeniculate synapse. Neuron 2000, 28, 955–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumpel, S.; Hatt, H.; Gottmann, K. Silent synapses in the developing rat visual cortex: Evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 8863–8874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, J.T.; Crair, M.C.; Nicoll, R.A.; Malenka, R.C. Silent synapses during development of thalamocortical inputs. Neuron 1997, 18, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Itami, C.; Kimura, F.; Kohno, T.; Matsuoka, M.; Ichikawa, M.; Tsumoto, T.; Nakamura, S. Brain-derived neurotrophic factor-dependent unmasking of "silent" synapses in the developing mouse barrel cortex. Proc. Natl. Acad. Sci. USA 2003, 100, 13069–13074. [Google Scholar] [CrossRef] [Green Version]
- Losi, G.; Prybylowski, K.; Fu, Z.; Luo, J.H.; Vicini, S. Silent synapses in developing cerebellar granule neurons. J. Neurophysiol. 2002, 87, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusser, Z.; Lujan, R.; Laube, G.; Roberts, J.D.; Molnar, E.; Somogyi, P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998, 21, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Racca, C.; Stephenson, F.A.; Streit, P.; Roberts, J.D.; Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 2512–2522. [Google Scholar] [CrossRef] [Green Version]
- Barria, A.; Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 2002, 35, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, M. The postsynaptic NMDA-receptor--PSD-95 signaling complex in excitatory synapses of the brain. J. Cell Sci. 2001, 114 Pt 7, 1251. [Google Scholar] [CrossRef]
- Standley, S.; Roche, K.W.; McCallum, J.; Sans, N.; Wenthold, R.J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000, 28, 887–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Hornby, Z.D.; Malenka, R.C. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 2001, 41, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Kutsuwada, T.; Sakimura, K.; Manabe, T.; Takayama, C.; Katakura, N.; Kushiya, E.; Natsume, R.; Watanabe, M.; Inoue, Y.; Yagi, T.; et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 1996, 16, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westbrook, G.L.; Krupp, J.J.; Vissel, B. Cytoskeletal interactions with glutamate receptors at central synapses. Soc. Gen. Physiol. Ser. 1997, 52, 163–175. [Google Scholar] [PubMed]
- Nakayama, K.; Kiyosue, K.; Taguchi, T. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J. Neurosci. 2005, 25, 4040–4051. [Google Scholar] [CrossRef] [Green Version]
- Monyer, H.; Burnashev, N.; Laurie, D.J.; Sakmann, B.; Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M. Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. USA 2001, 98, 7058–7061. [Google Scholar] [CrossRef] [Green Version]
- van Zundert, B.; Yoshii, A.; Constantine-Paton, M. Receptor compartmentalization and trafficking at glutamate synapses: A developmental proposal. Trends Neurosci. 2004, 27, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.C.; Nash, J.; Huganir, R.L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 2000, 10, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Storey, G.P.; Opitz-Araya, X.; Barria, A. Molecular determinants controlling NMDA receptor synaptic incorporation. J. Neurosci. 2011, 31, 6311–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Hayashi, Y.; Esteban, J.A.; Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 2001, 105, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J. Mechanisms of synaptic plasticity: From membrane to intracellular AMPAR trafficking. Mol. Interv. 2003, 3, 15–18. [Google Scholar] [CrossRef]
- Ho, M.T.; Pelkey, K.A.; Topolnik, L.; Petralia, R.S.; Takamiya, K.; Xia, J.; Huganir, R.L.; Lacaille, J.C.; McBain, C.J. Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 11651–11662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.Q.; Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 2000, 405, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Kitajima, T. A model for synaptic development regulated by NMDA receptor subunit expression. J. Comput. Neurosci. 2008, 24, 1–20. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharm. Rev. 2010, 62, 405–496. [Google Scholar]
- Emptage, N.J.; Reid, C.A.; Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001, 29, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Fernandez de Sevilla, D.; Cabezas, C.; de Prada, A.N.; Sanchez-Jimenez, A.; Buno, W. Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons. J. Physiol. 2002, 545 Pt 1, 51–63. [Google Scholar] [CrossRef]
- Ahmari, S.E.; Buchanan, J.; Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 2000, 3, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.G.; Bellen, H.J. The architecture of the active zone in the presynaptic nerve terminal. Physiology 2004, 19, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.G.; Vardinon-Friedman, H.; Cases-Langhoff, C.; Becker, B.; Gundelfinger, E.D.; Ziv, N.E.; Garner, C.C. Assembling the presynaptic active zone: A characterization of an active one precursor vesicle. Neuron 2001, 29, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrunz, L.E. Release probability is regulated by the size of the readily releasable vesicle pool at excitatory synapses in hippocampus. Int. J. Dev. Neurosci. 2002, 20, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sinha, R.; Thiel, C.S.; Schmidt, R.; Huve, J.; Martens, H.; Hell, S.W.; Egner, A.; Klingauf, J. A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 2011, 14, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Saviane, C.; Silver, R.A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 2006, 439, 983–987. [Google Scholar] [CrossRef]
- Scheuber, A.; Miles, R.; Poncer, J.C. Presynaptic Cav2.1 and Cav2.2 differentially influence release dynamics at hippocampal excitatory synapses. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 10402–10409. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.; Rusakov, D.A. Ca2+ stores and use-dependent facilitation of presynaptic Ca2+ signaling. Proc. Natl. Acad. Sci. USA 2008, 105, E80; author reply E81. [Google Scholar] [CrossRef] [Green Version]
- Varoqueaux, F.; Aramuni, G.; Rawson, R.L.; Mohrmann, R.; Missler, M.; Gottmann, K.; Zhang, W.; Sudhof, T.C.; Brose, N. Neuroligins determine synapse maturation and function. Neuron 2006, 51, 741–754. [Google Scholar] [CrossRef] [Green Version]
- Washbourne, P.; Bennett, J.E.; McAllister, A.K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat. Neurosci. 2002, 5, 751–759. [Google Scholar] [CrossRef]
- Tada, T.; Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 2006, 16, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Chavis, P.; Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 2001, 411, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Shi, S.H.; Esteban, J.A.; Piccini, A.; Poncer, J.C.; Malinow, R. Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science 2000, 287, 2262–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, J.T.; Oliet, S.H.; Hjelmstad, G.O.; Nicoll, R.A.; Malenka, R.C. Expression mechanisms of long-term potentiation in the hippocampus. J. Physiol. Paris 1996, 90, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Goda, Y.; Stevens, C.F. Synaptic plasticity: The basis of particular types of learning. Curr. Biol. 1996, 6, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, V.; House, D.R.; Bredt, D.S.; Nicoll, R.A. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 5503–5506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beique, J.C.; Lin, D.T.; Kang, M.G.; Aizawa, H.; Takamiya, K.; Huganir, R.L. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. USA 2006, 103, 19535–19540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumbaugh, G.; Adams, J.P.; Kim, J.H.; Huganir, R.L. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl. Acad. Sci. USA 2006, 103, 4344–4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olde Loohuis, N.F.; Ba, W.; Stoerchel, P.H.; Kos, A.; Jager, A.; Schratt, G.; Martens, G.J.; van Bokhoven, H.; Nadif Kasri, N.; Aschrafi, A. MicroRNA-137 Controls AMPA-Receptor-Mediated Transmission and mGluR-Dependent LTD. Cell Rep. 2015, 11, 1876–1884. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, M.; Ellis-Davies, G.C.; Nemoto, T.; Miyashita, Y.; Iino, M.; Kasai, H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 2001, 4, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, M.; Honkura, N.; Ellis-Davies, G.C.; Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 2004, 429, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Khazipov, R.; Leinekugel, X.; Khalilov, I.; Gaiarsa, J.L.; Ben-Ari, Y. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J. Physiol. 1997, 498 Pt 3, 763–772. [Google Scholar] [CrossRef]
- Wang, D.D.; Kriegstein, A.R. GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 5547–5558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipila, S.T.; Schuchmann, S.; Voipio, J.; Yamada, J.; Kaila, K. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J. Physiol. 2006, 573 Pt 3, 765–773. [Google Scholar] [CrossRef]
- Pfeffer, C.K.; Stein, V.; Keating, D.J.; Maier, H.; Rinke, I.; Rudhard, Y.; Hentschke, M.; Rune, G.M.; Jentsch, T.J.; Hubner, C.A. NKCC1-dependent GABAergic excitation drives synaptic network maturation during early hippocampal development. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 3419–3430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chancey, J.H.; Adlaf, E.W.; Sapp, M.C.; Pugh, P.C.; Wadiche, J.I.; Overstreet-Wadiche, L.S. GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 6614–6622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Wu, B.; Zhang, Z.; Dou, Y.; Rao, Z.R.; Chen, Y.R.; Duan, S. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 2006, 50, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Zito, K.; Scheuss, V.; Knott, G.; Hill, T.; Svoboda, K. Rapid functional maturation of nascent dendritic spines. Neuron 2009, 61, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012, 486, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Christopherson, K.S.; Ullian, E.M.; Stokes, C.C.; Mullowney, C.E.; Hell, J.W.; Agah, A.; Lawler, J.; Mosher, D.F.; Bornstein, P.; Barres, B.A. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005, 120, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Hale, C.F.; Dietz, K.C.; Varela, J.A.; Wood, C.B.; Zirlin, B.C.; Leverich, L.S.; Greene, R.W.; Cowan, C.W. Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 12426–12436. [Google Scholar] [CrossRef]
- Martinez, A.; Alcantara, S.; Borrell, V.; Del Rio, J.A.; Blasi, J.; Otal, R.; Campos, N.; Boronat, A.; Barbacid, M.; Silos-Santiago, I.; et al. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 7336–7350. [Google Scholar] [CrossRef] [Green Version]
- Alder, J.; Thakker-Varia, S.; Crozier, R.A.; Shaheen, A.; Plummer, M.R.; Black, I.B. Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 3080–3085. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Wu, K.; Levine, E.S.; Mount, H.T.; Suen, P.C.; Black, I.B. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mol. Brain Res. 1998, 55, 20–27. [Google Scholar] [CrossRef]
- Elmariah, S.B.; Crumling, M.A.; Parsons, T.D.; Balice-Gordon, R.J. Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 2380–2393. [Google Scholar] [CrossRef] [Green Version]
- Kolarow, R.; Brigadski, T.; Lessmann, V. Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 10350–10364. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, A.; Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 2007, 10, 702–711. [Google Scholar] [CrossRef]
- Yoshii, A.; Constantine-Paton, M. Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front. Synaptic. Neurosci. 2014, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Madara, J.C.; Levine, E.S. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J. Neurophysiol. 2008, 100, 3175–3184. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.W.; Poo, M. Retrograde signaling at central synapses. Proc. Natl. Acad. Sci. USA 2001, 98, 11009–11015. [Google Scholar] [CrossRef] [Green Version]
- Hanse, E.; Gustafsson, B. Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J. Physiol. 2001, 531 Pt 2, 481–493. [Google Scholar] [CrossRef]
- Tyler, W.J.; Zhang, X.L.; Hartman, K.; Winterer, J.; Muller, W.; Stanton, P.K.; Pozzo-Miller, L. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 2006, 574 Pt 3, 787–803. [Google Scholar] [CrossRef]
- Walz, C.; Jungling, K.; Lessmann, V.; Gottmann, K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J. Neurophysiol. 2006, 96, 3512–3516. [Google Scholar] [CrossRef]
- Kwon, H.B.; Sabatini, B.L. Glutamate induces de novo growth of functional spines in developing cortex. Nature 2011, 474, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beattie, E.C.; Stellwagen, D.; Morishita, W.; Bresnahan, J.C.; Ha, B.K.; Von Zastrow, M.; Beattie, M.S.; Malenka, R.C. Control of synaptic strength by glial TNFalpha. Science 2002, 295, 2282–2285. [Google Scholar] [CrossRef] [PubMed]
- Mauch, D.H.; Nagler, K.; Schumacher, S.; Goritz, C.; Muller, E.C.; Otto, A.; Pfrieger, F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001, 294, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Hennekinne, L.; Colasse, S.; Triller, A.; Renner, M. Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 11432–11439. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Hu, J.; Qian, J.; Hackam, A.S. Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. Neuroreport 2012, 23, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiester, B.G.; Galati, D.F.; Salinas, P.C.; Jones, K.R. Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Mol. Cell. Neurosci. 2013, 56, 115–127. [Google Scholar] [CrossRef]
- Chen, B.Y.; Wang, X.; Wang, Z.Y.; Wang, Y.Z.; Chen, L.W.; Luo, Z.J. Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/beta-catenin signaling pathway. J. Neurosci. Res. 2013, 91, 30–41. [Google Scholar] [PubMed]
- Ahmad-Annuar, A.; Ciani, L.; Simeonidis, I.; Herreros, J.; Fredj, N.B.; Rosso, S.B.; Hall, A.; Brickley, S.; Salinas, P.C. Signaling across the synapse: A role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J. Cell Biol. 2006, 174, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Cerpa, W.; Latorre-Esteves, E.; Barria, A. RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc. Natl. Acad. Sci. USA 2015, 112, 4797–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuitino, L.; Godoy, J.A.; Farias, G.G.; Couve, A.; Bonansco, C.; Fuenzalida, M.; Inestrosa, N.C. Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 8411–8420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farias, G.G.; Alfaro, I.E.; Cerpa, W.; Grabowski, C.P.; Godoy, J.A.; Bonansco, C.; Inestrosa, N.C. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J. Biol. Chem. 2009, 284, 15857–15866. [Google Scholar] [CrossRef] [Green Version]
- Inestrosa, N.C.; Arenas, E. Emerging roles of Wnts in the adult nervous system. Nat. Rev. Neurosci. 2010, 11, 77–86. [Google Scholar] [CrossRef]
- Lucas, F.R.; Salinas, P.C. WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev. Biol. 1997, 192, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Nusse, R.; Varmus, H. Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO J. 2012, 31, 2670–2684. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.D.; Nusse, R. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 2006, 281, 22429–22433. [Google Scholar] [CrossRef] [Green Version]
- Bhanot, P.; Brink, M.; Samos, C.H.; Hsieh, J.C.; Wang, Y.; Macke, J.P.; Andrew, D.; Nathans, J.; Nusse, R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996, 382, 225–230. [Google Scholar] [CrossRef]
- Arrazola, M.S.; Varela-Nallar, L.; Colombres, M.; Toledo, E.M.; Cruzat, F.; Pavez, L.; Assar, R.; Aravena, A.; Gonzalez, M.; Montecino, M.; et al. Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J. Cell. Physiol. 2009, 221, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Hodar, C.; Assar, R.; Colombres, M.; Aravena, A.; Pavez, L.; Gonzalez, M.; Martinez, S.; Inestrosa, N.C.; Maass, A. Genome-wide identification of new Wnt/beta-catenin target genes in the human genome using CART method. BMC Genom. 2010, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.M.; Colombres, M.; Inestrosa, N.C. Wnt signaling in neuroprotection and stem cell differentiation. Prog. Neurobiol. 2008, 86, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Aberle, H.; Bauer, A.; Stappert, J.; Kispert, A.; Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997, 16, 3797–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeman, M.T.; Axelrod, J.D.; Moon, R.T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell. 2003, 5, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Boutros, M.; Paricio, N.; Strutt, D.I.; Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 1998, 94, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef] [Green Version]
- Grumolato, L.; Liu, G.; Mong, P.; Mudbhary, R.; Biswas, R.; Arroyave, R.; Vijayakumar, S.; Economides, A.N.; Aaronson, S.A. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010, 24, 2517–2530. [Google Scholar] [CrossRef] [Green Version]
- van Amerongen, R.; Nusse, R. Towards an integrated view of Wnt signaling in development. Development 2009, 136, 3205–3214. [Google Scholar] [CrossRef] [Green Version]
- Mikels, A.J.; Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006, 4, e115. [Google Scholar] [CrossRef]
- Mosca, T.J.; Schwarz, T.L. The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nat. Neurosci. 2010, 13, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Speese, S.D.; Ashley, J.; Jokhi, V.; Nunnari, J.; Barria, R.; Li, Y.; Ataman, B.; Koon, A.; Chang, Y.T.; Li, Q.; et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 2012, 149, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.C.; Varela-Nallar, L. Wnt signaling in the nervous system and in Alzheimer's disease. J. Mol. Cell Biol. 2014, 6, 64–74. [Google Scholar] [CrossRef]
- Oliva, C.A.; Vargas, J.Y.; Inestrosa, N.C. Wnts in adult brain: From synaptic plasticity to cognitive deficiencies. Front. Cell. Neurosci. 2013, 7, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Park, C.S.; Tang, S.J. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J. Biol. Chem. 2006, 281, 11910–11916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelo-Branco, G.; Wagner, J.; Rodriguez, F.J.; Kele, J.; Sousa, K.; Rawal, N.; Pasolli, H.A.; Fuchs, E.; Kitajewski, J.; Arenas, E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl. Acad. Sci. USA 2003, 100, 12747–12752. [Google Scholar] [CrossRef] [Green Version]
- Krylova, O.; Herreros, J.; Cleverley, K.E.; Ehler, E.; Henriquez, J.P.; Hughes, S.M.; Salinas, P.C. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 2002, 35, 1043–1056. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.; Perez, V.; Mella, J.; Albistur, M.; Caprile, T.; Bronfman, F.C.; Henriquez, J.P. Transport and Secretion of the Wnt3 Ligand by Motor Neuron-like Cells and Developing Motor Neurons. Biomolecules 2021, 11, 1898. [Google Scholar] [CrossRef]
- Ciani, L.; Salinas, P.C. WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat. Rev. Neurosci. 2005, 6, 351–362. [Google Scholar] [CrossRef]
- Salinas, P.C.; Zou, Y. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci. 2008, 31, 339–358. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Montecinos-Oliva, C.; Fuenzalida, M. Wnt signaling: Role in Alzheimer disease and schizophrenia. J. Neuroimmune Pharm. 2012, 7, 788–807. [Google Scholar] [CrossRef]
- Hall, A.C.; Lucas, F.R.; Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 2000, 100, 525–535. [Google Scholar] [CrossRef]
- Rosso, S.B.; Inestrosa, N.C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci. 2013, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Rosso, S.B.; Sussman, D.; Wynshaw-Boris, A.; Salinas, P.C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 2005, 8, 34–42. [Google Scholar] [CrossRef]
- De Ferrari, G.V.; Moon, R.T. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 2006, 25, 7545–7553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, A.R.; Godoy, J.A.; Mullendorff, K.; Olivares, G.H.; Bronfman, M.; Inestrosa, N.C. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp. Cell Res. 2004, 297, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.; De Ferrari, G.V.; Garrido, J.L.; Alvarez, A.; Olivares, G.H.; Barria, M.I.; Bronfman, M.; Chacon, M.A. Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem. Int. 2002, 41, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.C.; Toledo, E.M. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol. Neurodegener. 2008, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghaizu, N.D.; Jin, H.; Whiting, P.J. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci. 2020, 10, 902. [Google Scholar] [CrossRef]
- Cerpa, W.; Farias, G.G.; Godoy, J.A.; Fuenzalida, M.; Bonansco, C.; Inestrosa, N.C. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol. Neurodegener. 2010, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, J.Y.; Fuenzalida, M.; Inestrosa, N.C. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 2191–2202. [Google Scholar] [CrossRef] [Green Version]
- Cisternas, P.; Zolezzi, J.M.; Martinez, M.; Torres, V.I.; Wong, G.W.; Inestrosa, N.C. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J. Neurochem. 2019, 149, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Cerpa, W.; Gambrill, A.; Inestrosa, N.C.; Barria, A. Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J. Neurosci. 2011, 31, 9466–9471. [Google Scholar] [CrossRef] [PubMed]
- Varela-Nallar, L.; Alfaro, I.E.; Serrano, F.G.; Parodi, J.; Inestrosa, N.C. Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc. Natl. Acad. Sci. USA 2010, 107, 21164–21169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerpa, W.; Godoy, J.A.; Alfaro, I.; Farias, G.G.; Metcalfe, M.J.; Fuentealba, R.; Bonansco, C.; Inestrosa, N.C. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J. Biol. Chem. 2008, 283, 5918–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Y.P.; Paulson, C.; Shao, J.Z.; Zhang, X.; Wu, M.; Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. 2014, 19, 379–407. [Google Scholar] [CrossRef] [Green Version]
- Lie, D.C.; Colamarino, S.A.; Song, H.J.; Desire, L.; Mira, H.; Consiglio, A.; Lein, E.S.; Jessberger, S.; Lansford, H.; Dearie, A.R.; et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005, 437, 1370–1375. [Google Scholar] [CrossRef]
- Okamoto, M.; Inoue, K.; Iwamura, H.; Terashima, K.; Soya, H.; Asashima, M.; Kuwabara, T. Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 2011, 25, 3570–3582. [Google Scholar] [CrossRef]
- Torres, V.I.; Barrera, D.P.; Varas-Godoy, M.; Arancibia, D.; Inestrosa, N.C. Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Front. Cell. Dev. Biol. 2021, 9, 735888. [Google Scholar] [CrossRef]
- Godoy, J.A.; Espinoza-Caicedo, J.; Inestrosa, N.C. Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands. Cel. Commun. Signal 2021, 19, 87. [Google Scholar] [CrossRef]
- Bovolenta, P.; Rodriguez, J.; Esteve, P. Frizzled/RYK mediated signalling in axon guidance. Development 2006, 133, 4399–4408. [Google Scholar] [CrossRef] [Green Version]
- Wayman, G.A.; Impey, S.; Marks, D.; Saneyoshi, T.; Grant, W.F.; Derkach, V.; Soderling, T.R. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 2006, 50, 897–909. [Google Scholar] [CrossRef]
- Wayman, G.A.; Bose, D.D.; Yang, D.; Lesiak, A.; Bruun, D.; Impey, S.; Ledoux, V.; Pessah, I.N.; Lein, P.J. PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. Env. Health Perspect. 2012, 120, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Malenka, R.C. Beta-catenin is critical for dendritic morphogenesis. Nat. Neurosci. 2003, 6, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Malenka, R.C. Multiple functions for the cadherin/catenin complex during neuronal development. Neuropharmacology 2004, 47, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.R.; He, S.; Marie, H.; Zeng, S.Y.; Ma, J.; Tan, Z.J.; Lee, S.Y.; Malenka, R.C.; Yu, X. Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 2009, 61, 71–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahores, M.; Salinas, P.C. Activity-mediated synapse formation a role for Wnt-Fz signaling. Curr. Top. Dev. Biol. 2011, 97, 119–136. [Google Scholar] [PubMed]
- Avila, M.E.; Sepulveda, F.J.; Burgos, C.F.; Moraga-Cid, G.; Parodi, J.; Moon, R.T.; Aguayo, L.G.; Opazo, C.; De Ferrari, G.V. Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons. J. Biol. Chem. 2010, 285, 18939–18947. [Google Scholar] [CrossRef] [Green Version]
- Farias, G.G.; Godoy, J.A.; Cerpa, W.; Varela-Nallar, L.; Inestrosa, N.C. Wnt signaling modulates pre- and postsynaptic maturation: Therapeutic considerations. Dev. Dyn. 2010, 239, 94–101. [Google Scholar] [CrossRef]
- Farias, G.G.; Valles, A.S.; Colombres, M.; Godoy, J.A.; Toledo, E.M.; Lukas, R.J.; Barrantes, F.J.; Inestrosa, N.C. Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 5313–5325. [Google Scholar] [CrossRef] [Green Version]
- Varela-Nallar, L.; Ramirez, V.T.; Gonzalez-Billault, C.; Inestrosa, N.C. Frizzled receptors in neurons: From growth cones to the synapse. Cytoskeleton 2012, 69, 528–534. [Google Scholar] [CrossRef]
- Varela-Nallar, L.; Grabowski, C.P.; Alfaro, I.E.; Alvarez, A.R.; Inestrosa, N.C. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev. 2009, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Miech, C.; Pauer, H.U.; He, X.; Schwarz, T.L. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 10875–10884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.G.; Takayasu, Y.; Rodenas-Ruano, A.; Paternain, A.V.; Lerma, J.; Bennett, M.V.; Zukin, R.S. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Munoz, F.J.; Godoy, J.A.; Cerpa, W.; Poblete, I.M.; Huidobro-Toro, J.P.; Inestrosa, N.C. Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 2014, 444, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Parodi, J.; Montecinos-Oliva, C.; Varas, R.; Alfaro, I.E.; Serrano, F.G.; Varas-Godoy, M.; Munoz, F.J.; Cerpa, W.; Godoy, J.A.; Inestrosa, N.C. Wnt5a inhibits K+ currents in hippocampal synapses through nitric oxide production. Mol. Cell. Neurosci. 2015, 68, 314–322. [Google Scholar] [CrossRef]
- McQuate, A.; Latorre-Esteves, E.; Barria, A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell. Rep. 2017, 21, 60–69. [Google Scholar] [CrossRef] [Green Version]
- McLeod, F.; Bossio, A.; Marzo, A.; Ciani, L.; Sibilla, S.; Hannan, S.; Wilson, G.A.; Palomer, E.; Smart, T.G.; Gibb, A.; et al. Wnt Signaling Mediates LTP-Dependent Spine Plasticity and AMPAR Localization through Frizzled-7 Receptors. Cell. Rep. 2018, 23, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Fernandez, E.; Tapia-Rojas, C.; Ramirez, V.T.; Inestrosa, N.C. Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling. Mol. Neurobiol. 2019, 56, 1870–1882. [Google Scholar] [CrossRef]
- Ramos-Fernandez, E.; Arrazola, M.S.; Oliva, C.A.; Arredondo, S.B.; Varela-Nallar, L.; Inestrosa, N.C. Wnt5a promotes hippocampal postsynaptic development and GluN2B-induced expression via the eIF2alpha HRI kinase. Sci. Rep. 2021, 11, 7395. [Google Scholar] [CrossRef]
- Martinez, M.; Torres, V.I.; Vio, C.P.; Inestrosa, N.C. Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Mol. Neurobiol. 2020, 57, 1389–1404. [Google Scholar] [CrossRef]
- Cabeza, C.; Figueroa, A.; Lazo, O.M.; Galleguillos, C.; Pissani, C.; Klein, A.; Gonzalez-Billault, C.; Inestrosa, N.C.; Alvarez, A.R.; Zanlungo, S.; et al. Cholinergic abnormalities, endosomal alterations and up-regulation of nerve growth factor signaling in Niemann-Pick type C disease. Mol. Neurodegener. 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Cerpa, W.; Ramos-Fernandez, E.; Inestrosa, N.C. Modulation of the NMDA Receptor Through Secreted Soluble Factors. Mol. Neurobiol. 2014, 53, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Saarikangas, J.; Kourdougli, N.; Senju, Y.; Chazal, G.; Segerstrale, M.; Minkeviciene, R.; Kuurne, J.; Mattila, P.K.; Garrett, L.; Holter, S.M.; et al. MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev. Cell. 2015, 33, 644–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, V.A.; Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 2007, 30, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Luikart, B.W.; Zhang, W.; Wayman, G.A.; Kwon, C.H.; Westbrook, G.L.; Parada, L.F. Neurotrophin-dependent dendritic filopodial motility: A convergence on PI3K signaling. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 7006–7012. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.M.; Lyuksyutova, A.I.; Fenstermaker, A.G.; Shafer, B.; Lo, C.G.; Zou, Y. Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 3456–3467. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Choi, S.C.; Wang, H.; Qin, Y.; Volpicelli-Daley, L.; Swan, L.; Lucast, L.; Khoo, C.; Zhang, X.; Li, L.; et al. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 2008, 321, 1350–1353. [Google Scholar] [CrossRef] [Green Version]
- Slusarski, D.C.; Corces, V.G.; Moon, R.T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997, 390, 410–413. [Google Scholar] [CrossRef]
- Lalo, U.; Nezis, I.P.; Pankratov, Y. Impact of Autophagy Impairment on Experience- and Diet-Related Synaptic Plasticity. Int. J. Mol. Sci. 2022, 23, 9228. [Google Scholar] [CrossRef]
- Rios, J.A.; Godoy, J.A.; Inestrosa, N.C. Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3beta-AMPK axis. Cell. Commun. Signal. 2018, 16, 15. [Google Scholar] [CrossRef]
- Koval, A.; Katanaev, V.L. Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem. J. 2011, 433, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, V.T.; Ramos-Fernandez, E.; Henriquez, J.P.; Lorenzo, A.; Inestrosa, N.C. Wnt-5a/Frizzled9 Receptor Signaling through the Galphao-Gbetagamma Complex Regulates Dendritic Spine Formation. J. Biol. Chem. 2016, 291, 19092–19107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, V.T.; Ramos-Fernandez, E.; Inestrosa, N.C. The Galphao Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons. Neural Plast. 2016, 2016, 4258171. [Google Scholar] [CrossRef] [Green Version]
- Budnik, V.; Salinas, P.C. Wnt signaling during synaptic development and plasticity. Curr. Opin. Neurobiol. 2011, 21, 151–159. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonansco, C.; Cerpa, W.; Inestrosa, N.C. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 708. https://doi.org/10.3390/ijms24010708
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. International Journal of Molecular Sciences. 2023; 24(1):708. https://doi.org/10.3390/ijms24010708
Chicago/Turabian StyleBonansco, Christian, Waldo Cerpa, and Nibaldo C. Inestrosa. 2023. "How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway" International Journal of Molecular Sciences 24, no. 1: 708. https://doi.org/10.3390/ijms24010708
APA StyleBonansco, C., Cerpa, W., & Inestrosa, N. C. (2023). How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. International Journal of Molecular Sciences, 24(1), 708. https://doi.org/10.3390/ijms24010708