Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries
Abstract
:1. Introduction
2. Results
2.1. Association between Genetic Variants and S-ECC
2.2. Association between Bacterial, Fungal Microbiota and Host Genetic Variants
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. DNA Sequencing and Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagerström, M.C.; Schiöth, H.B. Structural Diversity of G Protein-Coupled Receptors and Significance for Drug Discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Jaggupilli, A.; Howard, R.; Upadhyaya, J.D.; Bhullar, R.P.; Chelikani, P. Bitter Taste Receptors: Novel Insights into the Biochemistry and Pharmacology. Int. J. Biochem. Cell Biol. 2016, 77, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, S.; Zheng, J.; Bu, T.; He, G.; Wu, J. Safety Considerations on Food Protein-Derived Bioactive Peptides. Trends Food Sci. Technol. 2020, 96, 199–207. [Google Scholar] [CrossRef]
- Shaik, F.A.; Singh, N.; Arakawa, M.; Duan, K.; Bhullar, R.P.; Chelikani, P. Bitter Taste Receptors: Extraoral Roles in Pathophysiology. Int. J. Biochem. Cell Biol. 2016, 77, 197–204. [Google Scholar] [CrossRef]
- Xi, R.; Zheng, X.; Tizzano, M. Role of Taste Receptors in Innate Immunity and Oral Health. J. Dent. Res. 2022, 101, 002203452210779. [Google Scholar] [CrossRef]
- Pchitskaya, E.; Popugaeva, E.; Bezprozvanny, I. Calcium Signaling and Molecular Mechanisms Underlying Neurodegenerative Diseases. Cell Calcium 2018, 70, 87–94. [Google Scholar] [CrossRef]
- de Jesus, V.C.; Mittermuller, B.; Hu, P.; Schroth, R.J.; Chelikani, P. Genetic Variants in Taste Genes Play a Role in Oral Microbial Composition and Severe Early Childhood Caries. iScience 2022, 25, 105489. [Google Scholar] [CrossRef]
- Luo, J.; Sun, P.; Siwko, S.; Liu, M.; Xiao, J. The Role of GPCRs in Bone Diseases and Dysfunctions. Bone Res. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Parry, D.A.; Smith, C.E.L.; El-Sayed, W.; Poulter, J.A.; Shore, R.C.; Logan, C.V.; Mogi, C.; Sato, K.; Okajima, F.; Harada, A.; et al. Mutations in the PH-Sensing G-Protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am. J. Hum. Genet. 2016, 99, 984–990. [Google Scholar] [CrossRef] [Green Version]
- Seymen, F.; Zhang, H.; Kasimoglu, Y.; Koruyucu, M.; Simmer, J.P.; Hu, J.C.-C.; Kim, J.-W. Novel Mutations in GPR68 and SLC24A4 Cause Hypomaturation Amelogenesis Imperfecta. J. Pers. Med. 2022, 12, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, J.-Y.; Horst, O.; Nakano, Y.; Zhu, L.; Radlanski, R.J.; Ho, S.; Besten, P.K.D. Fluorosed Mouse Ameloblasts Have Increased SATB1 Retention and Gαq Activity. PLoS ONE 2014, 9, e103994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sugamori, K.S.; Claridge, C.; dela Cruz, A.; Grynpas, M.D.; Mitchell, J. Overexpression of GαS in Murine Osteoblasts In Vivo Leads to Increased Bone Mass and Decreased Bone Quality. J. Bone Miner. Res. 2017, 32, 2171–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, B.R.; Learman, B.S.; Parlee, S.D.; Scheller, E.L.; Mori, H.; Cawthorn, W.P.; Ning, X.; Krishnan, V.; Ma, Y.L.; Tyrberg, B.; et al. Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass. PLoS ONE 2014, 9, e86454. [Google Scholar] [CrossRef]
- Yu, T.; Klein, O.D. Molecular and Cellular Mechanisms of Tooth Development, Homeostasis and Repair. Development 2020, 147, dev184754. [Google Scholar] [CrossRef] [PubMed]
- Cruvinel, V.R.N.; Gravina, D.B.L.; Azevedo, T.D.P.L.; de Rezende, C.S.; Bezerra, A.C.B.; Toledo, O.A. de Prevalence of Enamel Defects and Associated Risk Factors in Both Dentitions in Preterm and Full Term Born Children. J. Appl. Oral Sci. 2012, 20, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.F.B.; Chaves, A.M.B.; Rosenblatt, A. The Influence of Enamel Defects on the Development of Early Childhood Caries in a Population with Low Socioeconomic Status: A Longitudinal Study. Caries Res. 2006, 40, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.; Singh, S.; Lee, J.; Grant, C.; de Jesus, V.C.; Schroth, R.J. The Burden of Early Childhood Caries in Canadian Children and Associated Risk Factors. Front. Public Health 2019, 7, 328. [Google Scholar] [CrossRef] [Green Version]
- Wendell, S.; Wang, X.; Brown, M.; Cooper, M.E.; DeSensi, R.S.; Weyant, R.J.; Crout, R.; McNeil, D.W.; Marazita, M.L. Taste Genes Associated with Dental Caries. J. Dent. Res. 2010, 89, 1198–1202. [Google Scholar] [CrossRef]
- Caicedo, A.; Pereira, E.; Margolskee, R.F.; Roper, S.D. Role of the G-Protein Subunit Alpha-Gustducin in Taste Cell Responses to Bitter Stimuli. J. Neurosci. 2003, 23, 9947–9952. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Bhagirath, A.Y.; Medapati, M.R.; de Jesus, V.C.; Chelikani, P. Chemistry and Biological Mechanisms of Peptides that Modulate Taste. In Food Proteins and Peptides: Emerging Biofunctions, Food and Biomaterial Applications; Royal Society of Chemistry: London, UK, 2021; p. 31. [Google Scholar]
- Lee, A.; Owyang, C. Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 2017, 9, 653. [Google Scholar] [CrossRef]
- von Molitor, E.; Riedel, K.; Krohn, M.; Hafner, M.; Rudolf, R.; Cesetti, T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front. Hum. Neurosci. 2021, 15, 667709. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.T.; Gannon, K.S.; Margolskee, R.F. Transduction of Bitter and Sweet Taste by Gustducin. Nature 1996, 381, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Clough, R.R.; Sidhu, R.S.; Bhullar, R.P. Calmodulin Binds RalA and RalB and Is Required for the Thrombin-Induced Activation of Ral in Human Platelets. J. Biol. Chem. 2002, 277, 28972–28980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsaraj, S.M.; Bhullar, R.P. Regulation of Platelet Rac1 and Cdc42 Activation through Interaction with Calmodulin. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2008, 1783, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, C.; Jaggupilli, A.; Chelikani, P.; Bhullar, R.P. Regulation of Rac1 GTPase Activity by Quinine through G-Protein and Bitter Taste Receptor T2R4. Mol. Cell. Biochem. 2017, 426, 129–136. [Google Scholar] [CrossRef]
- Behrens, M.; Meyerhof, W. Signaling in the Chemosensory Systems. Cell. Mol. Life Sci. 2006, 63, 1501–1509. [Google Scholar] [CrossRef]
- Skafidas, E.; Testa, R.; Zantomio, D.; Chana, G.; Everall, I.P.; Pantelis, C. Predicting the Diagnosis of Autism Spectrum Disorder Using Gene Pathway Analysis. Mol. Psychiatry 2014, 19, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Woo, J.A.; Geffken, E.; An, S.S.; Liggett, S.B. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via Gαi1,2,3. Am. J. Respir. Cell Mol. Biol. 2017, 56, 762–771. [Google Scholar] [CrossRef]
- Zinatizadeh, M.R.; Zarandi, P.K.; Keshavarz-Fathi, M.; Yousefi, M.H.; Rezaei, N. The Role of Ral Signaling and Post Translational Modifications (PTMs) of Ras in Cancer. Genome Instab. Dis. 2022, 3, 22–32. [Google Scholar] [CrossRef]
- Chien, Y.; Kim, S.; Bumeister, R.; Loo, Y.M.; Kwon, S.W.; Johnson, C.L.; Balakireva, M.G.; Romeo, Y.; Kopelovich, L.; Gale, M.; et al. RalB GTPase-Mediated Activation of the IκB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival. Cell 2006, 127, 157–170. [Google Scholar] [CrossRef]
- Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of Autophagy by Inflammatory Signals Limits IL-1β Production by Targeting Ubiquitinated Inflammasomes for Destruction. Nat. Immunol. 2012, 13, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.B.; Hall, A. RHO GTPASES: Biochemistry and Biology. Annu. Rev. Cell Dev. Biol. 2005, 21, 247–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medapati, M.R.; Bhagirath, A.Y.; Singh, N.; Schroth, R.J.; Bhullar, R.P.; Duan, K.; Chelikani, P. Bitter Taste Receptor T2R14 Modulates Gram-Positive Bacterial Internalization and Survival in Gingival Epithelial Cells. IJMS 2021, 22, 9920. [Google Scholar] [CrossRef]
- AAPD. Policy on Early Childhood Caries (ECC): Classifications, Consequences, and Preventive Strategies. Ref. Man. Pediatr. Dent. Chic. Ill. Am. Acad. Pediatr. Dent. 2017, 79–81. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila Melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef]
Gene | Variants | Location (GRCh38) | Effect Allele | Frequency of Effect Allele | χ2 | p | OR | Adj. p * | Type of Variant | |
---|---|---|---|---|---|---|---|---|---|---|
Cases (S-ECC) | Controls (Caries-Free) | |||||||||
PLCB2 | rs2305645 | chr15: 40303364 | T | 0.09 | 0.27 | 19.05 | 1.28 × 10−5 | 0.27 | 0.0007 | Intron |
rs1869901 | chr15: 40303426 | G | 0.17 | 0.38 | 18.43 | 1.77 × 10−5 | 0.34 | 0.0009 | Intron | |
rs2305649 | chr15: 40297629 | G | 0.16 | 0.34 | 13.96 | 0.0002 | 0.38 | 0.0099 | Intron |
Gene | Variant | Location | Allele | BETA | Adj. p | Taxa |
---|---|---|---|---|---|---|
BACTERIA (n = 174) | ||||||
GNAQ | c.736-12T > C | chr9:77728679 | G | −1.241 | 0.0029 | Capnocytophaga sputigena |
GNAQ | rs1478186975 | chr9:77728678 | G | −2.192 | 0.0311 | Actinomyces gerencseriae |
RAC1 | rs1051504128 | chr7:6387120 | A | 6.913 | 0.0095 | Unclassified bacteria |
RAC1 | rs836478 | chr7:6392059 | C | 0.534 | 0.0443 | Lachnospiraceae [G-3] bacterium HMT 100 |
GNAS | rs3730173 | chr20:58909879 | T | −3.14 | 0.0208 | Lachnoanaerobaculum saburreum |
RALB | c.356A > G | chr2:120289612 | G | −3.14 | 0.0208 | Lachnoanaerobaculum saburreum |
RALB | rs11545293 | chr2:120278757 | A | 0.7232 | 0.0311 | Bergeyella sp. HMT 907 |
PLCB2 | rs72731486 | chr15:40299054 | A | −0.5803 | 0.0325 | Genus Streptococcus |
GNAT3 | rs6975345 | chr7:80494683 | C | 2.755 | 0.0351 | Prevotella salivae |
FUNGI (n = 155) | ||||||
RAC1 | rs836478 | chr7:6392059 | C | 2.519 | 0.0324 | Genus Alternaria |
RAC1 | rs3729790 | chr7:6387323 | A | −2.494 | 0.0329 | Order Malasseziales |
Gene Symbol | Gene Name | RefSeq ID | Location | Function |
---|---|---|---|---|
GNAS | G protein subunit alpha s | NM_001077489 | Chr20: 58,891,364–58,911,192 | It encodes the guanine nucleotide-binding protein Gαs, which is involved in activation of adenylyl cyclase (AC), the enzyme that synthesizes cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP), and a variety of cellular responses. With relevance to dental and oral health, mutations in this gene are linked to bone defects. |
GNAI2 | G protein subunit alpha i2 | NM_002070 | Chr3: 50,236,204–50,259,362 | It encodes the Gαi2 subunit, which is involved in hormonal regulation of AC. There is evidence of interaction between Gαi2 and bitter taste receptors (T2Rs). |
GNAQ | G protein subunit alpha q | NM_002072 | Chr9: 77,716,097–78,031,811 | It encodes the Gαq subunit, which couples GPCRs and PLCβ. |
GNAT3 | G protein subunit alpha transducin 3 | NM_001102386 | Chr7: 80,458,635–80,512,064 | The Gαgustducin encoded by this gene binds to taste receptors and is involved in the canonical taste signaling pathway. |
PLCB2 | Phospholipase C beta 2 | NM_004573 | Chr15: 40,287,909–40,307,935 | It encodes PLCβ2, which catalyzes the hydrolysis of PIP2 to IP3, which elicits Ca2+ release from internal stores. PLCβ2 is involved in the canonical taste signaling pathway. |
RAC1 | Rac family small GTPase 1 | NM_006908 | Chr7: 6,374,527–6,403,967 | It encodes a GTPase belonging to the RAS superfamily of small G proteins. Members of this superfamily have been shown to regulate a broad number of cellular events such as cytoskeletal dynamics and have a possible link with T2Rs. |
RALB | RAS-like proto-oncogene B | NM_002881 | Chr2: 120,252,852–120,294,710 | It encodes a GTP-binding protein that is a member of the small GTPase superfamily and Ras family of proteins. It is involved in innate immunity and tumor growth. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus, V.C.; Mittermuller, B.-A.; Hu, P.; Schroth, R.J.; Chelikani, P. Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries. Int. J. Mol. Sci. 2023, 24, 81. https://doi.org/10.3390/ijms24010081
de Jesus VC, Mittermuller B-A, Hu P, Schroth RJ, Chelikani P. Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries. International Journal of Molecular Sciences. 2023; 24(1):81. https://doi.org/10.3390/ijms24010081
Chicago/Turabian Stylede Jesus, Vivianne Cruz, Betty-Anne Mittermuller, Pingzhao Hu, Robert J. Schroth, and Prashen Chelikani. 2023. "Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries" International Journal of Molecular Sciences 24, no. 1: 81. https://doi.org/10.3390/ijms24010081
APA Stylede Jesus, V. C., Mittermuller, B. -A., Hu, P., Schroth, R. J., & Chelikani, P. (2023). Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries. International Journal of Molecular Sciences, 24(1), 81. https://doi.org/10.3390/ijms24010081