Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Changes in Dietary Intake and Physical Activity
2.3. Comparison of Mean Changes in miRNA Expression from Baseline to 24 and 48 Weeks
2.4. Comparison of Fold Changes in miRNA Expression at 24 and 48 Weeks
2.5. Correlation between miRNAs and Biochemical Markers
3. Discussion
Study Limitations
4. Methods and Materials
4.1. Study Design and Setting
4.2. Patients
4.3. Randomization and Intervention
4.4. Assessment of Dietary Intake and Physical Activity
4.5. Selection of Targets miRNAs
4.6. Quantification of miRNAs
4.6.1. Blood Collection and Storage
4.6.2. RNA Extraction
4.6.3. Quantitative Real-Time PCR (RT-qPCR)
4.7. Sample Size Calculation
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgements
Conflicts of Interest
Abbreviations
References
- Zhang, Z.; Moon, R.; Thorne, J.; Moore, J. NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways. Nutr. Res. Rev. 2021, 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Meroni, M.; Longo, M.; Fargion, S.; Fracanzani, A.L. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int. J. Mol. Sci. 2018, 19, 3966. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Dou, G.; Wang, L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int. J. Biol. Sci. 2021, 17, 1851–1863. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Ampuero, J.; Gil-Gómez, A.; Montero-Vallejo, R.; Rojas, Á.; Muñoz-Hernández, R.; Gallego-Durán, R.; Romero-Gómez, M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2018, 69, 1335–1348. [Google Scholar] [CrossRef]
- He, Z.; Hu, C.; Jia, W. miRNAs in non-alcoholic fatty liver disease. Front. Med. 2016, 10, 389–396. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.; Shang, Y.F.; Wang, H.L.; Yao, M.X. miRNA-103: Molecular link between insulin resistance and non-alcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 511–516. [Google Scholar] [CrossRef]
- Cheng, Y.; Mai, J.; Hou, T.; Ping, J. MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochem. Biophys. Res. Commun. 2016, 474, 57–63. [Google Scholar] [CrossRef]
- Lei, L.; Zhou, C.; Yang, X.; Li, L. Down -regulation of micro RNA -375 regulates adipokine s and inhibits inflammatory cytokines by targeting AdipoR2 in non -alcoholic fatty liver disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 819–831. [Google Scholar] [CrossRef]
- Castro, R.E.; Ferreira, D.M.S.; Afonso, M.B.; Borralho, P.M.; Machado, M.V.; Cortez-Pinto, H.; Rodrigues, C.M.P. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 119–125. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Pervez, M.A.; Khan, D.A.; Mirza, S.A.; Slehria, A.; Nisar, U.; Aamir, M. Comparison of delta-tocotrienol and alpha-tocopherol effects on hepatic steatosis and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: A randomized double-blind active-controlled trial. Complement. Ther. Med. 2022, 70, 102866. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Yoon, S.; Ji, S.C.; Yang, J.; Kim, Y.K.; Lee, S.; Yu, K.S.; Jang, I.J.; Chung, J.Y.; Cho, J.Y. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci. Rep. 2018, 8, 11874. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Zhang, R.; Hou, F.; Chi, J.; Huang, F.; Yan, S.; Liu, L.; Deng, Y.; Wei, Z.; Zhang, M. Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing 2 miR-33 and miR-122 expression in mice fed a high-fat diet. Food Funct. 2017, 8, 808–815. [Google Scholar] [CrossRef]
- Baselga-Escudero, L.; Arola-Arnal, A.; Pascual-Serrano, A.; Ribas-Latre, A.; Casanova, E.; Salvadó, M.J.; Arola, L.; Blade, C. Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats. PLoS ONE 2013, 8, e69817. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhang, M.; Yu, Y.; Lan, X.; Yao, F.; Yan, X.; Chen, L.; Hatch, G.M. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway. PLoS ONE 2016, 11, e0152097. [Google Scholar] [CrossRef] [PubMed]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3, 87–98. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef]
- Vinciguerra, M.; Sgroi, A.; Veyrat-Durebex, C.; Rubbia-Brandt, L.; Buhler, L.H.; Foti, M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009, 49, 1176–1184. [Google Scholar] [CrossRef]
- Wu, H.; Ng, R.; Chen, X.; Steer, C.J.; Song, G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut 2016, 65, 1850–1860. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Rodrigues, C.M.P.; Castro, R.E. Modulation of liver steatosis by miR-21/PPARα. Cell Death Discov. 2018, 4, 73. [Google Scholar] [CrossRef]
- Joven, J.; Espinel, E.; Rull, A.; Aragonès, G.; Rodríguez-Gallego, E.; Camps, J.; Micol, V.; Herranz-López, M.; Menéndez, J.A.; Borrás, I.; et al. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim. Biophys. Acta 2012, 1820, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Rio, D.C.; Ares, M.; Jr Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
Parameter | δT3 (n = 50) | αTF (n = 50) | † p-Value |
---|---|---|---|
Sex | |||
Female | 23 (46.0) ‡ | 19 (38.0) | 0.418 |
Male | 27 (54.0) | 31 (62.0) | |
Age (years) | 47.28 ± 8.36 § | 48.04 ± 7.66 | 0.637 |
hsa-miR-122-5p (∆Ct) | 2.77 ± 1.51 | 3.42 ± 2.26 | 0.194 |
hsa-miR-21-5p (∆Ct) | 2.42 ± 1.65 | 2.97 ± 2.44 | 0.195 |
hsa-miR-103a-2-5p (∆Ct) | 2.42 ± 2.08 | 2.88 ± 2.45 | 0.306 |
hsa-miR-421 (∆Ct) | 2.67 ± 1.77 | 2.83 ± 2.31 | 0.699 |
hsa-miR-375-5p (∆Ct) | 2.61 ± 1.73 | 2.74 ± 2.33 | 0.742 |
hsa-miR-34a-5p (∆Ct) | 2.65 ± 1.70 | 2.74 ± 2.31 | 0.83 |
Physical activity level | |||
Light | 44 (88.0) | 42 (84.0) | |
Moderate | 6 (12.0) | 8 (16.0) | 0.774 |
Vigorous | 0 (0.0) | 0 (0.0) |
∆∆Ct | ||||
---|---|---|---|---|
miRNA | δT3 (n = 50) | αTF (n = 50) | † MD (95% CI) | ‡ p-Value |
hsa-miR-122-5p | ||||
Week 24 | 1.30 ± 0.93 § | 1.17 ± 0.72 | 0.24 (−0.05, 0.60) | 0.093 |
Week 48 | 1.46 ± 0.95 | 1.36 ± 0.75 | 0.27 (−0.08, 0.57) | 0.138 |
hsa-miR-21-5p | ||||
Week 24 | 1.21 ± 0.56 | 1.20 ± 0.71 | 0.11 (−0.11, 0.34) | 0.317 |
Week 48 | 1.36 ± 0.64 | 1.33 ± 0.73 | 0.13 (−0.12, 0.38) | 0.316 |
hsa-miR-103a-2-5p | ||||
Week 24 | 1.24 ± 0.57 | 1.19 ± 0.61 | 0.06 (−0.17, 0.29) | 0.613 |
Week 48 | 1.37 ± 0.61 | 1.36 ± 0.65 | 0.01 (−0.23, 0.26) | 0.804 |
hsa-miR-421 | ||||
Week 24 | 1.22 ± 0.50 | 1.11 ± 0.44 | 0.15 (−0.02, 0.32) | 0.086 |
Week 48 | 1.41 ± 0.55 | 1.32 ± 0.51 | 0.12 (−0.08, 0.32) | 0.227 |
hsa-miR-375-5p | ||||
Week 24 | 1.28 ± 0.55 | 1.07 ± 0.47 | 0.22 (0.03, 0.42) | 0.028 |
Week 48 | 1.48 ± 0.65 | 1.23 ± 0.53 | 0.25 (0.03, 0.48) | 0.03 |
hsa-miR-34a-5p | ||||
Week 24 | 1.29 ± 0.52 | 1.03 ± 0.44 | 0.29 (0.11, 0.47) | 0.002 |
Week 48 | 1.41 ± 0.56 | 1.21 ± 0.54 | 0.23 (0.02, 0.43) | 0.029 |
miRNA | δT3 (n = 50) | αTF (n = 50) | † p-Value | ||
---|---|---|---|---|---|
FC | –1/FC | FC | –1/FC | ||
hsa-miR-122-5p | |||||
Week 24 | 0.41 (0.27, 0.59) ‡ | –2.42 | 0.44 (0.33, 0.58) | –2.22 | 0.482 |
Week 48 | 0.36 (0.23, 0.55) | –2.73 | 0.38 (0.30, 0.52) | –2.60 | 0.636 |
hsa-miR-21-5p | |||||
Week 24 | 0.42 (0.33, 0.49) | –2.39 | 0.46 (0.29, 0.55) | –2.16 | 0.685 |
Week 48 | 0.36 (0.29, 0.46) | –2.73 | 0.40 (0.27, 0.49) | –2.49 | 0.768 |
hsa-miR-103a-2-5p | |||||
Week 24 | 0.39 (0.34, 0.53) | –2.55 | 0.41 (0.36, 0.48) | –2.43 | 0.352 |
Week 48 | 0.35 (0.30, 0.47) | –2.82 | 0.36 (0.31, 0.42) | –2.77 | 0.736 |
hsa-miR-421 | |||||
Week 24 | 0.41 (0.33, 0.47) | –2.42 | 0.43 (0.39, 0.46) | –2.32 | 0.131 |
Week 48 | 0.36 (0.28, 0.41) | –2.77 | 0.37 (0.33, 0.40) | –2.72 | 0.423 |
hsa-miR-375-5p | |||||
Week 24 | 0.39 (0.31, 0.48) | –2.54 | 0.45 (0.39, 0.52) | –2.18 | 0.012 |
Week 48 | 0.34 (0.26, 0.43) | –2.88 | 0.40 (0.34, 0.46) | –2.47 | 0.008 |
hsa-miR-34a-5p | |||||
Week 24 | 0.40 (0.32, 0.45) | –2.48 | 0.43 (0.39, 0.56) | –2.27 | 0.002 |
Week 48 | 0.35 (0.30, 0.40) | –2.80 | 0.38 (0.32, 0.49) | –2.63 | 0.040 |
hsa-miR-122 | hsa-miR-21 | hsa-miR-103a-2 | hsa-miR-375 | hsa-miR-421 | hsa-miR-34a | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
FLI | ||||||||||||
Week 0 | 0.75 | <0.001 | 0.81 | <0.001 | 0.78 | <0.001 | ||||||
Week 24 | 0.8 | <0.001 | 0.83 | <0.001 | 0.81 | <0.001 | ||||||
Week 48 | 0.81 | <0.001 | 0.79 | <0.001 | 0.79 | <0.001 | ||||||
L/S ratio | ||||||||||||
Week 0 | −0.60 | <0.001 | −0.65 | <0.001 | −0.67 | <0.001 | ||||||
Week 24 | −0.58 | <0.001 | −0.60 | <0.001 | −0.62 | <0.001 | ||||||
Week 48 | −0.56 | <0.001 | −0.59 | <0.001 | −0.60 | <0.001 | ||||||
HOMA-IR | ||||||||||||
Week 0 | 0.84 | <0.001 | ||||||||||
Week 24 | 0.76 | <0.001 | ||||||||||
Week 48 | 0.73 | <0.001 | ||||||||||
hs-CRP (mg/L) | ||||||||||||
Week 0 | 0.83 | <0.001 | ||||||||||
Week 24 | 0.79 | <0.001 | ||||||||||
Week 48 | 0.77 | <0.001 | ||||||||||
IL-6 (pg/mL) | ||||||||||||
Week 0 | 0.66 | <0.001 | ||||||||||
Week 24 | 0.59 | <0.001 | ||||||||||
Week 48 | 0.58 | <0.001 | ||||||||||
TNF-α (pg/mL) | ||||||||||||
Week 0 | 0.7 | <0.001 | ||||||||||
Week 24 | 0.65 | <0.001 | ||||||||||
Week 48 | 0.51 | <0.001 | ||||||||||
Leptin (ng/mL) | ||||||||||||
Week 0 | 0.7 | <0.001 | ||||||||||
Week 24 | 0.73 | <0.001 | ||||||||||
Week 48 | 0.72 | <0.001 | ||||||||||
AdpN (µg/mL) | ||||||||||||
Week 0 | −0.55 | <0.001 | ||||||||||
Week 24 | −0.52 | <0.001 | ||||||||||
Week 48 | −0.50 | <0.001 | ||||||||||
MDA (ng/mL) | ||||||||||||
Week 0 | 0.6 | <0.001 | 0.59 | <0.001 | ||||||||
Week 24 | 0.52 | <0.001 | 0.48 | <0.001 | ||||||||
Week 48 | 0.47 | <0.001 | 0.45 | <0.001 | ||||||||
CK18-M30 (mIU/mL) | ||||||||||||
Week 0 | 0.56 | <0.001 | ||||||||||
Week 24 | 0.5 | <0.001 | ||||||||||
Week 48 | 0.41 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pervez, M.A.; Khan, D.A.; Gilani, S.T.A.; Fatima, S.; Ijaz, A.; Nida, S. Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression. Int. J. Mol. Sci. 2023, 24, 79. https://doi.org/10.3390/ijms24010079
Pervez MA, Khan DA, Gilani STA, Fatima S, Ijaz A, Nida S. Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression. International Journal of Molecular Sciences. 2023; 24(1):79. https://doi.org/10.3390/ijms24010079
Chicago/Turabian StylePervez, Muhammad Amjad, Dilshad Ahmed Khan, Sayed Tanveer Abbas Gilani, Safia Fatima, Aamir Ijaz, and Sumbal Nida. 2023. "Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression" International Journal of Molecular Sciences 24, no. 1: 79. https://doi.org/10.3390/ijms24010079
APA StylePervez, M. A., Khan, D. A., Gilani, S. T. A., Fatima, S., Ijaz, A., & Nida, S. (2023). Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression. International Journal of Molecular Sciences, 24(1), 79. https://doi.org/10.3390/ijms24010079