The Controversial Roles of Areca Nut: Medicine or Toxin?
Abstract
:1. The History and Usage of AN
2. AN Components and Their Biological Effects
2.1. Alkaloids
2.2. Flavonoids
2.3. Tannins
2.4. Terpenoids
2.5. Steroids
2.6. Fatty Acids
2.7. Others
3. Pharmacological Effects of AN Extracts, Other Mixture Compounds and Arecoline on Several Diseases
3.1. Gastric and Intestinal Diseases
3.2. Depression and Anxiety
3.3. Liver Diseases
3.4. Neurological Disorders
3.5. Bacterial Infection
3.6. Skin Protection
3.7. Anthelmintic Activity
3.8. Antioxidant
3.9. Anti-Hypoxia
3.10. Anti-Osteoarthritis
4. Toxicological Effects of AN Extract, Other Mixture Compounds and Arecoline on Several Diseases
4.1. Oral Diseases
4.2. Liver Diseases
4.3. Behavior and Addiction
4.4. Cardiac Diseases
4.5. Gastric and Intestinal Diseases
4.6. Genotoxicity
4.7. Reproduction and Development
4.8. Kidney Disease
4.9. Neuron Activation
4.10. Abortifacient
5. Perspectives
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Dikshit, R.; Chaturvedi, P. Betel Nut Use: The South Asian Story. Subst. Use Misuse 2020, 55, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Ghani, W.M.N.; Razak, I.A.; Doss, J.G.; Yang, Y.H.; Rahman, Z.A.A.; Ismail, S.M.; Abraham, M.T.; Wan Mustafa, W.M.; Tay, K.K.; Zain, R.B. Multi-ethnic variations in the practice of oral cancer risk habits in a developing country. Oral Dis. 2019, 25, 447–455. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Chen, T.H.H. Areca Nut and Oral Cancer: Evidence from Studies Conducted in Humans. J. Dent. Res. 2022, 101, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Khasbage, S.B.D.; Bhowate, R.R.; Khatib, N. Risk of liver disease in areca nut habitual: A systematic review. J. Oral. Maxillofac. Pathol. 2022, 26, 128–129. [Google Scholar] [CrossRef]
- Tami-Maury, I.; Nethan, S.; Feng, J.; Miao, H.; Delclos, G.; Mehrotra, R. Evidence of areca nut consumption in the United States mainland: A cross-sectional study. BMC Public Health 2022, 22, 912. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, Y.; Deng, Y. Chemical Composition, Pharmacological, and Toxicological Effects of Betel Nut. Evid. Based Complement. Altern. Med. 2021, 2021, 1808081. [Google Scholar] [CrossRef]
- Salehi, B.; Konovalov, D.A.; Fru, P.; Kapewangolo, P.; Peron, G.; Ksenija, M.S.; Cardoso, S.M.; Pereira, O.R.; Nigam, M.; Nicola, S.; et al. Areca catechu-From farm to food and biomedical applications. Phytother. Res. 2020, 34, 2140–2158. [Google Scholar] [CrossRef]
- Garg, A.; Chaturvedi, P.; Gupta, P.C. A review of the systemic adverse effects of areca nut or betel nut. Indian. J. Med. Paediatr. Oncol. 2014, 35, 3–9. [Google Scholar] [CrossRef]
- Arjungi, K.N. Areca nut: A review. Arzneimittelforschung 1976, 26, 951–956. [Google Scholar]
- Senevirathna, K.; Pradeep, R.; Jayasinghe, Y.A.; Jayawickrama, S.M.; Illeperuma, R.; Warnakulasuriya, S.; Jayasinghe, R.D. Carcinogenic Effects of Areca Nut and Its Metabolites: A Review of the Experimental Evidence. Clin. Pract. 2023, 13, 326–346. [Google Scholar] [CrossRef]
- Sumithrarachchi, S.R.; Jayasinghe, R.; Warnakulasuriya, S. Betel Quid Addiction: A Review of Its Addiction Mechanisms and Pharmacological Management as an Emerging Modality for Habit Cessation. Subst. Use Misuse 2021, 56, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, K.; Jhanjee, S. A Review of Intervention Strategies for Areca Nut Use Cessation. Indian. J. Psychol. Med. 2023, 45, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, R.B.; Bhattacharjee, P.; Bhowmick, P.; Zote, L.; Malsawmtluangi; Kumar, N.S.; Jahau, L.; Cooke, M.S.; Hu, C.W.; Chao, M.R. Genetic and epigenetic instability induced by betel quid associated chemicals. Toxicol. Rep. 2023, 10, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, K.; Malathi, N.; Gayathri, V.; Adtani, P.N.; Ranganathan, K. Molecular pathways of oral submucous fibrosis and its progression to malignancy. Arch. Oral. Biol. 2023, 148, 105644. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.C.; Tsai, M.H.; Lin, Y.T.; Chou, M.H.; Yang, K.L.; Chien, C.Y. Systemic and Local Effects Among Patients With Betel Quid-Related Oral Cancer. Technol. Cancer Res. Treat. 2022, 21, 15330338221146870. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, R.R.; Lee, C.H.; Osborne, P.G.; Wu, M.T.; Ponnusamy, V.K. Rapid green analytical methodology for simultaneous biomonitoring of five toxic areca nut alkaloids using UHPLC-MS/MS for predicting health hazardous risks. J. Hazard. Mater. 2022, 422, 126923. [Google Scholar] [CrossRef]
- Oliveira, N.G.; Ramos, D.L.; Dinis-Oliveira, R.J. Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: An updated review. Arch. Toxicol. 2021, 95, 375–393. [Google Scholar] [CrossRef]
- Zhang, P.; Chua, N.Q.E.; Dang, S.; Davis, A.; Chong, K.W.; Prime, S.S.; Cirillo, N. Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int. J. Mol. Sci. 2022, 23, 1637. [Google Scholar] [CrossRef]
- Siregar, P.; Audira, G.; Castillo, A.L.; Roldan, M.J.M.; Suryanto, M.E.; Liu, R.X.; Lin, Y.T.; Lai, Y.H.; Hsiao, C.D. Comparison of the psychoactive activity of four primary Areca nut alkaloids in zebrafish by behavioral approach and molecular docking. Biomed. Pharmacother. 2022, 155, 113809. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, H.; Zou, M.; Yuan, Q.; Huang, Z.; Pan, X.; Zhang, W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front. Immunol. 2022, 13, 826889. [Google Scholar] [CrossRef]
- Melo, M.R.; Gasparini, S.; Speretta, G.F.; Silva, E.F.; Rodrigues Pedrino, G.; Menani, J.V.; Zoccal, D.B.; Colombari, D.S.A.; Colombari, E. Importance of the commissural nucleus of the solitary tract in renovascular hypertension. Hypertens. Res. 2019, 42, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Fang, X.; Yang, J.; Yao, Y.; Nandakumar, K.S.; Salem, M.L.; Cheng, K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021, 28, 1042–1066. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef] [PubMed]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.E.; Omari, N.E.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef] [PubMed]
- Muruganathan, N.; Dhanapal, A.R.; Baskar, V.; Muthuramalingam, P.; Selvaraj, D.; Aara, H.; Shiek Abdullah, M.Z.; Sivanesan, I. Recent Updates on Source, Biosynthesis, and Therapeutic Potential of Natural Flavonoid Luteolin: A Review. Metabolites 2022, 12, 1145. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull. 2022, 80, 241–262. [Google Scholar] [CrossRef]
- Segura-Villalobos, D.; Roa-Velázquez, D.; Zavala-Vargas, D.I.; Filisola-Villaseñor, J.G.; Castillo Arellano, J.I.; Morales Ríos, E.; Reyes-Chilpa, R.; González-Espinosa, C. Jacareubin inhibits TLR4-induced lung inflammatory response caused by the RBD domain of SARS-CoV-2 Spike protein. Pharmacol. Rep. 2022, 74, 1315–1325. [Google Scholar] [CrossRef]
- Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.I. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front. Aging Neurosci. 2018, 10, 348. [Google Scholar] [CrossRef]
- Yuan, M.; Ao, Y.; Yao, N.; Xie, J.; Zhang, D.; Zhang, J.; Zhang, X.; Ye, W. Two New Flavonoids from the Nuts of Areca catechu. Molecules 2019, 24, 2862. [Google Scholar] [CrossRef]
- Maugeri, A.; Lombardo, G.E.; Cirmi, S.; Süntar, I.; Barreca, D.; Laganà, G.; Navarra, M. Pharmacology and toxicology of tannins. Arch. Toxicol. 2022, 96, 1257–1277. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Josiah, S.S.; Famusiwa, C.D.; Crown, O.O.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A.; Akinmoladun, A.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology 2022, 90, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and Their Therapeutic Potential against Oral Diseases. Molecules 2022, 27, 2932. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, J.; Zuo, F.; Guo, J.; Sun, X.; Liu, D.; Liu, C. Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review. J. Ethnopharmacol. 2023, 300, 115748. [Google Scholar] [CrossRef] [PubMed]
- Muilu-Mäkelä, R.; Aapola, U.; Tienaho, J.; Uusitalo, H.; Sarjala, T. Antibacterial and Oxidative Stress-Protective Effects of Five Monoterpenes from Softwood. Molecules 2022, 27, 3891. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Yu, M.; Fei, C.; Ji, D.; Dong, J.; Su, L.; Gu, W.; Mao, C.; Li, L.; Bian, Z.; et al. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine 2021, 86, 153558. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, Y.; Chen, L.; Li, C.; Wang, Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth. Syst. Biotechnol. 2023, 8, 20–32. [Google Scholar] [CrossRef]
- Panda, S.S.; Thangaraju, M.; Lokeshwar, B.L. Ursolic Acid Analogs as Potential Therapeutics for Cancer. Molecules 2022, 27, 8981. [Google Scholar] [CrossRef]
- AlQathama, A.; Shao, L.; Bader, A.; Khondkar, P.; Gibbons, S.; Prieto, J.M. Differential Anti-Proliferative and Anti-Migratory Activities of Ursolic Acid, 3-O-Acetylursolic Acid and Their Combination Treatments with Quercetin on Melanoma Cells. Biomolecules 2020, 10, 894. [Google Scholar] [CrossRef]
- Dembitsky, V.M. In Silico Prediction of Steroids and Triterpenoids as Potential Regulators of Lipid Metabolism. Mar. Drugs 2021, 19, 650. [Google Scholar] [CrossRef]
- Gonyela, O.; Peter, X.; Dewar, J.B.; van der Westhuyzen, C.; Steenkamp, P.; Fouche, G. Cycloartanol and Sutherlandioside C peracetate from Sutherlandia frutescens and their immune potentiating effects. Nat. Prod. Res. 2021, 35, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, X.; Yang, A.; Jin, Z.; Wang, X.; Wang, Q.; Yu, C.; Wei, Z.; Dou, C. Cycloartenol exerts anti-proliferative effects on Glioma U87 cells via induction of cell cycle arrest and p38 MAPK-mediated apoptosis. JBUON 2018, 23, 1840–1845. [Google Scholar]
- Noor, F.; Rehman, A.; Ashfaq, U.A.; Saleem, M.H.; Okla, M.K.; Al-Hashimi, A.; AbdElgawad, H.; Aslam, S. Integrating Network Pharmacology and Molecular Docking Approaches to Decipher the Multi-Target Pharmacological Mechanism of Abrus precatorius L. Acting on Diabetes. Pharmaceuticals 2022, 15, 414. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; et al. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact. 2022, 365, 110117. [Google Scholar] [CrossRef] [PubMed]
- Custers; Emma, E.M.; Kiliaan; Amanda, J. Dietary lipids from body to brain. Prog. Lipid Res. 2022, 85, 101144. [Google Scholar] [CrossRef]
- Zheng, C.; Xiao, G.; Yan, X.; Qiu, T.; Liu, S.; Ou, J.; Cen, M.; Gong, L.; Shi, J.; Zhang, H. Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry. Animals 2023, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Serrano-Vega, R.; Pérez Gutiérrez, S.; Isiordia-Espinoza, M.A.; Solorio-Alvarado, C.R. Myristic acid reduces skin inflammation and nociception. J. Food Biochem. 2022, 46, e14013. [Google Scholar] [CrossRef]
- Yu, X.; Peng, W.; Wang, Y.; Xu, W.; Chen, W.; Huang, L.; Xu, H.; He, X.; Wang, S.; Sun, Q.; et al. Palmitic Acid Inhibits the Growth and Metastasis of Gastric Cancer by Blocking the STAT3 Signaling Pathway. Cancers 2023, 15, 388. [Google Scholar] [CrossRef]
- Kim, H.S.; Yoo, H.J.; Lee, K.M.; Song, H.E.; Kim, S.J.; Lee, J.O.; Hwang, J.J.; Song, J.W. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis. Respirology 2021, 26, 255–263. [Google Scholar] [CrossRef]
- Rakoczy, K.; Szlasa, W.; Saczko, J.; Kulbacka, J. Therapeutic role of vanillin receptors in cancer. Adv. Clin. Exp. Med. 2021, 30, 1293–1301. [Google Scholar] [CrossRef]
- Dos Santos Negreiros, P.; da Costa, D.S.; da Silva, V.G.; de Carvalho Lima, I.B.; Nunes, D.B.; de Melo Sousa, F.B.; de Souza Lopes Araújo, T.; Medeiros, J.V.R.; Dos Santos, R.F.; de Cássia Meneses Oliveira, R. Antidiarrheal activity of α-terpineol in mice. Biomed. Pharmacother. 2019, 110, 631–640. [Google Scholar] [CrossRef] [PubMed]
- You, T.; Yuan, S.; Bai, L.; Zhang, X.; Chen, P.; Zhang, W. Benzyl alcohol accelerates recovery from Achilles tendon injury, potentially via TGF-β1/Smad2/3 pathway. Injury 2020, 51, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, N.; Tyagi, S.; Rani, S.; Thakur, A.K. Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem. Res. 2023, 48, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef]
- Ahmad, S.; Sayeed, S.; Bano, N.; Sheikh, K.; Raza, K. In-silico analysis reveals Quinic acid as a multitargeted inhibitor against Cervical Cancer. J. Biomol. Struct. Dyn. 2022, 15, 1–17. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, Y.; Yi, G.; Li, M.; Liao, L.; Yang, C.; Cho, C.; Zhang, B.; Zhu, J.; Zou, K.; et al. Quinic acid: A potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin. Med. 2021, 16, 72. [Google Scholar] [CrossRef]
- Liu, Y.; Muema, F.W.; Zhang, Y.L.; Guo, M.Q. Acyl Quinic Acid Derivatives Screened Out from Carissa spinarum by SOD-Affinity Ultrafiltration LC-MS and Their Antioxidative and Hepatoprotective Activities. Antioxidants 2021, 10, 1302. [Google Scholar] [CrossRef]
- Benguechoua, M.I.; Benarous, K.; Benahmed, Z.; Boukhalkhal, S.; Silva, A.M.S.; Yousfi, M. Quinic and Digallic acids from Pistacia atlantica Desf. Leaves Extracts as Potent Dual Effect Inhibitors against main Protease and RNA-dependent RNA Polymerase of SARS-CoV-2. Curr. Comput. Aided Drug. Des. 2022, 18, 307–317. [Google Scholar] [CrossRef]
- Xie, L.; Tang, H.; Song, J.; Long, J.; Zhang, L.; Li, X. Chrysophanol: A review of its pharmacology, toxicity and pharmacokinetics. J. Pharm. Pharmacol. 2019, 71, 1475–1487. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Chu, S.; Yang, S.; Peng, Y.; Ren, S.; Wen, B.; Chen, N. Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics. Chem. Biol. Interact. 2019, 310, 108722. [Google Scholar]
- Adnan, M.; Rasul, A.; Hussain, G.; Shah, M.A.; Sarfraz, I.; Nageen, B.; Riaz, A.; Khalid, R.; Asrar, M.; Selamoglu, Z.; et al. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr. Drug. Targets 2021, 22, 488–504. [Google Scholar] [PubMed]
- Fan, X.; Song, H.; Xu, X.; Lu, X.; Wang, Y.; Duan, X. Subchronic Oral Toxicity of Sodium p-Hydroxybenzoate in Sprague-Dawley Rats. Front. Pharmacol. 2022, 13, 843368. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Thien, T.V.; Vo, T.K.L.; Dang, P.H.; Huynh, N.V.; Ngo, T.T.D.; Nguyen, T.M.N.; Hansen, P.E.; Ton That, Q. Two new sesquiterpenes from the stems of Miliusa velutina. Nat. Prod. Res. 2022, 36, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, X.; Zhang, B.; Wang, Z.; Hao, C.; Xin, J.; Guo, Q. Whitening Activity of Constituents Isolated from the Trichosanthes Pulp. Evid. Based Complement. Altern. Med. 2020, 2020, 2582579. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S. In Vitro Antithrombotic, Hematological Toxicity, and Inhibitor Studies of Protocatechuic, Isovanillic, and p-Hydroxybenzoic Acids from Maclura tricuspidata (Carr.) Bur. Molecules 2022, 27, 3496. [Google Scholar] [CrossRef]
- Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef]
- Shekari, S.; Khonsha, F.; Rahmati-Yamchi, M.; Nejabati, H.R.; Mota, A. Vanillic Acid and Non-Alcoholic Fatty Liver Disease: A Focus on AMPK in Adipose and Liver Tissues. Curr. Pharm. Des. 2021, 27, 4686–4692. [Google Scholar] [CrossRef]
- Yi, S.; Zou, L.; Li, Z.; Sakao, K.; Wang, Y.; Hou, D.X. In Vitro Antioxidant Activity of Areca Nut Polyphenol Extracts on RAW264.7 Cells. Foods 2022, 11, 3607. [Google Scholar] [CrossRef]
- Cao, M.; Yuan, H.; Daniyal, M.; Yu, H.; Xie, Q.; Liu, Y.; Li, B.; Jian, Y.; Peng, C.; Tan, D.; et al. Two new alkaloids isolated from traditional Chinese medicine Binglang the fruit of Areca catechu. Fitoterapia 2019, 138, 104276. [Google Scholar] [CrossRef]
- Tey, S.L.; Li, C.Y.; Lin, L.W.; Chang, L.C.; Chen, Y.L.; Chang, F.R.; Yang, S.N.; Tsai, C.C. Arecae pericarpium extract induces porcine lower-esophageal-sphincter contraction via muscarinic receptors. BMC Complement. Med. Ther. 2021, 21, 275. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, H.; Cui, Z.; Chu, J.; Du, G. UPLC-MS/MS and Network Pharmacology-Based Analysis of Bioactive Anti-Depression Compounds in Betel Nut. Drug. Des. Devel Ther. 2021, 15, 4827–4836. [Google Scholar] [CrossRef] [PubMed]
- Serikuly, N.; Alpyshov, E.T.; Wang, D.; Wang, J.; Yang, L.; Hu, G.; Yan, D.; Demin, K.A.; Kolesnikova, T.O.; Galstyan, D.; et al. Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 109977. [Google Scholar] [CrossRef]
- Wei, P.L.; Hung, C.S.; Lu, H.H.; Batzorig, U.; Huang, C.Y.; Chang, Y.J. Areca nut extract (ANE) inhibits the progression of hepatocellular carcinoma cells via activation of ROS production and activation of autophagy. Int. J. Med. Sci. 2021, 18, 3452–3462. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Guan, P.; Huang, C.; Huang, S.; Zhou, P.; Zhang, C. Arecoline Induces an Excitatory Response in Ventral Tegmental Area Dopaminergic Neurons in Anesthetized Rats. Front. Pharmacol. 2022, 13, 872212. [Google Scholar] [CrossRef]
- Ching, T.T.; Chen, Y.C.; Li, G.; Liu, J.; Xu, X.Z.S.; Hsu, A.L. Short-term enhancement of motor neuron synaptic exocytosis during early aging extends lifespan in Caenorhabditis elegans. Exp. Biol. Med. 2020, 245, 1552–1559. [Google Scholar] [CrossRef]
- Brunetti, P.; Lo Faro, A.F.; Tini, A.; Busardò, F.P.; Carlier, J. Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals 2020, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Jam, N.; Hajimohammadi, R.; Gharbani, P.; Mehrizad, A. Evaluation of Antibacterial Activity of Aqueous, Ethanolic and Methanolic Extracts of Areca Nut Fruit on Selected Bacteria. Biomed. Res. Int. 2021, 2021, 6663399. [Google Scholar] [CrossRef]
- Sari, L.M.; Hakim, R.F.; Mubarak, Z.; Andriyanto, A. Analysis of phenolic compounds and immunomodulatory activity of areca nut extract from Aceh, Indonesia, against Staphylococcus aureus infection in Sprague-Dawley rats. Vet. World 2020, 13, 134–140. [Google Scholar] [CrossRef]
- Raju, A.; De, S.S.; Ray, M.K.; Degani, M.S. Antituberculosis activity of polyphenols of Areca catechu. Int. J. Mycobacteriol 2021, 10, 13–18. [Google Scholar]
- Machová, M.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation-Extraction and Headspace Solid-Phase Microextraction. Molecules 2021, 26, 7422. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.L.; Chen, C.C.; Tsou, H.H.; Liu, T.Y.; Wang, H.T. Areca nut procyanidins prevent ultraviolet light B-induced photoaging via suppression of cyclooxygenase-2 and matrix metalloproteinases in mouse skin. Drug. Chem. Toxicol. 2022, 45, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Chaikhong, K.; Chumpolphant, S.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T.; Prasansuklab, A. Antioxidant and Anti-Skin Aging Potential of Selected Thai Plants: In Vitro Evaluation and In Silico Target Prediction. Plants 2022, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Mubarokah, W.W.; Nurcahyo, W.; Prastowo, J.; Kurniasih, K. In vitro and in vivo Areca catechu crude aqueous extract as an anthelmintic against Ascaridia galli infection in chickens. Vet. World 2019, 12, 877–882. [Google Scholar] [CrossRef]
- Yamson, E.C.; Tubalinal, G.; Viloria, V.V.; Mingala, C.N. Anthelmintic effect of betel nut (Areca catechu) and neem (Azadirachta indica) extract against liver fluke (Fasciola spp.). J. Adv. Vet. Anim. Res. 2019, 6, 44–49. [Google Scholar] [CrossRef]
- Ji, X.; Guo, J.; Pan, F.; Kuang, F.; Chen, H.; Guo, X.; Liu, Y. Structural Elucidation and Antioxidant Activities of a Neutral Polysaccharide From Arecanut (Areca catechu L.). Front. Nutr. 2022, 9, 853115. [Google Scholar] [CrossRef]
- Ma, J.; Du, X.; Zhao, A.; Wang, Z.; Guo, Q.; Qin, N.; Wang, R. Anti-hypoxic pharmacological effects of betelnut polyphenols. J. Cent. South Univ. Med. Sci. 2022, 47, 512–520. [Google Scholar]
- Sartinah, A.; Nugrahani, I.; Ibrahim, S.; Anggadiredja, K. Potential metabolites of Arecaceae family for the natural anti-osteoarthritis medicine: A review. Heliyon 2022, 8, e12039. [Google Scholar] [CrossRef]
- Kondaiah, P.; Pant, I.; Khan, I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis. Periodontol. 2000 2019, 80, 213–224. [Google Scholar] [CrossRef]
- Yuwanati, M.; Ramadoss, R.; Kudo, Y.; Ramani, P.; Senthil Murugan, M. Prevalence of oral submucous fibrosis among areca nut chewers: A systematic review and meta-analysis. Oral Dis. 2022, 00, 1–7. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.Y.; Huang, L.; Yu, T.L.; Wan, S.Q.; Song, J.; Zhang, B.L.; Hu, M. Do betel quid and areca nut chewing deteriorate prognosis of oral cancer? A systematic review, meta-analysis, and research agenda. Oral Dis. 2021, 27, 1366–1375. [Google Scholar] [CrossRef]
- Nagesh, R.; Kiran Kumar, K.M.; Naveen Kumar, M.; Patil, R.H.; Sharma, S.C. Regulation of Jun and Fos AP-1 transcription factors by JNK MAPKs signaling cascade in areca nut extract treated KB cells. Biochem. Biophys. Rep. 2021, 27, 101090. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, M.; Zhu, X.; Li, Q.; He, J.; Chen, L.; Wang, W.; Zhu, C.; Shen, T.; Cao, R.; et al. YAP-Induced Endothelial-Mesenchymal Transition in Oral Submucous Fibrosis. J. Dent. Res. 2019, 98, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.F.; Chen, M.Y.; Lai, J.C.; Chen, Y.L.; Wong, Y.W.; Yang, C.C.; Chen, H.Y.; Hsia, S.M.; Shih, Y.H.; Shieh, T.M. Arecoline-regulated ataxia telangiectasia mutated expression level in oral cancer progression. Head. Neck 2019, 41, 2525–2537. [Google Scholar] [CrossRef]
- Das, A.; Giri, S. A Review on Role of Arecoline and Its Metabolites in the Molecular Pathogenesis of Oral Lesions with an Insight into Current Status of Its Metabolomics. Prague Med. Rep. 2020, 121, 209–235. [Google Scholar] [CrossRef]
- Ren, H.; He, G.; Lu, Z.; He, Q.; Li, S.; Huang, Z.; Chen, Z.; Cao, C.; Wang, A. Arecoline induces epithelial-mesenchymal transformation and promotes metastasis of oral cancer by SAA1 expression. Cancer Sci. 2021, 112, 2173–2184. [Google Scholar] [CrossRef]
- Ding, H.; Bai, F.; Cao, H.; Xu, J.; Fang, L.; Wu, J.; Yuan, Q.; Zhou, Y.; Sun, Q.; He, W.; et al. PDE/cAMP/Epac/C/EBP-β Signaling Cascade Regulates Mitochondria Biogenesis of Tubular Epithelial Cells in Renal Fibrosis. Antioxid. Redox Signal. 2018, 29, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, L.; Shao, C.; Deng, M.; Chen, L. Arecoline Enhances Phosphodiesterase 4A Activity to Promote Transforming Growth Factor-β-Induced Buccal Mucosal Fibroblast Activation via cAMP-Epac1 Signaling Pathway. Front. Pharmacol. 2021, 12, 722040. [Google Scholar] [CrossRef]
- Sanjeeta, N.; Banerjee, S.; Mukherjee, S.; Devi, T.P.; Nandini, D.B.; Aparnadevi, P. Correlation of the activities of antioxidant enzymes superoxide dismutase and glutathione reductase with micronuclei counts among areca nut chewers of Manipuri population using exfoliative cytology: A preliminary study. J. Cancer Res. Ther. 2022, 18, 984–989. [Google Scholar] [CrossRef]
- Shen, Y.W.; Shih, Y.H.; Fuh, L.J.; Shieh, T.M. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. Int. J. Mol. Sci. 2020, 21, 7231. [Google Scholar] [CrossRef]
- Xie, H.; Jing, R.; Liao, X.; Chen, H.; Xie, X.; Dai, H.; Pan, L. Arecoline promotes proliferation and migration of human HepG2 cells through activation of the PI3K/AKT/mTOR pathway. Hereditas 2022, 159, 29. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.T.; Sun, Z.J.; Shen, W.C.; Yang, Y.C.; Lu, F.H.; Chang, C.J.; Li, C.Y.; Wu, J.S. Cumulative Betel Quid Chewing and the Risk of Significant Liver Fibrosis in Subjects With and Without Metabolic Syndrome. Front. Nutr. 2022, 9, 765206. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.T.; Li, C.H.; Sun, Z.J.; Shen, W.C.; Yang, Y.C.; Lu, F.H.; Chang, C.J.; Wu, J.S. A Positive Relationship between Betel Nut Chewing and Significant Liver Fibrosis in NAFLD Subjects, but Not in Non-NAFLD Ones. Nutrients 2021, 13, 914. [Google Scholar] [CrossRef]
- Athukorala, I.A.; Tilakaratne, W.M.; Jayasinghe, R.D. Areca Nut Chewing: Initiation, Addiction, and Harmful Effects Emphasizing the Barriers and Importance of Cessation. J. Addict. 2021, 2021, 9967097. [Google Scholar] [CrossRef]
- Dar, A.; Khatoon, S. Behavioral and biochemical studies of dichloromethane fraction from the Areca catechu nut. Pharmacol. Biochem. Behav. 2000, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Nethan, S.T.; Sinha, D.N.; Gupta, S.; Singh, S. Systematic review of determinants and interventions of areca nut cessation: Curbing a public health menace. J. Public Health 2023, 45, 145–153. [Google Scholar] [CrossRef]
- Joo, Y.J.; Newcombe, D.; Nosa, V.; Bullen, C. Investigating Betel Nut Use, Antecedents and Consequences: A Review of Literature. Subst. Use Misuse 2020, 55, 1422–1442. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Tsai, B.C.; Day, C.H.; Chiu, P.L.; Chen, R.J.; Chen, M.Y.; Padma, V.V.; Luk, H.N.; Lee, H.C.; Huang, C.Y. Arecoline induces heart injure via Fas/Fas ligand apoptotic pathway in heart of Sprague-Dawley rat. Environ. Toxicol. 2021, 36, 1567–1575. [Google Scholar] [CrossRef]
- Ho, T.J.; Chi-Kang Tsai, B.; Kuo, C.H.; Luk, H.N.; Day, C.H.; Jine-Yuan Hsieh, D.; Chen, R.J.; Kuo, W.W.; Kumar, V.B.; Yao, C.H.; et al. Arecoline induces cardiotoxicity by upregulating and activating cardiac hypertrophy-related pathways in Sprague-Dawley rats. Chem. Biol. Interact. 2022, 354, 109810. [Google Scholar] [CrossRef]
- Ku, C.W.; Day, C.H.; Ou, H.C.; Ho, T.J.; Chen, R.J.; Kumar, V.B.; Lin, W.Y.; Huang, C.Y. The molecular mechanisms underlying arecoline-induced cardiac fibrosis in rats. Open. Life Sci. 2021, 16, 1182–1192. [Google Scholar] [CrossRef]
- Boruah, N.; Singh, C.S.; Swargiary, P.; Dkhar, H.; Chatterjee, A. Securin overexpression correlates with the activated Rb/E2F1 pathway and histone H3 epigenetic modifications in raw areca nut-induced carcinogenesis in mice. Cancer Cell. Int. 2022, 22, 30. [Google Scholar] [CrossRef]
- Kumar, M.; Kannan, A.; Upreti, R.K. Effect of betel/areca nut (Areca catechu) extracts on intestinal epithelial cell lining. Vet. Hum. Toxicol. 2000, 42, 257–260. [Google Scholar] [PubMed]
- Ye, C.X.; Chen, S.B.; Wang, T.T.; Zhang, S.M.; Qin, J.B.; Chen, L.Z. Risk factors for preterm birth: A prospective cohort study. Chin. J. Contemp. Pediatr. 2021, 23, 1242–1249. [Google Scholar] [PubMed]
- De Silva, M.; Panisi, L.; Brownfoot, F.C.; Lindquist, A.; Walker, S.P.; Tong, S.; Hastie, R. Systematic review of areca (betel nut) use and adverse pregnancy outcomes. Int. J. Gynaecol. Obstet. 2019, 147, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Zang, C.J.; Yin, S.; Shen, W.; Sun, Q.Y.; Zhao, M. Metformin protects against mouse oocyte apoptosis defects induced by arecoline. Cell. Prolif. 2020, 53, e12809. [Google Scholar] [CrossRef]
- Chang, Y.F. Effects of areca nut consumption on cell differentiation of osteoblasts, myoblasts, and fibroblasts. BIOCELL 2023, 47, 283–287. [Google Scholar] [CrossRef]
- Li, Y.X.; Hsiao, C.H.; Chang, Y.F. N-acetyl cysteine prevents arecoline-inhibited C2C12 myoblast differentiation through ERK1/2 phosphorylation. PLoS ONE 2022, 17, e0272231. [Google Scholar] [CrossRef]
- Chang, C.K.; Lee, J.I.; Chang, C.F.; Lee, Y.C.; Jhan, J.H.; Wang, H.S.; Shen, J.T.; Tsao, Y.H.; Huang, S.P.; Geng, J.H. Betel Nut Chewing Is Associated with the Risk of Kidney Stone Disease. J. Pers. Med. 2022, 12, 126. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Syu, R.J.; Lee, C.C.; Lin, S.H.; Lee, C.H.; Cheng, C.W.; Tsai, J.P. Arecoline induces epithelial mesenchymal transition in HK2 cells by upregulating the ERK-mediated signaling pathway. Environ. Toxicol. 2020, 35, 1007–1014. [Google Scholar] [CrossRef]
- Horenstein, N.A.; Quadri, M.; Stokes, C.; Shoaib, M.; Papke, R.L. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine Tob. Res. 2019, 21, 805–812. [Google Scholar] [CrossRef]
- Bernstein, N.; Akram, M.; Yaniv-Bachrach, Z.; Daniyal, M. Is it safe to consume traditional medicinal plants during pregnancy? Phytother. Res. 2021, 35, 1908–1924. [Google Scholar] [CrossRef] [PubMed]
Effects | Components | Biological Materials | References |
---|---|---|---|
Cancer | ↑: Alkaloids | [16] | |
Arecoline | Hep-2 and KB cells | [17] | |
Arecaidine | fibroblasts | [18] | |
Guvacine | human buccal epithelial cells | [18] | |
↓: Flavonoids | |||
Isorhamnetin | >8 cells of different cancer types, mice | [23] | |
Chrysoeriol | >3 cells of different cancer types, mice | [24] | |
Luteolin | >9 cells of different cancer types | [25] | |
Quercetin | >5 cells of different cancer types, mice | [26] | |
↓: Tannins | |||
Catechin | HCT-116 cells | [31] | |
Procyanidins | >4 cells of different cancer types | [33] | |
↓: Terpenoids | |||
Ursolic acid | mice, human | [38] | |
↓: Steroids | |||
Cycloartenol | U87 cells | [42] | |
β-sitosterol | >16 cells of different cancer types, rat | [44] | |
↓: Fatty acids | |||
Palmitic acid | MGC-803, BGC-823 cells, mice | [48] | |
↓: Others | |||
Vanillin | cells, rats | [50] | |
Resveratrol | breast cancer cells, A549, HeLa, DU-145, HepG2 | [54] | |
Quinic acid | human | [55] | |
Chrysophanol | HepG2, MCF-7, T47D, HCT116, A549 cells | [59] | |
Anthraquinones | >20 cells of different cancer types, mice | [60] | |
Physcion | in vitro, in vivo | [61] | |
p-Hydroxybenzoic acid | rats | [62] | |
Epoxyconiferyl alcohol | HepG2 | [63] | |
Protocatechuic acid | >6 cells of different cancer types | [64] | |
Inflammation | ↑: Steroids | ||
Cycloartenol | human blood | [41] | |
↓: Alkaloids | |||
Nicotine | human | [20] | |
↓: Flavonoids | |||
Isorhamnetin | >6 cells, mice, rats | [23] | |
Chrysoeriol | RAW264.7, HaCaT cells, mice, rats | [24] | |
Luteolin | 264.7, HUVEC cells, mice, rats | [25] | |
Quercetin | RAW264.7, HUVEC cells, rats, human | [26] | |
Jacareubin | mice | [27] | |
Liquiritigenin | RAW264.7 cells, rats, mice | [28] | |
↓: Tannins | |||
Catechin | human stomach cancer cell lines | [31] | |
Procyanidins | RAW264.7 cells, rats, mice | [33] | |
↓: Terpenoids | |||
Ursolic acid | mice, rats | [38] | |
↓: Steroids | |||
β-sitosterol | J774A.1 cells, mice, rats | [44] | |
↓: Fatty acids | |||
Lauric acid | chicks | [46] | |
Myristic acid | JA774A.1 cells, mice | [47] | |
↓: Others | |||
α-Terpineol | mice | [51] | |
Benzyl alcohol | rats | [52] | |
Capric acid | IPEC-J2, COS-7 cells | [53] | |
Physcion | MH7A cells | [61] | |
p-Hydroxybenzoic acid | rats | [62] | |
Protocatechuic acid | PC12, CGNs 2. BV2, cells, mice, porcine | [64] | |
Ferulic acid | mice, rat | [67] | |
Vanillic acid | mice, | [68] | |
Oxidative stress | ↑: Alkaloids | ||
Guvacine | human | [18] | |
↓: Flavonoids | |||
Isorhamnetin | RPE, H9C2, C2C12 cells | [23] | |
Luteolin | HT-29, SNU-407 cells, rats | [25] | |
Quercetin | SH-SY5Y cells, rats | [26] | |
Liquiritigenin | [28] | ||
Calquiquelignan N and M | HepG2 cells | [29] | |
↓: Tannins | |||
Procyanidins | RAW264.7 cells | [33] | |
↓: Steroids | |||
β-sitosterol | RAW 264.7, HT22 cells | [44] | |
↓: Others | |||
Vanillin | B16F0 cells | [50] | |
Capric acid | SY5Y, Neuro2a, AML12 cells | [53] | |
Resveratrol | none | [54] | |
Quinic acid | none | [57] | |
Chrysophanol | BV2 cells, mice | [59] | |
Anthraquinones | rats | [60] | |
p-Hydroxybenzoic acid | CGN cells | [62] | |
Protocatechuic acid | HUVEC cells, rats | [64] | |
Ferulic acid | HEK293, SH-SY5Y, HUVEC cells, rats | [67] | |
Polyphenols | RAW264.7 cells | [69] | |
Antibacterial | ↑: Flavonoids | ||
Chrysoeriol | >5 Gram positive bacteira, >5 Gram negative bacteira | [24] | |
Quercetin | S. aureus, S. saprophyticus, E. coli, P. aeruginosa | [26] | |
Liquiritigenin | M. tuberculosis, M. bovis, S. aureus, S. epidermidis, S. hemolyticus | [28] | |
↑: Tannins | |||
Catechin | S. aureus and L. monocytogenes | [31] | |
Procyanidins | S. mutans, B. cereus | [33] | |
↑: Terpenoids | |||
3-carene | E. coli | [35] | |
↑: Others | |||
Benzyl alcohol | rats | [52] | |
Quinic acid | P. aeruginosa | [56] | |
Anthraquinones | S. aureus, S. epidermidis, P. aeruginosa, E. faecalis, P. vulgaris, P. mirabilis, S. typhi, E. cloacae, E. aerogenes, K. pneumoniae, Vibrio harveyi | [60] | |
Physcion | S. aureus, P. aeruginosa, C. albican, M. gypseum | [61] | |
p-Hydroxybenzoic acid | rats | [62] | |
Protocatechuic acid | E. coli, P. ceruminous, S. aureus, B. cereus, S. pneumoniae, A. barramundi, H. pylori | [64] | |
Antivirus | ↑: Others | ||
Quinic acid | RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 | [58] | |
Chrysophanol | JEV virus | [59] | |
Protocatechuic acid | HBV, NDV, | [64] | |
Anti-fungus | ↑: Flavonoids | ||
Chrysoeriol | F. graminearum, P. graminicola | [24] | |
Anti-insecticide | ↑: Flavonoids | ||
Chrysoeriol | A. pisum, R. meliloti, S. litura | [24] | |
Neuroprotective | ↑: Flavonoids | ||
Liquiritigenin | D10 cells | [28] | |
↑: Tannins | |||
Catechin | rats | [32] | |
DNA damage | ↑: Alkaloids | ||
Guvacine | human buccal epithelial cells | [18] | |
Blood pressure | ↓: Alkaloids | ||
Isoguvacine | rats | [21] | |
Social interaction | ↓: Alkaloids | ||
Guvacine | zebrafish | [19] | |
Anxiety | ↓: Flavonoids | ||
Liquiritigenin | mice | [28] | |
Platelet aggregation | ↓: Terpenoids | ||
Procurcumenol | rats | [36] | |
Osteoporosis | ↓: Flavonoids | ||
Chrysoeriol | MC3T3-E1 cells | [24] | |
Fibrosis | ↓: Fatty acids | ||
Stearic acid | MRC-5 cells, mice | [49] |
Diseases | Pharmacological Effects | AN Components | Mechanism | Biological Materials | References |
---|---|---|---|---|---|
Gastric and intestine | against gastric cancer cell | 15.91 μM 2,4-Compound 26, 20.13 μM Compound 34 | BGC-823 cells | [70] | |
esophageal sphincter muscle contractions ↑ | 300 ng/L AN pericarp extracts, 300 nM arecoline | porcine | [71] | ||
Depression and anxiety | antidepression | 141 depression-related genes | [72] | ||
anxiolytic-like activity | 10 mg/L arecoline | ↑ c-fos, c-jun, egr2 and ym1 | zebrafish | [73] | |
Liver | hepatocellular carcinoma progression ↓ | 20~30 µg/mL or 20 mg/kg AN extract | ↑ autophagy and apoptosis | HepJ5 and Mahlavu cells, nude mice | [74] |
Nerve | dopaminergic neuron firing rate ↑ | 0.2 mg/kg arecoline | ↑ dopaminergic | rats | [75] |
synaptic exocytosis at neuromuscular junctions ↑ | 0.2 mM arecoline | ↑ GAR-2/PLCβ pathway | C. elegans. | [76] | |
improving cognition, memory and behavioral disorders | arecoline | ↑ muscarinic M1 receptors | human | [77] | |
Bacterial infection | antibacterial effects | 1–100 mg/mL AN extracts | S. aureus, E. aerogenes, E. coli, S. enterica | [78] | |
against Staphylococcus aureus | 1000 mg/kg BW AN extracts | S. aureus, rats | [79] | ||
against Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli | 0.975 ± 0.02 μg/mL AN extracts | M. tuberculosis, S. aureus, E. coli. | [80] | ||
antimicrobial activity of nine Gram-negative, Gram-positive bacteria and yeast | 10.3 ± 1.1–40.0 ± 3.0 AN SHDE extract | B. subtilis, E. faecalis, E. coli, P. aeruginosa, S. aureus, S. agalactiae, S. canis, S. pyogenes, Candida albicans | [81] | ||
Skin protection | UVB-induced photoaging ↓ | AN procyanidins | ↓ COX-2, MMPs | mice | [82] |
tyrosinase and elastase inhibition | 295.79 ± 11.97 mg/g dry weight AN extract | ↓ Tyrosinase, elastase | [83] | ||
Anthelmintic activity | against the nematode Ascaridia galli | 250 mg/mL, 100 mg/mL AN extract | Ascaridia galli, chicken | [84] | |
against the fluke Fasciola spp. | 10%, 20%, 40% AN extract | Fasciola spp., buffaloes | [85] | ||
Antioxidant | antioxidant | 2 mg/mL PAP1b | ↓ hydroxyl radicals | [86] | |
antioxidant | 20 µL AN extract | ↓ free radical | [83] | ||
Anti-hypoxia | protecting effects caused by hypoxia | AN polyphenols | ↓ free radicals | [87] | |
Anti-osteoarthritis | suppressed inflammation | 1 and 10 mg/kg/day AN ethanol extract | ↓ iNOS, COX-2 | rats | [88] |
Diseases | Toxicological Effects | AN Components | Mechanism | Biological Materials | References |
---|---|---|---|---|---|
Oral | dysregulating proinflammatory cytokines | AN | ↓ TGF-β | human | [89] |
low prevalence of oral submucous fibrosis | human | [90] | |||
deteriorate prognosis of oral cancer | AN | human | [91] | ||
oral carcinogenesis | 0.35% AN extract | ↑ AP-1, apoptotic gnes, ↓ cell cycle regulators | KB cells | [92] | |
initiate oral submucous fibrosis process | Arecoline | human | [93] | ||
reactive oxygen species ↑, cell cycle arrest, apoptosis ↓, DNA damage | 800 μg/mL Arecoline | OSCC cells | [94] | ||
induce oral pathologies mechanisms | Arecoline | ↑ MAPK, PI3K Akt, NF-κB, PKC pathways | [95] | ||
promote metastasis of oral cancer | 160 μg/mL Arecoline | cytokines for EMT | CAL33 and UM2 cells | [96] | |
promoted buccal mucosal fibroblasts | 20 and 50 µg/mL Arecoline | ↑ TGF-β | buccal mucosal fibroblasts | [98] | |
increased oxidative stress | AN | ↓ reductase, superoxide and dismutase, ↑ micronuclei in buccal exfoliated cells | human | [99] | |
carcinogenesis not found in animal models | Arecoline | [100] | |||
Liver | risk factor for various liver diseases | AN | human | [4] | |
promoting migration and proliferation of human HepG2 cells | 2.5 µM Arecoline | ↑ PI3K-AKT pathway | HepG2 cells | [101] | |
associated with liver fibrosis | AN | human | [102] | ||
high risk of liver fibrosis | AN | human | [103] | ||
Behavior and Addiction | behavioral alterations | 0.001, 0.01, 0.1, or 1 ppm four alkaloid | zebrafish | [19] | |
increase sense of well-being, stamina, and euphoria | AN | human | [104] | ||
antidepressant | 10 mg/kg Dichloromethane fraction | ↓ monoamine oxidase-A | rat brain | [105] | |
addiction of AN | AN | human | [106] | ||
methods for AN cessation | AN | human | [104] | ||
emerging pharmacological cessation therapies | AN | human | [11] | ||
Cardiac | cardiac apoptosis | 5 and 50 mg/kg/day arecoline | ↑ Fas/Fas ligand pathway | rats | [108] |
cardiotoxicity and heart damage | 5 and 50 mg/kg/day arecoline | ↑ JAK2/STAT3, MEK5/ERK5, MAPK pathways | rats | [109] | |
cardiac fibrosis | 5 and 50 mg/kg/day arecoline | ↑ TGF-β)/Smad pathways | rats | [110] | |
Gastric and intestinal | developed gastric cancer | 1 mg raw areca nutt | ↑ histone H3 epigenetic modifications and Rb/E2F1 pathway | mice | [111] |
decreases intestinal epithelial cell lining functions | AN extract | ↓ membrane constituents | rats | [112] | |
Genotoxicity | genetic toxicology | Arecoline | ↑ gene mutations, DNA damage and repair, cytogenetic effects | in vitro, in vivo | [17] |
Reproduction and development | risk factor for preterm birth | AN | ↑ oxidative stress | human | [113] |
low birth weight | AN | human | [114] | ||
inducing oocyte apoptosis | 160, 180 and 200 μg/mL arecoline | ↑ oxidative stress | mouse oocytes | [115] | |
Inhibiting myogenesis | 0.04 and 0.08 mM arecoline | ↓ pStat3 | C2C12 cells | [116] | |
defective effects of myogenesis | 0.04 and 0.08 mM arecoline | ↓ myosin heavy chain, myogenin | C2C12 cells | [117] | |
Kidney | high risk of kidney stone disease | >30 AN quids | human | [118] | |
promoting the progression of chronic kidney disease | 10, 20, or 40 μg/mL arecoline | ↑ EMT genes, fibrogenesis markers | HK2 cells | [119] | |
Neuron activation | nicotine addiction | 100 µM four areca alkaloid | ↑ nAChR | Xenopus oocytes | [120] |
Abortifacient | may have abortifacient effects | AN | human | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.-F.; Chang, Y.-F. The Controversial Roles of Areca Nut: Medicine or Toxin? Int. J. Mol. Sci. 2023, 24, 8996. https://doi.org/10.3390/ijms24108996
Liu P-F, Chang Y-F. The Controversial Roles of Areca Nut: Medicine or Toxin? International Journal of Molecular Sciences. 2023; 24(10):8996. https://doi.org/10.3390/ijms24108996
Chicago/Turabian StyleLiu, Pei-Feng, and Yung-Fu Chang. 2023. "The Controversial Roles of Areca Nut: Medicine or Toxin?" International Journal of Molecular Sciences 24, no. 10: 8996. https://doi.org/10.3390/ijms24108996
APA StyleLiu, P. -F., & Chang, Y. -F. (2023). The Controversial Roles of Areca Nut: Medicine or Toxin? International Journal of Molecular Sciences, 24(10), 8996. https://doi.org/10.3390/ijms24108996