Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lim, E.J.; Ahn, Y.C.; Jang, E.S.; Lee, S.W.; Lee, S.H.; Son, C.G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 2020, 18, 100. [Google Scholar] [CrossRef]
- Son, C.-G. Review of the prevalence of chronic fatigue worldwide. J. Korean Med. 2012, 33, 25–33. [Google Scholar]
- Natelson, B.H.; Lin, J.-M.S.; Blate, M.; Khan, S.; Chen, Y.; Unger, E.R. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J. Transl. Med. 2022, 20, 95. [Google Scholar] [CrossRef]
- Bateman, L.; Bested, A.C.; Bonilla, H.F.; Chheda, B.V.; Chu, L.; Curtin, J.M.; Dempsey, T.T.; Dimmock, M.E.; Dowell, T.G.; Felsenstein, D. Myalgic encephalomyelitis/chronic fatigue syndrome: Essentials of diagnosis and management. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2021; pp. 2861–2878. [Google Scholar]
- Basantsova, N.Y.; Starshinova, A.A.; Dori, A.; Zinchenko, Y.S.; Yablonskiy, P.K.; Shoenfeld, Y. Small-fiber neuropathy definition, diagnosis, and treatment. Neurol. Sci. 2019, 40, 1343–1350. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Ryabkova, V.A.; Scheibenbogen, C.; Brinth, L.; Martinez-Lavin, M.; Ikeda, S.; Heidecke, H.; Watad, A.; Bragazzi, N.L.; Chapman, J. Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. Clin. Immunol. 2020, 214, 108384. [Google Scholar] [CrossRef]
- Leonardi, L.; Adam, C.; Beaudonnet, G.; Beauvais, D.; Cauquil, C.; Not, A.; Morassi, O.; Benmalek, A.; Trassard, O.; Echaniz-Laguna, A.; et al. Skin amyloid deposits and nerve fiber loss as markers of neuropathy onset and progression in hereditary transthyretin amyloidosis. Eur. J. Neurol. 2022, 29, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, H.; Nomura, T.; Sumi-Ichinose, C. Metabolism of tetrahydrobiopterin: Its relevance in monoaminergic neurons and neurological disorders. Chem. Rec. 2008, 8, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Gray, D.W.; Shiman, R. Regulation of rat liver phenylalanine hydroxylase. III. Control of catalysis by (6R)-tetrahydrobiopterin and phenylalanine. J. Biol. Chem. 1994, 269, 24657–24665. [Google Scholar] [CrossRef]
- Nagatsu, T.; Nagatsu, I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): Historical overview and future prospects. J. Neural Transm. 2016, 123, 1255–1278. [Google Scholar] [CrossRef]
- Sawada, M.; Sugimoto, T.; Matsuura, S.; Nagatsu, T. (6R)-Tetrahydrobiopterin increases the activity of tryptophan hydroxylase in rat raphe slices. J. Neurochem. 1986, 47, 1544–1547. [Google Scholar] [CrossRef]
- Chen, D.-D.; Chen, L.-Y.; Xie, J.-B.; Shu, C.; Yang, T.; Zhou, S.; Yuan, H.; Chen, A.F. Tetrahydrobiopterin regulation of eNOS redox function. Curr. Pharm. Des. 2014, 20, 3554–3562. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Sasaki, S.; Nakagawa, K.; Kimura, M.; Noma, K.; Hara, K.; Jitsuiki, D.; Goto, C.; Oshima, T.; Chayama, K. Tetrahydrobiopterin improves aging-related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. Atherosclerosis 2006, 186, 390–395. [Google Scholar] [CrossRef]
- Wang, W.Z.; Fang, X.H.; Stephenson, L.L.; Khiabani, K.T.; Zamboni, W.A. Effects of supplementation of BH4 after prolonged ischemia in skeletal muscle. Microsurgery 2007, 27, 200–205. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Huang, A.; Kaley, G.; Sun, D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am. J. Physiol.-Heart Circ. Physiol. 2009, 297, H1829–H1836. [Google Scholar] [CrossRef]
- Karbach, S.; Wenzel, P.; Waisman, A.; Munzel, T.; Daiber, A. eNOS uncoupling in cardiovascular diseases-the role of oxidative stress and inflammation. Curr. Pharm. Des. 2014, 20, 3579–3594. [Google Scholar] [CrossRef]
- Sindler, A.L.; Delp, M.D.; Reyes, R.; Wu, G.; Muller-Delp, J.M. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J. Physiol. 2009, 587, 3885–3897. [Google Scholar] [CrossRef]
- Gottschalk, G.; Peterson, D.; Knox, K.; Maynard, M.; Whelan, R.J.; Roy, A. Elevated ATG13 in serum of patients with ME/CFS stimulates oxidative stress response in microglial cells via activation of receptor for advanced glycation end products (RAGE). Mol. Cell. Neurosci. 2022, 120, 103731. [Google Scholar] [CrossRef] [PubMed]
- Blau, N.; Thony, B.; Spada, M.; Ponzone, A. Tetrahydrobiopterin and inherited hyperphenylalaninemias. Turk. J. Pediatr. 1996, 38, 19–35. [Google Scholar] [PubMed]
- Birnbacher, R.; Scheibenreiter, S.; Blau, N.; Bieglmayer, C.; Frisch, H.; Waldhauser, F. Hyperprolactinemia, a tool in treatment control of tetrahydrobiopterin deficiency: Endocrine studies in an affected girl. Pediatr. Res. 1998, 43, 472–477. [Google Scholar] [CrossRef]
- Hyland, K.; Kasim, S.; Egami, K.; Arnold, L.; Jinnah, H. Tetrahydrobiopterin deficiency and dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J. Inherit. Metab. Dis. 2004, 27, 165–178. [Google Scholar] [CrossRef]
- Li, L.; Chen, W.; Rezvan, A.; Jo, H.; Harrison, D.G. Tetrahydrobiopterin deficiency and nitric oxide synthase uncoupling contribute to atherosclerosis induced by disturbed flow. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1547–1554. [Google Scholar] [CrossRef]
- Chuaiphichai, S.; Starr, A.; Nandi, M.; Channon, K.M.; McNeill, E. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vasc. Pharmacol. 2016, 77, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Lee, S.Y.; Cho, Y.; No, H.; Kim, S.W.; Hwang, O. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: Implications for Parkinson’s disease. Neurochem. Int. 2006, 48, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Moon, Y.; Hee Choi, D.; Jin Choi, H.; Hwang, O. Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: Relevance to Parkinson’s disease. Neurobiol. Dis. 2007, 25, 112–120. [Google Scholar] [CrossRef]
- Kwak, S.S.; Suk, J.; Choi, J.H.; Yang, S.; Kim, J.W.; Sohn, S.; Chung, J.H.; Hong, Y.H.; Lee, D.H.; Ahn, J.K.; et al. Autophagy induction by tetrahydrobiopterin deficiency. Autophagy 2011, 7, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Porkert, M.; Sher, S.; Reddy, U.; Cheema, F.; Niessner, C.; Kolm, P.; Jones, D.P.; Hooper, C.; Taylor, W.R.; Harrison, D.; et al. Tetrahydrobiopterin: A novel antihypertensive therapy. J. Hum. Hypertens. 2008, 22, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Channon, K. Tetrahydrobiopterin: Regulator of Endothelial Nitric Oxide Synthase in Vascular Disease. Trends Cardiovasc. Med. 2004, 14, 323–327. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, Y.; Gu, L.; Liu, P.; Cao, J.; Zhang, S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front. Oncol. 2021, 11, 720632. [Google Scholar] [CrossRef]
- Mandarano, A.H.; Maya, J.; Giloteaux, L.; Peterson, D.L.; Maynard, M.; Gottschalk, C.G.; Hanson, M.R. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J. Clin. Investig. 2020, 130, 1491–1505. [Google Scholar] [CrossRef] [PubMed]
Control (n = 34) | CFS (n = 32) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Study ID | Age | Gender | Ethnicity | Condition | Study ID | Age | Gender | Ethnicity | Condition |
329502 | 82 | M | white | Healthy | 211103 | 67 | M | white | CFS |
339105 | 70 | F | white | Healthy | 381104 | 38 | M | white | CFS |
939209 | 69 | M | white | Healthy | 201105 | 72 | F | white | CFS |
699106 | 68 | F | white | Healthy | 921106 | 69 | F | white | CFS |
229403 | 68 | F | white | Healthy | 991108 | 71 | M | white | CFS |
809208 | 67 | M | white | Healthy | 191109 | 57 | F | white | CFS |
499205 | 67 | F | white | Healthy | 701110 | 63 | F | white | CFS |
169316 | 65 | M | white | cancer | 661111 | 73 | M | white | CFS |
309110 | 64 | F | white | Healthy | 341112 | 33 | M | white | CFS |
829306 | 60 | F | white | cancer | 861113 | 49 | M | white | CFS |
909302 | 58 | F | white | cancer | 691114 | 49 | F | white | CFS + OI |
739109 | 57 | F | white | Healthy | 541201 | 41 | M | white | CFS + OI |
299114 | 53 | F | white | Healthy | 391203 | 61 | F | white | CFS + OI |
149304 | 52 | F | white | Healthy | 771204 | 56 | M | white | CFS + OI |
759113 | 45 | M | white | cancer | 951205 | 64 | F | white | CFS + OI |
109201 | 44 | M | white | Healthy | 641206 | 76 | M | white | CFS + OI |
639305 | 44 | F | white | Healthy | 431207 | 56 | F | white | CFS + OI |
219317 | 43 | F | white | Healthy | 331209 | 71 | M | white | CFS + OI |
129104 | 33 | M | white | Healthy | 281210 | 66 | M | white | CFS + OI |
369112 | 32 | M | white | Healthy | 661215 | 26 | F | white | CFS + OI |
129312 | 31 | F | white | Healthy | 261302 | 58 | F | white | CFS + OI + SFN |
169504 | 82 | M | white | Healthy | 791304 | 54 | F | white | CFS + OI + SFN |
899108 | 69 | M | white | Healthy | 811305 | 45 | F | white | CFS + OI + SFN |
669206 | 78 | M | white | Healthy | 321306 | 57 | F | white | CFS + OI + SFN |
419111 | 74 | M | white | Healthy | 971309 | 60 | F | white | CFS + OI + SFN |
249311 | 70 | F | white | Healthy | 851310 | 65 | F | white | CFS + OI + SFN |
889210 | 65 | M | white | Healthy | 221311 | 67 | F | white | CFS + OI + SFN |
559310 | 66 | F | white | Healthy | 751312 | 28 | F | white | CFS + OI + SFN |
559107 | 68 | M | white | Healthy | 901313 | 65 | M | white | CFS + OI + SFN |
539103 | 69 | M | white | Healthy | 181316 | 63 | M | white | CFS + OI + SFN |
789207 | 51 | F | white | Healthy | 841317 | 40 | F | white | CFS + OI + SFN |
609405 | 38 | M | white | Healthy | 1004 | 40 | F | white | CFS + OI + SFN |
579315 | 18 | F | white | Healthy | |||||
431315 | 22 | F | white | Healthy |
Control | CFS + OI | ||||
---|---|---|---|---|---|
Age | Gender | BH4 (ng/mL) | Age | Gender | BH4 (ng/mL) |
44 | F | 65.63 ± 4.098 | 49 | F | 138.152 ± 24.332 |
44 | M | 112.296 ± 12.113 | 41 | M | 137.053 ± 13.165 |
57 | F | 96.841 ± 16.528 | 61 | F | 132.01 ± 18.109 |
65 | M | 102.42 ± 9.287 | 56 | M | 109.89 ± 11.98 |
64 | F | 67.852 ± 11.121 | 64 | F | 76.494 ± 23.4 |
74 | M | 75.669 ± 14.225 | 76 | M | 125.53 ± 4.164 |
53 | F | 116.068 ± 8.119 | 56 | F | 132.099± 8.119 |
69 | M | 78.222 ± 4.6 | 71 | M | 71.916 ± 12.01 |
68 | M | 82.914 ± 23.161 | 66 | M | 113.778 ± 4.33 |
22 | F | 31.556 ± 7.110 | 26 | F | 80.444 ± 16.12 |
Control | CFS + OI + SFN | ||||
---|---|---|---|---|---|
Age | Gender | BH4 (ng/mL) | Age | Gender | BH4 (ng/mL) |
57 | F | 96.84128 | 58 | F | 63.654 |
51 | F | 12.85 | 54 | F | 106.617 |
44 | F | 65.63 | 45 | F | 67.66872758 |
57 | F | 96.84 | 57 | F | 57.975 |
64 | F | 67.851 | 60 | F | 140.0630005 |
67 | F | 83.9012 | 65 | F | 154.8251948 |
68 | F | 80.614 | 67 | F | 83.041 |
31 | F | 110.074 | 28 | F | 137.8619147 |
74 | M | 75.66941 | 65 | M | 90.87 |
67 | M | 80.166 | 63 | M | 72.790 |
43 | F | 45.876 | 40 | F | 126.8371241 |
52 | F | 68.78 | 40 | F | 137.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottschalk, C.G.; Whelan, R.; Peterson, D.; Roy, A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 8713. https://doi.org/10.3390/ijms24108713
Gottschalk CG, Whelan R, Peterson D, Roy A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. International Journal of Molecular Sciences. 2023; 24(10):8713. https://doi.org/10.3390/ijms24108713
Chicago/Turabian StyleGottschalk, Carl Gunnar, Ryan Whelan, Daniel Peterson, and Avik Roy. 2023. "Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study" International Journal of Molecular Sciences 24, no. 10: 8713. https://doi.org/10.3390/ijms24108713
APA StyleGottschalk, C. G., Whelan, R., Peterson, D., & Roy, A. (2023). Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. International Journal of Molecular Sciences, 24(10), 8713. https://doi.org/10.3390/ijms24108713