Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Atomic Structure of the a-C:H:SiOx Coating
2.2. Cytotoxicity Trials
2.3. Cell Spreading and Distribution over Test Substrates
2.4. Optical Density of Endothelial Cell Colonization of Test Samples
2.5. Endothelial Cell Death on Substrates
2.6. Nitric Oxide Production by Endothelial Cells
3. Materials and Methods
3.1. Preparation of Ti-6Al-4V Substrate and Coating Deposition
3.2. Structural Analysis of the a-C:H:SiOx Coating
3.3. Preparation of Extracts
3.4. Cell Culture
3.5. Cytotoxicity Analysis
3.6. Cell Distribution over the Surface
3.7. Cell Survival Estimation
3.8. Cell Death Estimation
3.9. Nitric Oxide Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Kathrine Skibelund, A. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Briggs, A.M. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Rahimi, K. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeets, M.; Vaes, B.; Mamouris, P.; Akker, M.; Van Pottelbergh, G.; Goderis, G.; Janssens, S.; Aertgeerts, B.; Henrard, S. Burden of heart failure in Flemish general practices: A registry-based study in the Intego database. BMJ Open 2019, 9, e022972. [Google Scholar] [CrossRef]
- Tsao, C.W.; Lyass, A.; Enserro, D.; Larson, M.G.; Ho, J.E.; Kizer, J.R.; Vasan, R.S. Temporal Trends in the Incidence of and Mortality Associated With Heart Failure With Preserved and Reduced Ejection Fraction. JACC Heart Fail 2018, 6, 678–685. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Trogdon, J.G. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail 2013, 6, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Moussa, I.D.; Mohananey, D.; Saucedo, J.; Stone, G.W.; Yeh, R.W.; Kennedy, K.F.; Simonton, C. Trends and Outcomes of Restenosis After Coronary Stent Implantation in the United States. J. Am. Coll. 2020, 76, 1521–1531. [Google Scholar] [CrossRef]
- Qin, Z.; Zheng, F.W.; Zeng, C.; Zhou, K.; Geng, Y.; Wang, J.L.; Zhou, Y.J. Elevated Levels of Very Low-density Lipoprotein Cholesterol Independently Associated with In-stent Restenosis in Diabetic Patients after Drug-eluting Stent Implantation. Chin. Med. J. 2017, 130, 2326–2332. [Google Scholar] [CrossRef]
- Rosenthal, N.; Costa, M.A. Unravelling the endovascular microenvironment by optical coherence tomography. Eur. Heart J. 2010, 31, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Xiong, F.; Wen, Y.; Ma, Y.L.; Yao, Y.; Gao, Z.; Yuan, J.Q. Comparison of Efficacy and Safety between First and Second Generation Drug-eluting Stents in Patients with Stable Coronary Artery Disease: A Single-center Retrospective Study. Chin. Med. J. 2017, 130, 1654–1661. [Google Scholar] [CrossRef]
- Forte, A.; Rinaldi, B.; Berrino, L.; Rossi, F.; Galderisi, U.; Cipollaro, M. Novel potential targets for prevention of arterial restenosis: Insights from the pre-clinical research. Clin. Sci. 2014, 127, 615–634. [Google Scholar] [CrossRef] [PubMed]
- Alraies, M.C.; Darmoch, F.; Tummala, R.; Waksman, R. Diagnosis and management challenges of in-stent restenosis in coronary arteries. World J. Cardiol. 2017, 9, 640. [Google Scholar] [CrossRef]
- Cho, H.H.; Han, D.W.; Matsumura, K.; Tsutsumi, S.; Hyon, S.H. The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly (l-lactide-co-ε-caprolactone) as stent-coating materials. Biomaterials 2008, 29, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badv, M.; Bayat, F.; Weitz, J.L.; Didar, T.F. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020, 258, 120291. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, V.; Kapadia, S.R.; Krishnaswamy, A. Current and Future Application of Transcatheter Mitral Valve Replacement. Cardiol Clin. 2021, 39, 221–232. [Google Scholar] [CrossRef]
- Jaffer, I.H.; Whitlock, R.P. A mechanical heart valve is the best choice. Heart. Asia 2016, 8, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Mariani, S.; Li, T.; Hegermann, J.; Bounader, K.; Hanke, J.; Meyer, T.; Dogan, G. Biocompatibility of an apical ring plug for left ventricular assist device explantation: Results of a feasibility pre-clinical study. Artif. Organs 2022, 46, 827–837. [Google Scholar] [CrossRef]
- Andersen, T.E.; Palarasah, Y.; Skjødt, M.O.; Ogaki, R.; Benter, M.; Alei, M.; Kingshott, P. Decreased material-activation of the complement system using low-energy plasma polymerized poly (vinyl pyrrolidone) coatings. Biomaterials 2011, 32, 4481–4488. [Google Scholar] [CrossRef]
- Yee, H.K.; Lakshmi, D.; Ajit, Y.; Hwa, L. Recent Advances in Polymeric Heart Valves Research. Int. J. Biomater. Res. Eng. 2011, 1, 1–17. [Google Scholar]
- Radley, G.; Pieper, I.L.; Thornton, C.A. The effect of ventricular assist device-associated biomaterials on human blood leukocytes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1730–1738. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Qi, P.; Liu, J.; Yang, Y.; Tan, X.; Xiao, Y.; Yang, Z. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials 2019, 207, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Grenadyorov, A.S.; Solovyev, A.A.; Ivanova, N.M.; Zhulkov, M.O.; Chernyavskiy, A.M.; Malashchenko, V.V.; Khlusov, I.A. Enhancement of the adhesive strength of antithrombogenic and hemocompatible a-C:H:SiOx films to polypropylene. Surf. Coat. Technol. 2020, 399, 126132. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Zhulkov, M.O.; Oskomov, K.V.; Semenov, V.A.; Chernyavskiy, A.M.; Sirota, D.A.; Karmadonova, N.A.; Malashchenko, V.V.; Litvinova, L.S.; et al. Morphofunctional reaction of leukocytes and platelets in in vitro contact with a-C:H:SiOx-coated Ti–6Al–4V substrate. J. Biomed. Mater. Res. Part A 2022, 111, 309–321. [Google Scholar] [CrossRef]
- Kufner, S.; Joner, M.; Thannheimer, A.; Hoppmann, P.; Ibrahim, T.; Mayer, K. Ten-Year Clinical Outcomes From a Trial of Three Limus-Eluting Stents With Different Polymer Coatings in Patients With Coronary Artery Disease. Circulation 2019, 139, 325–333. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, J.H.; Shin, D.H.; Moon, M.W.; Park, K.; Kim, T.H.; Lee, K.R. Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model. Br. J. Radiol. 2011, 84, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bito, K.; Hasebe, T.; Maegawa, S.; Maeda, T.; Matsumoto, T.; Suzuki, T.; Hotta, A. In vitro basic fibroblast growth factor (bFGF) delivery using an antithrombogenic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coated with a micropatterned diamond-like carbon (DLC) film. J. Biomed. Mater. Res. A 2017, 105, 3384–3391. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.K.; Lee, K.R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Khandwekar, A.P.; Patil, D.P.; Shouche, Y.; Doble, M. Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. J. Biomater. Appl. 2011, 26, 227–252. [Google Scholar] [CrossRef]
- Ahmed Baduruthamal, Z.; Mohammed, A.S.; Kumar, A.M.; Hussein, M.A.; Al-Aqeeli, N. Tribological and Electrochemical Characterization of UHMWPE Hybrid Nanocomposite Coating for Biomedical Applications. Materials 2019, 12, 3665. [Google Scholar] [CrossRef] [Green Version]
- Bociaga, D.; Sobczyk-Guzenda, A.; Komorowski, P.; Balcerzak, J.; Jastrzebski, K.; Przybyszewska, K.; Kaczmarek, A. Surface characteristics and biological evaluation of Si-DLC coatings fabricated using magnetron sputtering method on Ti6Al7Nb substrate. Nanomaterials 2019, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Grenadyorov, A.S.; Zhulkov, M.O.; Solovyev, A.A.; Oskomov, K.V.; Semenov, V.A.; Chernyavskiy, A.M.; Sirota, D.A.; Karmadonova, N.A.; Malashchenko, V.V.; Litvinova, L.S.; et al. Surface characterization and biological assessment of corrosion resistant a-C:H:SiOx PACVD coating for Ti-6Al-4 V alloy. Mater. Sci. Eng. C 2021, 123, 112002. [Google Scholar] [CrossRef] [PubMed]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Onischenko, S.A.; Chernyavskiy, A.M.; Zhulkov, M.O.; Kaichev, V.V. Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices. Surf. Coat. Technol. 2020, 381, 125113. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Oskirko, V.O.; Solovyev, A.A.; Semenov, V.A.; Rabotkin, S.V.; Oskomov, K.V.; Sypchenko, V.S. Kinetics of plasma-assisted chemical vapor deposition combined with inductively excited RF discharge and properties of a-C:H:SiOx coatings. Vacuum 2022, 199, 110982. [Google Scholar] [CrossRef]
- Neyman, A.A.; Meisner, L.L.; Lotkov, A.I. Phase and Structural States Formed in Titanium Nickelide Subsurface Layers Exposed to High-Current Pulsed Electron Beams. Russ. Phys. J. 2015, 58, 255–265. [Google Scholar] [CrossRef]
- Semin, V.O.; Gudimova, E.Y.; Neiman, A.A.; D’yachenko, F.A.; Meisner, L.L. Local structure and medium-range order in a glassy Ti-Ta-based surface alloy after low-temperature annealing studied by electron nano-beam diffraction. Mater. Charact. 2021, 174, 110967. [Google Scholar] [CrossRef]
- Ribble, D.; Goldstein, N.B.; David, A.; Norris, D.A.; Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 2005, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Sypchenko, V.S. Influence of deposition conditions on mechanical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method. Surf. Coat. Technol. 2018, 349, 547–555. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Zhulkov, M.O. Dependence of Mechanical and Tribological Properties of a-C:H:SiOx Films on the Bias Voltage Amplitude of the Substrate. Tech. Phys. 2021, 66, 1258–1264. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Rabotkin, S.V.; Elgin, Y.I.; Sypchenko, V.S.; Ivanova, N.M. Effect of substrate bias and substrate/plasma generator distance on properties of a-C:H:SiOx films synthesized by plasma-assisted chemical vapor deposition. Thin Solid Film. 2019, 669, 253–261. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Oskirko, V.O. Effect of the plasma confinement on properties of a-C:H:SiOx films grown by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 2019, 37, 061512. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Oskomov, K.V.; Kovsharov, N.F.; Solovyev, A.A. Effect of precursor flow rate on physical and mechanical properties of a-C:H:SiOx films deposited by PACVD method. J. Phys. Conf. Ser. 2018, 1115, 042046. [Google Scholar] [CrossRef]
- Ogwu, A.A.; Okpalugo, T.T.; Ali, N.; Maguire, P.D.; McLaughlin, J.A.D. Endothelial Cell Growth on Silicon Modified Hydrogenated Amorphous Carbon Thin Films. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 85, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Bociaga, D.; Kaminska, M.; Sobczyk-Guzenda, A.; Jastrzebski, K.; Swiatek, L.; Olejnik, A. Surface properties and biological behaviour of Si-DLC coatings fabricated by a multi-target DC–RF magnetron sputtering method for medical applications. Diam. Relat. Mater. 2016, 67, 41–50. [Google Scholar] [CrossRef]
- Zhou, Y. Soldering and brazing. Smithells Met. Ref. Book 2003, 1–22. [Google Scholar]
- Hilbert, J.; Mangolini, F.; McClimon, J.B.; Lukes, J.R.; Carpick, R.W. Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder. Carbon 2018, 131, 72–78. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V.; Santra, T.S.; Gupta, T.S.; Korneev, D.S. The influence of structure and composition of diamond-like nanocomposite coatings on cell viability. J. Vac. Sci. Technol. B 2021, 39, 062802. [Google Scholar] [CrossRef]
- Bondar, O.V.; Saifullina, D.V.; Shakhmaeva, I.I.; Mavlyutova, I.I.; Abdullin, T.I. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Nat. 2012, 4, 78–81. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Solovyev, A.A.; Oskomov, K.V. The Influence of the Thickness of Silicon- and Oxygen-Doped Hydrogenized Carbon Films on Their Surface Properties. Tech. Phys. 2021, 66, 139–144. [Google Scholar] [CrossRef]
- Butter, R.; Allen, M.; Chandra, L.; Lettington, A.H.; Rushton, N. In vitro studies of DLC coatings with silicon intermediate layer. Diam. Relat Mater. 1995, 4, 857–861. [Google Scholar] [CrossRef]
- Singh, A.; Ehteshami, G.; Massia, S.; He, J.; Store, R.G.; Raupp, G. Glial cell and fibroblast cytotoxicity study on plasma-deposited diamond-like carbon coatings. Biomaterials 2003, 24, 5083–5089. [Google Scholar] [CrossRef]
- Okpalugo, T.I.T.; Ogwu, A.A.; Maguire, P.D.; McLaughlin, J.A.D. Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials 2004, 25, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.E.; Zhang, S.; Du, H.; Too, H.C.; Aung, K.N. Influence of silicon concentration on the haemocompatibility of amorphous carbon. Biomaterials 2007, 28, 4033–4038. [Google Scholar] [CrossRef] [PubMed]
- Chudinova, E.; Surmeneva, M.; Koptioug, A.; Sharonova, A.; Loza, K.; Surmenev, R. Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: Wettability and surface morphology study. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 012004. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Thordarson, P.; Gooding, J.J.; Ringer, S.P.; Braet, F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 2007, 18, 412001. [Google Scholar] [CrossRef]
- Klingeler, R.; Sim, R.B. Carbon Nanotubes for Biomedical Applications; Springer: Berlin, Germany, 2011; pp. 41–62. [Google Scholar]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Liao, T.T.; Zhang, T.F.; Li, S.S.; Deng, Q.Y.; Wu, B.J.; Zhang, Y.Z.; Zhou, Y.J.; Guo, Y.B.; Leng, Y.X.; Huang, N. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Mater. Sci. Eng. C 2016, 69, 751–759. [Google Scholar] [CrossRef]
- Wang, C.; Lan, C.Q. Effects of shear stress on microalgae-A review. Biotechnol Adv. 2018, 36, 986–1002. [Google Scholar] [CrossRef]
- Lahera, V. Relaxing endothelium factor in cardiovascular disease. Med. Clin. 1991, 96, 95–97. [Google Scholar]
- Rongen, G.A.; Smits, P.; Thien, T. Endothelium and the regulation of vascular tone with emphasis on the role of nitric oxide, Physiology, pathophysiology and clinical implications. Neth. J. Med. 1994, 44, 26–35. [Google Scholar]
- Bauer, V.; Sotníková, R. Nitric oxide—The endothelium-derived relaxing factor and its role in endothelial functions. Gen. Physiol. Biophys. 2010, 29, 319. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet 2019, 18, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Montone, R.A.; Niccoli, G.; Vergni, F.; Vetrugno, V.; Russo, M.; Mangiacapra, F.; Fracassi, F.; Porto, I.; Leone, A.M.; Burzotta, F.; et al. Endothelial dysfunction as predictor of angina recurrence after successful percutaneous coronary intervention using second generation drug eluting stents. Eur. J. Prev. Cardiol. 2018, 25, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- May, J.M.; Qu, Z.C.; Li, X. Nitrite generates an oxidant stress and increases nitric oxide in EA.hy926 endothelial cells. Free Radic Res. 2004, 38, 581–589. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- May, J.M.; Qu, Z.C. Nitric oxide-induced oxidant stress in endothelial cells: Amelioration by ascorbic acid. Arch. Biochem. Biophys. 2004, 429, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Volnoukhin, M.; Brandhorst, B.P. Multispectral labeling of embryonic cells with lipophilic carbocyanine dyes. Mol. Reprod. Dev. 2015, 82, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Kim, H.S.; An, H.; Baek, K.; Lee, J.M.; Yim, M.J.; Ko, S.C.; Kim, J.Y.; Oh, G.W.; Je, J.G.; et al. Antihypertensive Effects of IGTGIPGIW Peptide Purified from Hippocampus abdominalis: p-eNOS and p-AKT Stimulation in EA.hy926 Cells and Lowering of Blood Pressure in SHR Model. Mar Drugs 2022, 20, 354. [Google Scholar] [CrossRef] [PubMed]
Parameters | Stage I (Ion-Beam Cleaning) | Stage II (Coating Deposition) |
---|---|---|
Ar pressure, Pa | 0.3 ± 0.01 | 0.1 ± 0.01 |
Discharge current, A | 7 ± 0.5 | 5.2 ± 0.3 |
Filament current, A | 50 ± 5 | 50 ± 5 |
Bias voltage, V | 1000 ± 50 | 300 ± 20 |
Ar flow rate, sccm | 230 ± 10 | 66 ± 5 |
Precursor flow rate, ×10−3 sccm | - | 17 ± 1 |
Substrate temperature, °C | 20 ÷ 200 | 170 ± 5 |
Duration, min | 15 | 120 |
Substrate Material | Number of Test Samples in Each Group | ||||
---|---|---|---|---|---|
Extract Cytotoxicity (Discs, 5 mm in Diameter) | Cell Spreading and Distribution | Optical Density of Endothelial Cell Colonization | Endothelial Cell Death (Apoptosis, Necrosis) | Nitric Oxide Production by Endothelial Cells | |
Ti–6Al–4V alloy (T1) | 6 | 6 | 6 | 6 | 6 |
Ti–6Al–4V alloy + a-C:H:SiOx (T2) | 6 | 6 | 6 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khlusov, I.A.; Grenadyorov, A.S.; Solovyev, A.A.; Semenov, V.A.; Zhulkov, M.O.; Sirota, D.A.; Chernyavskiy, A.M.; Poveshchenko, O.V.; Surovtseva, M.A.; Kim, I.I.; et al. Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. Int. J. Mol. Sci. 2023, 24, 6675. https://doi.org/10.3390/ijms24076675
Khlusov IA, Grenadyorov AS, Solovyev AA, Semenov VA, Zhulkov MO, Sirota DA, Chernyavskiy AM, Poveshchenko OV, Surovtseva MA, Kim II, et al. Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences. 2023; 24(7):6675. https://doi.org/10.3390/ijms24076675
Chicago/Turabian StyleKhlusov, Igor A., Alexander S. Grenadyorov, Andrey A. Solovyev, Vyacheslav A. Semenov, Maksim O. Zhulkov, Dmitry A. Sirota, Aleksander M. Chernyavskiy, Olga V. Poveshchenko, Maria A. Surovtseva, Irina I. Kim, and et al. 2023. "Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate" International Journal of Molecular Sciences 24, no. 7: 6675. https://doi.org/10.3390/ijms24076675
APA StyleKhlusov, I. A., Grenadyorov, A. S., Solovyev, A. A., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., Chernyavskiy, A. M., Poveshchenko, O. V., Surovtseva, M. A., Kim, I. I., Bondarenko, N. A., & Semin, V. O. (2023). Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences, 24(7), 6675. https://doi.org/10.3390/ijms24076675