Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model
Abstract
:1. Introduction
2. Results
2.1. PVP Coating Provides Drug Attachment on the Prosthesis Surface
2.2. Drug Loading Does Not Diminish Mechanical Properties of Prostheses
2.3. Drug Loading Improves Hemocompatibility of the Prostheses
2.4. PCL/PVP/Ilo/A Prosthesis Demonstrates Better Long-Term Patency vs. PHBV/PCL/PVP/Ilo/A Prosthesis
2.5. Biodagradable Prostheses Support Arterial Regeneration In Situ
3. Discussion
4. Materials and Methods
4.1. Preparation of Biodegradable Vascular Prostheses
4.2. Drug Surface Modification
4.3. Determination of Drug Loading
4.4. Mechanical Testing
4.5. Hemocompatibility Studies
4.5.1. Hemolysis Test
4.5.2. Platelet Aggregation Test
4.5.3. Platelet Adhesion Test
4.6. Implantation of the Prosthesis
4.7. Histology and Immunofluorescence Examination
4.8. Analysis of Gene Expression Profile
4.9. Western Blotting and Proteomic Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taggart, D.P. Current status of arterial grafts for coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2013, 2, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Darouiche, R.O. Role of antibiofilm-antimicrobial agents in controlling device-related infections. Int. J. Artif. Organs. 2010, 34, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Geipel, U. Pathogenic organisms in hip joint infections. Int. J. Med. Sci. 2009, 6, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Pintucci, J.P.; Corno, S.; Garotta, M. Biofilms and infections of the upper respiratory tract. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 683–690. [Google Scholar]
- Di Domenico, E.G.; Oliva, A.; Guembe, M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022, 10, 1259. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 470–480. [Google Scholar] [CrossRef]
- Gordon, C.A.; Hodges, N.; Marriott, C. Use of slime dispersants to promote antibiotic penetration through the extracellular polisaccaride of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991, 35, 1258–1260. [Google Scholar] [CrossRef]
- Desrosiers, M.; Bendauah, Z.; Barbeau, J. Effectiveness of topical antibiotics on Staphylococcus aureus biofilm in vitro. Am. J. Rhinol. 2007, 21, 149–153. [Google Scholar] [CrossRef]
- Keays, T.; Ferris, W.; Vandemheen, K.L.; Chan, F.; Yeung, S.W.; Mah, T.F.; Ramotar, K.; Saginur, R.; Aaron, S.D. A retrospective analysis of biofilm antibiotic susceptibility testing: A better predictor of clinical response in cystic fibrosis exacerbations. J. Cyst. Fibros. 2009, 8, 122–127. [Google Scholar] [CrossRef]
- Ng, V.W.L.; Chan, J.M.; Sardon, H.; Ono, R.J.; García, J.M.; Yang, Y.Y.; Hedrick, J.L. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Adv. Drug Deliv. Rev. 2014, 78, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Haldar, J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem 2015, 10, 1606–1624. [Google Scholar] [CrossRef] [PubMed]
- Molchanova, N.; Hansen, P.R.; Franzyk, H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.H.; Morales, R.; Showalter, D.P.; Lepore, M.R.; Nair, D.G. Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylene grafts without heparin in a long-term comparison. J. Vasc. Surg. 2016, 64, 638–647. [Google Scholar] [CrossRef]
- Duan, H.Y.; Ye, L.; Wu, X.; Guan, Q.; Yang, X.F.; Han, F.; Liang, N.; Wang, Z.F.; Wang, Z.G. The in vivo characterization of electrospun heparin-bonded polycaprolactone in small-diameter vascular reconstruction. Vascular 2015, 23, 358–365. [Google Scholar] [CrossRef]
- Antonova, L.V.; Mironov, A.V.; Yuzhalin, A.E.; Krivkina, E.O.; Shabaev, A.R.; Rezvova, M.A.; Tkachenko, V.O.; Khanova, M.Y.; Sergeeva, T.Y.; Krutitskiy, S.S.; et al. A brief report on an implantation of small-caliber biodegradable vascular grafts in a carotid artery of the sheep. Pharmaceuticals 2020, 13, 101. [Google Scholar] [CrossRef]
- Krivkina, E.O.; Klyshnikov, K.Y.; Rezvova, M.A.; Sevostyanova, V.V.; Tkachenko, V.O.; Glyshkova, T.V.; Mironov, A.V.; Antonova, L.V. Development and in vivo evaluation of a biodegradable vascular graft reinforced with a fused PCL filament. J. Phys. Conf. Ser. 2020, 1611, 012053. [Google Scholar] [CrossRef]
- Wang, X.; Lin, P.; Yao, Q.; Chen, C. Development of small-diameter vascular grafts. World J. Surg. 2007, 31, 682–689. [Google Scholar] [CrossRef]
- Jaspan, V.N.; Hines, G.L. The current status of tissue-engineered vascular grafts. Cardiol. Rev. 2015, 23, 236–239. [Google Scholar] [CrossRef]
- Ono, M.; Kageyama, S.; O’Leary, N.; El-Kurdi, M.S.; Reinöhl, J.; Solien, E.; Bianco, R.W.; Doss, M.; Meuris, B.; Virmani, R.; et al. 1-Year patency of biorestorative polymeric coronary artery bypass grafts in an ovine model. J. Am. Coll. Cardiol. Basic. Trans. Sci. 2023, 1, 19–34. [Google Scholar] [CrossRef]
- Breuer, T.; Jimenez, M.; Humphrey, J.D.; Shinoka, T.; Breuer, C.K. Tissue engineering of vascular grafts: A case report from bench to bedside and back. Arterioscler. Thromb. Vasc. Biol. 2023, 3, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, D.D.; Kim, S.; Wagner, W.R. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J. Biomed. Mater. Res. A 2022, 8, 1460–1487. [Google Scholar] [CrossRef] [PubMed]
- Antonova, L.; Kutikhin, A.; Sevostianova, V.; Lobov, A.; Repkin, E.; Krivkina, E.; Velikanova, E.; Mironov, A.; Mukhamadiyarov, R.; Senokosova, E.; et al. Controlled and synchronised vascular regeneration upon the implantation of iloprost- and cationic amphiphilic drugs-conjugated tissue-engineered vascular grafts into the ovine carotid artery: A proteomics-empowered study. Polymers 2022, 23, 5149. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Bogdanova, Y.G.; Antonova, L.V.; Silnikov, V.N.; Khanova, M.Y.; Senokosova, E.A.; Barbarash, L.S. Impact of modification on the energy characteristics of surfaces and matrix properties of the new effective polymer vascular implants. Key Eng. Mater. 2021, 899, 342–354. [Google Scholar] [CrossRef]
- Matsuzakia, Y.; Iwaki, R.; Reinhardt, J.W.; Chang, Y.-C.; Miyamoto, S.; Kelly, J.; Zbindenac, J.; Blum, K.; Mirhaidari, G.; Ulziibayar, A.; et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomater. 2020, 115, 176–184. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Ulziibayar, A.; Shoji, T.; Shinoka, T. Heparin-eluting tissue-engineered bioabsorbable vascular grafts. Appl. Sci. 2021, 11, 4563. [Google Scholar] [CrossRef]
- Lyu, J.S.; Lee, J.S.; Han, J. Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Sci. Rep. 2019, 9, 20236. [Google Scholar] [CrossRef]
- Antonova, L.V.; Krivkina, E.O.; Silnikov, V.N.; Gruzdeva, O.V.; Rezvova, M.A.; Akentieva, T.N.; Glushkova, T.V.; Tkachenko, V.O.; Sakharova, V.M.; Barbarash, L.S. Evaluation of the biocompatibility and antimicrobial properties of biodegradable vascular grafts of various polymer composition with atrombogenic and antimicrobial drug coating. Russ. J. Transpl. Artif. Organs 2021, 23, 122–136. [Google Scholar] [CrossRef]
- Kitsuka, T.; Hama, R.; Ulziibayar, A.; Matsuzaki, Y.; Kelly, J.; Shinoka, T. Clinical application for tissue engineering focused on materials. Biomedicines 2022, 10, 1439. [Google Scholar] [CrossRef]
- Weekes, A.; Bartnikowski, N.; Pinto, N.; Jenkins, J.; Meinert, C.; Klein, T.J. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 2022, 138, 92–111. [Google Scholar] [CrossRef] [PubMed]
- Rickel, A.P.; Deng, X.; Engebretson, D.; Hong, Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112373. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Yao, Y.; Yim, E.K.F. Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomater. Sci. 2020, 8, 4383–4395. [Google Scholar] [CrossRef] [PubMed]
- Mrówczyński, W.; Mugnai, D.; de Valence, S.; Tille, J.C.; Khabiri, E.; Cikirikcioglu, M.; Möller, M.; Walpoth, B.H. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J. Vasc. Surg. 2014, 1, 210–219. [Google Scholar] [CrossRef]
- Ju, Y.M.; Ahn, H.; Arenas-Herrera, J.; Kim, C.; Abolbashari, M.; Atala, A.; Yoo, J.J.; Lee, S.J. Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study. Acta Biomater. 2017, 59, 58–67. [Google Scholar] [CrossRef]
- Miyachi, H.; Reinhardt, J.W.; Otsuru, S.; Tara, S.; Nakayama, H.; Yi, T.; Lee, Y.U.; Miyamoto, S.; Shoji, T.; Sugiura, T.; et al. Bone marrow-derived mononuclear cell seeded bioresorbable vascular graft improves acute graft patency by inhibiting thrombus formation via platelet adhesion. Int. J. Cardiol. 2018, 266, 61–66. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Duan, H.-Y.; Geng, X.; Chen, B.; Gu, Y.-Q.; Zhang, A.-Y.; Zhang, J.; Feng, Z.-G. The in vitro and in vivo biocompatibility evaluation of heparin-poly(e-caprolactone) conjugate for vascular tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2012, 100A, 3251–3258. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Fioravanzo, L.; Folin, M.; Marchi, F.; Ercolani, E.; Bianco, A. Electrospun tubular scaffolds: On the effectiveness of blending poly(e-caprolactone) with poly(ε-hydroxybutyrate-co-3-hydroxyvalerate). J. Biomed. Mater. Res. Part B 2012, 100B, 1883–1898. [Google Scholar] [CrossRef]
- Deepthi, S.; Sundaram, M.N.; Vijayan, P.; Nair, S.V.; Jayakumar, R. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. Int. J. Biol. Macromol. 2018, 109, 85–98. [Google Scholar] [CrossRef]
- Antonova, L.V.; Sevostyanova, V.V.; Mironov, A.V.; Krivkina, E.O.; Velikanova, E.A.; Matveeva, V.G.; Glushkova, T.V.; Elgudin, Y.L.; Barbarash, L.S. In Situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues Cardiovasc. Dis. 2018, 7, 25–36. [Google Scholar] [CrossRef]
- Nasonova, M.V.; Shishkova, D.K.; Antonova, L.V.; Sevostianova, V.V.; Kudryavtseva, Y.A.; Barbarash, O.L.; Barbarash, L.S. Subcutaneous implantation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (ε-caprolactone) scaffolds modified with growth factors. Sovrem. Tehnol. V Med. 2017, 9, 7–16. [Google Scholar] [CrossRef]
- Antonova, L.V.; Krivkina, E.O.; Sevostianova, V.V.; Mironov, A.V.; Rezvova, M.A.; Shabaev, A.R.; Tkachenko, V.O.; Krutitskiy, S.S.; Khanova, M.Y.; Sergeeva, T.Y.; et al. Tissue-engineered carotid artery interposition grafts demonstrate high primary patency and promote vascular tissue regeneration in the ovine model. Polymers 2021, 13, 2637. [Google Scholar] [CrossRef] [PubMed]
- Fukunishi, T.; Ong, C.S.; Yesantharao, P.; Best, C.A.; Yi, T.; Zhang, H.; Mattson, G.; Boktor, J.; Nelson, K.; Shinoka, T.; et al. Different degradation rates of nanofiber vascular grafts in small and large animal models. J. Tissue Eng. Regen. Med. 2020, 14, 203–214. [Google Scholar] [CrossRef]
- Bartlett, B.; Ludewick, H.P.; Lee, S.; Verma, S.; Francis, R.J.; Dwivedi, G. Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021, 10, 2573. [Google Scholar] [CrossRef] [PubMed]
- Graney, P.L.; Ben-Shaul, S.; Landau, S.; Bajpai, A.; Singh, B.; Eager, J.; Cohen, A.; Levenberg, S.; Spiller, K.L. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci. Adv. 2020, 6, eaay6391. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.; Mura, M.; Mambrini, S.; Palombo, D. Effects of Pleiotrophin on endothelial and inflammatory cells: Pro-angiogenic and anti-inflammatory properties and potential role for vascular bio-prosthesis endothelialization. Adv. Med. Sci. 2015, 60, 287–293. [Google Scholar] [CrossRef]
- Zhang, F.; King, M.W. Immunomodulation strategies for the successful regeneration of a tissue-engineered vascular graft. Adv. Healthc. Mater. 2022, 11, e2200045. [Google Scholar] [CrossRef]
- Antonova, L.V.; Sevostyanova, V.V.; Rezvova, M.A.; Krivkina, E.O.; Kudryavtseva, Y.A.; Barbarash, O.L.; Barbarash, L.S. Technology of Producing Functionally Active Biodegradable Small-Diameter Vascular Prostheses with Drug Coating. 2019. Available online: https://worldwide.espacenet.com/patent/search?q=pn%3DRU2702239C1 (accessed on 7 October 2019).
- Fedorova, A.A.; Azzami, K.; Ryabchikova, E.I.; Spitsyna, Y.E.; Silnikov, V.N.; Ritter, W.; Gross, H.J.; Tautz, J.; Vlassov, V.V.; Beier, H.; et al. Inactivation of a non-enveloped RNA virus by artificial ribonucleases: Honey bees and acute bee paralysis virus as a new experimental model for in vivo antiviral activity assessment. Antiviral. Res. 2011, 91, 267–277. [Google Scholar] [CrossRef]
- Yarinich, L.A.; Burakova, E.A.; Zakharov, B.A.; Boldyreva, E.V.; Babkina, I.N.; Tikunova, N.V.; Silnikov, V.N. Synthesis and structure-activity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents. Eur. J. Med. Chem. 2015, 95, 563–573. [Google Scholar] [CrossRef]
- Burakova, E.A.; Saranina, I.V.; Tikunova, N.V.; Nazarkina, Z.K.; Laktionov, P.P.; Karpinskaya, L.A.; Anikin, V.B.; Zarubaev, V.V.; Silnikov, V.N. Biological evaluation of tetracationic compounds based on two 1,4-diazabicyclo [2.2.2]octane moieties connected by different linkers. Bioorg. Med. Chem. 2016, 24, 6012–6020. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Z.; Zhang, X.; Zhou, M.; Cai, L. Hemocompatibility research on the micro-structure surface of a bionic heart valve. Biomed. Mater. Eng. 2014, 24, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Su, F.; Dong, J.; Fan, Z.; Duan, Y.; Li, S. In Vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1,3-trimethylene carbonate, and glycolide for cardiovascular applications. J. Biomater. Sci. Polym. Ed. 2015, 26, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Braune, S.; Lendlein, A. Haemocompatibility testing of biomaterials using human platelets. Clin. Hemorheol. Microcirc. 2013, 53, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
Sample | N | Tensile Strength, MPa Me (25–75%) | Elongation, % Me (25–75%) | Young’s Modulus, MPa Me (25–75%) |
---|---|---|---|---|
Sheep carotid artery | 14 | 1.2 (1.06–1.9) | 158.5 (126.0–169.5) | 0.49 (0.39–0.66) |
PHBV/PCL | 7 | 3.99 (3.71–4.23) ● | 1438.0 (1403.0–1510.0) ● | 11.52 (10.66–12.21) ● |
PCL | 7 | 5.84 (5.56–6.13) ● | 1391.0 (1350.0–1413.0) ● | 9.33 (9.23–9.55) ● |
PHBV/PCL/PVP | 7 | 3.61 (3.23–4.01) ● | 1202.0 (1120.0–1298.0) *,● | 19.8 (18.23–20.9) *,● |
PCL/PVP | 7 | 3.75 (3.48–4.01) *,● | 1183.0 (1157.0–1215.0) *,● | 12.86 (11.86–14.06) *,● |
PHBV/PCL/PVP/Ilo/A | 7 | 3.89 (3.88–3.99) ● | 1364.0 (1343.0–1393.0) *,● | 14.55 (13.22–15.24) *,● |
PCL/PVP/Ilo/A | 7 | 4.02 (3.80–4.18) *,● | 1454.0 (1433.0–1458.0) *,●,▲ | 10.15 (9.82–10.57) *,●,▲ |
Sample | Maximum Platelet Aggregation, % Me (25–75%) | Hemolysis, % Me (25–75%) |
---|---|---|
PHBV/PCL | 87.23 (83.95–89.84) * | 0.5 (0.0–1.0) |
PCL | 87.23 (83.27–89.35) * | 0.5 (0.0–1.0) |
PHBV/PCL/PVP | 88.53 (86.59–89.37) * | 0.2 (0.0–0.5) |
PCL/PVP | 90.12 (82.57–90.60) * | 0.7 (0.5–1.0) |
PHBV/PCL/PVP/Ilo/A | 12.18 (11.15–12.24) *,** | 0.5 (0.0–0.5) |
PCL/PVP/Ilo/A | 10.7 (10.38–17.23) *,** | 0.4 (0.0–1.0) |
Platelet-rich plasma | 74.65 (72.45–75.31) | - |
Sample | Type of Platelet, % | Number of Platelets per 1 mm2 Me (25–75%) | Deformation Index Me (25–75%) | ||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
PHBV/PCL | 7.7 | 30.8 | 53.8 | 7.7 | 0.0 | 578.0 (0.0–1349.0) | 1.75 (0.0–2.9) |
PCL | 4.7 | 46.5 | 41.9 | 4.7 | 2.3 | 1734.0 (866.9–3179.0) * | 2.5 (2.0–2.7) * |
PHBV/PCL/PVP | 3.0 | 27.3 | 45.5 | 21.2 | 3.0 | 1156.0 (0.0–3082.0) * | 1.91 (0.0–2.9) |
PCL/PVP | 12.5 | 25.5 | 12.5 | 50.0 | 0.0 | 1728.0 (846.4–3058.0) ● | 1.9 (0.0–2.8) |
PHBV/PCL/PVP/Ilo/A | 12.5 | 62.5 | 18.8 | 6.2 | 0.0 | 770.6 (0.0–1445.0) ● | 1.3 (0.0–2.4) ● |
PCL/PVP/Ilo/A | 4.7 | 6.3 | 71.8 | 17.2 | 0.0 | 1349.0 (0.0–3275.0) | 1.3 (0.0–2.8) ▲ |
Category | Protein | Description | Uni-Prot | Unique Peptides | PHBV/PCL | PCL | |||
---|---|---|---|---|---|---|---|---|---|
Mean Peak Area | n | Mean Peak Area | n | Fold Change | |||||
Contraction | FERM2 | Fermitin family homolog 2 | Q96AC1 | 41 | 3412 | 1 | 18,019 | 4 | 5.28 |
ECM | CSPG2 | Versican core protein | P13611 | 28 | 27,186 | 5 | 133,182 | 5 | 4.90 |
ECM-BM | PGBM | Basement-membrane-specific heparan sulfate proteoglycan core protein | P98160 | 74 | 4743 | 2 | 22,393 | 4 | 4.72 |
Contraction | TPM1 | Tropomyosin alpha-1 chain | P09493 | 40 | 18,892 | 4 | 88,790 | 4 | 4.70 |
Contraction | ACTA | Actin, aortic smooth muscle | P62736 | 52 | 13,111 | 1 | 48,506 | 4 | 3.70 |
Contraction | MYLK | Myosin light chain kinase, smooth muscle | Q15746 | 55 | 22,336 | 3 | 74,467 | 5 | 3.33 |
ECM | MFAP4 | Microfibril-associated glycoprotein 4 | P55083 | 5 | 46,471 | 5 | 146,614 | 5 | 3.15 |
Contraction | ACTH | Actin, gamma-enteric smooth muscle | P63267 | 51 | 121,174 | 6 | 375,235 | 6 | 3.10 |
Contraction | CNN1 | Calponin-1 | P51911 | 44 | 29,661 | 4 | 91,187 | 4 | 3.07 |
Contraction | HSPB6 | Heat shock protein beta-6 | O14558 | 15 | 9473 | 2 | 26,632 | 4 | 2.81 |
Contraction | TAGL | Transgelin | Q01995 | 42 | 156,077 | 6 | 430,898 | 6 | 2.76 |
Contraction | CALD1 | Caldesmon | Q05682 | 67 | 39,388 | 6 | 106,053 | 6 | 2.69 |
Adhesion | CAD13 | Cadherin-13 | P55290 | 12 | 14,034 | 4 | 36,982 | 3 | 2.64 |
Contraction | DEST | Destrin | P60981 | 14 | 58,347 | 6 | 123,228 | 5 | 2.11 |
Inflammation | CRP | C-reactive protein | P02741 | 16 | 10,815 | 3 | 21,953 | 4 | 2.03 |
Contraction | TPM2 | Tropomyosin beta chain | P07951 | 58 | 271,460 | 6 | 546,685 | 6 | 2.01 |
ECM | CO3A1 | Collagen alpha-1(III) chain | P02461 | 7 | 21,901 | 4 | 43,899 | 5 | 2.00 |
Parameter | PCL Prosthesis | PHBV/PCL Prosthesis |
---|---|---|
Voltage, kV | 20 | 22 |
Flow rate, mL/h | 0.5 | 0.5 |
Distance between electrodes, mm | 150 | 150 |
Collector rotation speed, rpm | 100 | 100 |
Spinneret rate, mm/sec | 60 | 60 |
Type | PCL | PHBV/PCL |
---|---|---|
PVP coated prostheses | PCL/PVP | PHBV/PCL/PVP |
Drug coated prostheses | PCL/PVP/Ilo/A | PHBV/PCL/PVP/Ilo/A |
Gene | Forward Primer | Reverse Primer |
---|---|---|
B2M | 5′-CCTTCTGTCCCACGCTGAGT-3′ | 5′-TGGTGCTGCTTAGAGGTCTCG-3′ |
ACTB | 5′-AGCAAGAGAGGCATCCTGACC-3′ | 5′-GGCAGGGGTGTTGAAGGTCT-3′ |
GAPDH | 5′-TGGTGAAGGTCGGAGTGAACG-3′ | 5′-AGGGGTCATTGATGGCAACG-3′ |
IL1B | 5′-TGCTGAAGGCTCTCCACCTC-3′ | 5′-ACCCAAGGCCACAGGAATCTT-3′ |
IL6 | 5′-TGTCATGGAGTTGCAGAGCAGT-3′ | 5′-CCAGCATGTCAGTGTGTGTGG-3′ |
IL10 | 5′-ATGCCACAGGCTGAGAACCA-3′ | 5′-TCGCAGGGCAGAAAACGATG-3′ |
IL12A | 5′-GCAGAAGGCCAGACAAACCC-3′ | 5′-TGGAAGCCAGGCAACTCTCA-3′ |
IL12B | 5′-AGAGCCTGCCCATTGAGGTC-3′ | 5′-GGTTCTTGGGTGGGTCTGGT-3′ |
CXCR4 | 5′-CTGGAGAGCAAGCGGTTACCA-3′ | 5′-ACAGTGGGCAGGAAGATCCG-3′ |
CXCL8 | 5′-CTTCCAAGCTGGCTGTTGCTC-3′ | 5′-ATTTGGGGTGGAAAGGTGTGG-3′ |
IFNG | 5′-TGAACGGCAGCTCTGAGAAAC-3′ | 5′-TGGCGACAGGTCATTCATCA-3′ |
TNF | 5′-CTTCTGCCTGCTGCACTTCG-3′ | 5′-TGGCTACAACGTGGGCTACC-3′ |
ICAM1 | 5′-GTCACGGGGAACAGATTGTAGC-3′ | 5′-TGAGTTCTTCACCCACAGGCT-3′ |
NOS3 | 5′-CTTCCGTGGTTGGGCAAAGG-3′ | 5′-CGTTTCCAGCTCCGTTTGGG-3′ |
FGF2 | 5′-AGAGCGACCCTCACATCAAACT-3′ | 5′-TCAGTGCCACATACCAACTGGA-3′ |
VEGFA | 5′-GCTTCTGCCGTCCCATTGAG-3′ | 5′-ATGTGCTGGCTTTGGTGAGG-3′ |
TGFB1 | 5′-TGAGCCAGAGGCGGACTACT-3′ | 5′-ACACAGGTTCAGGCACTGCT-3′ |
KDR | 5′-ACAGAACCAAGTTAGCCCCATC-3′ | 5′-TCGCTGGAGTACACAGTGGTG-3′ |
MMP2 | 5′-ACCCCGCTACGGTTTTCTCG-3′ | 5′-ATGAGCCAGGAGCCCGTCTT-3′ |
NR2F2 | 5′-GCAAGCGGTTTGGGACCTT-3′ | 5′-GGACAGGTAGGAGTGGCAGTTG-3′ |
SNAI2 | 5′-ACCCTGGTTACTGCAAGGACA-3′ | 5′-GAGCCCTCAGATTGGACCTG-3′ |
YAP1 | 5′-TGCTTCGGCAGGAATTAGCTCT-3′ | 5′-GCTCATGCTCAGTCCGCTGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonova, L.V.; Sevostianova, V.V.; Silnikov, V.N.; Krivkina, E.O.; Velikanova, E.A.; Mironov, A.V.; Shabaev, A.R.; Senokosova, E.A.; Khanova, M.Y.; Glushkova, T.V.; et al. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. Int. J. Mol. Sci. 2023, 24, 8540. https://doi.org/10.3390/ijms24108540
Antonova LV, Sevostianova VV, Silnikov VN, Krivkina EO, Velikanova EA, Mironov AV, Shabaev AR, Senokosova EA, Khanova MY, Glushkova TV, et al. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. International Journal of Molecular Sciences. 2023; 24(10):8540. https://doi.org/10.3390/ijms24108540
Chicago/Turabian StyleAntonova, Larisa V., Viktoriia V. Sevostianova, Vladimir N. Silnikov, Evgeniya O. Krivkina, Elena A. Velikanova, Andrey V. Mironov, Amin R. Shabaev, Evgenia A. Senokosova, Mariam Yu. Khanova, Tatiana V. Glushkova, and et al. 2023. "Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model" International Journal of Molecular Sciences 24, no. 10: 8540. https://doi.org/10.3390/ijms24108540
APA StyleAntonova, L. V., Sevostianova, V. V., Silnikov, V. N., Krivkina, E. O., Velikanova, E. A., Mironov, A. V., Shabaev, A. R., Senokosova, E. A., Khanova, M. Y., Glushkova, T. V., Akentieva, T. N., Sinitskaya, A. V., Markova, V. E., Shishkova, D. K., Lobov, A. A., Repkin, E. A., Stepanov, A. D., Kutikhin, A. G., & Barbarash, L. S. (2023). Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. International Journal of Molecular Sciences, 24(10), 8540. https://doi.org/10.3390/ijms24108540