Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy
Abstract
:1. Introduction
2. Results
2.1. AFM Imaging of the Surface with Covalently Immobilized BSA
2.2. MS Identification of the Protein in Solution and in Eluates from the AFM Chip Surface
2.3. MS Analysis of Samples Obtained in Control Experiments
3. Discussion
3.1. AFM Imaging Results
3.2. MS Analysis Results
4. Materials and Methods
4.1. Proteins
4.2. Chemicals
4.3. Experiment Design
4.4. Modification and Activation of AFM Substrate Surface
4.5. Covalent Capturing of the Protein
4.6. AFM Scanning
4.7. Preparation of the AFM Chips for MS Measurements
4.8. MS Measurements
4.9. MS Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Desiderio, D.M.; Fridland, G.H. A Review of Combined Liquid Chromatography and Mass Spectrometry. J. Liq. Chromatogr. 1984, 7, 317–351. Available online: https://www.tandfonline.com/doi/abs/10.1080/01483918408073941 (accessed on 10 April 2023). [CrossRef]
- Von Rechenberg, M.; Blake, B.K.; Ho, Y.-S.J.; Zhen, Y.; Chepanoske, C.L.; Richardson, B.E.; Xu, N.; Kery, V. Ampicillin/Penicillin-Binding Protein Interactions as a Model Drug-Target System to Optimize Affinity Pull-down and Mass Spectrometric Strategies for Target and Pathway Identification. Proteomics 2005, 5, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Pompach, P.; Nováková, J.; Kavan, D.; Benada, O.; Růžička, V.; Volný, M.; Novák, P. Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry. Clin. Chem. 2016, 62, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Griesser, H.J.; Kingshott, P.; McArthur, S.L.; McLean, K.M.; Kinsel, G.R.; Timmons, R.B. Surface-MALDI Mass Spectrometry in Biomaterials Research. Biomaterials 2004, 25, 4861–4875. [Google Scholar] [CrossRef]
- Baclayon, M.; Wuite, G.J.L.; Roos, W.H. Imaging and Manipulation of Single Viruses by Atomic Force Microscopy. Soft Matter 2010, 6, 5273. [Google Scholar] [CrossRef]
- Bukharina, N.S.; Ivanov, Y.D.; Pleshakova, T.O.; Frantsuzov, P.A.; Andreeva, E.Y.; Kaysheva, A.L.; Izotov, A.A.; Pavlova, T.I.; Ziborov, V.S.; Radko, S.P.; et al. Atomic force microscopy fishing of GP120 on immobilized aptamer and its mass spectrometry identification. Biomeditsinskaya Khimiya 2015, 61, 363–372. [Google Scholar] [CrossRef]
- Valueva, A.A.; Shumov, I.D.; Kaysheva, A.L.; Ivanova, I.A.; Ziborov, V.S.; Ivanov, Y.D.; Pleshakova, T.O. Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker. Minerals 2020, 10, 464. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Kaysheva, A.L.; Frantsuzov, P.A.; Pleshakova, T.O.; Krohin, N.V.; Izotov, A.A.; Shumov, I.D.; Uchaikin, V.F.; Konev, V.A.; Ziborov, V.S.; et al. Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry. Int. J. Nanomed. 2015, 10, 1597–1608. [Google Scholar] [CrossRef]
- Kaysheva, A.L.; Frantsuzov, P.A.; Kopylov, A.T.; Pleshakova, T.O.; Stepanov, A.A.; Malsagova, K.A.; Archakov, A.I.; Ivanov, Y.D. Mass Spectrometric Identification of Proteins Enhanced by the Atomic Force Microscopy Immobilization Surface. Int. J. Mol. Sci. 2021, 22, 431. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Medvedev, A.; Ershov, P.; Molnar, A.; Mezentsev, Y.; Yablokov, E.; Kaluzhsky, L.; Gnedenko, O.; Buneeva, O.; Haidukevich, I.; et al. Protein interactomics based on direct molecular fishing on paramagnetic particles: Practical realization and further SPR validation. Proteomics 2014, 14, 2261–2274. [Google Scholar] [CrossRef]
- Florinskaya, A.; Ershov, P.; Mezentsev, Y.; Kaluzhskiy, L.; Yablokov, E.; Medvedev, A.; Ivanov, A. SPR Biosensors in Direct Molecular Fishing: Implications for Protein Interactomics. Sensors 2018, 18, 1616. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Danichev, V.V.; Pleshakova, T.O.; Shumov, I.D.; Ziborov, V.S.; Krokhin, N.V.; Zagumenniy, M.N.; Ustinov, V.S.; Smirnov, L.P.; Shironin, A.V.; et al. Irreversible Chemical AFM-Based Fishing for Detection of Low-Copied Proteins. Biochem. Mosc. Suppl. Ser. B Biomed. Chem. 2013, 7, 46–61. [Google Scholar] [CrossRef]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins. Proteomics 2009, 9, 1326–1343. [Google Scholar] [CrossRef]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. AFM Fishing Nanotechnology Is the Way to Reverse the Avogadro Number in Proteomics. Proteomics 2007, 7, 4–9. [Google Scholar] [CrossRef]
- Archakov, A.; Zgoda, V.; Kopylov, A.; Naryzhny, S.; Chernobrovkin, A.; Ponomarenko, E.; Lisitsa, A. Chromosome-centric approach to overcoming bottlenecks in the Human Proteome Project. Expert Rev. Proteom. 2012, 9, 667–676. [Google Scholar] [CrossRef]
- Pleshakova, T.O.; Ivanov, Y.D.; Valueva, A.A.; Shumyantseva, V.V.; Ilgisonis, E.V.; Ponomarenko, E.A.; Lisitsa, A.V.; Chekhonin, V.P.; Archakov, A.I. Analysis of Single Biomacromolecules and Viruses: Is It a Myth or Reality? Int. J. Mol. Sci. 2023, 24, 1877. [Google Scholar] [CrossRef]
- Jonkheijm, P.; Weinrich, D.; Schröder, H.; Niemeyer, C.M.; Waldmann, H. Chemical Strategies for Generating Protein Biochips. Angew. Chem. Int. Ed. 2008, 47, 9618–9647. [Google Scholar] [CrossRef]
- Sechi, S.; Chait, B.T. Modification of Cysteine Residues by Alkylation. A Tool in Peptide Mapping and Protein Identification. Anal. Chem. 1998, 70, 5150–5158. [Google Scholar] [CrossRef]
- Zybailov, B.L. Large Scale Chemical Cross-Linking Mass Spectrometry Perspectives. J. Proteom. Bioinform. 2013, S2, 001. [Google Scholar] [CrossRef]
- Mattson, G.; Conklin, E.; Desai, S.; Nielander, G.; Savage, M.D.; Morgensen, S. A practical approach to crosslinking. Mol. Biol. Rep. 1993, 17, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Surmanjit, J.; Chung, S.J. Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013, 18, 10425–10451. [Google Scholar] [CrossRef]
- Voskresenska, V.; Wilson, R.M.; Panov, M.; Tarnovsky, A.N.; Krause, J.A.; Vyas, S.; Winter, A.H.; Hadad, C.M. Photoaffinity labeling via nitrenium ion chemistry: Protonation of the nitrene derived from 4-amino-3-nitrophenyl azide to afford reactive nitrenium ion pairs. J. Am. Chem. Soc. 2009, 131, 11535–11547. [Google Scholar] [CrossRef] [PubMed]
- Dorman, G.; Prestwich, G.D. Benzophenone photophores in biochemistry. Perspect. Biochem. 1994, 33, 5661–5673. [Google Scholar] [CrossRef]
- Preston, G.W.; Wilson, A.J. Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem. Soc. Rev. 2013, 42, 3289–3301. [Google Scholar] [CrossRef]
- Squire, P.G.; Moser, P.; O’Konski, C.T. Hydrodynamic Properties of Bovine Serum Albumin Monomer and Dimer. Biochemistry 1968, 7, 4261–4272. [Google Scholar] [CrossRef]
- Salis, A.; Boström, M.; Medda, L.; Cugia, F.; Barse, B.; Parsons, D.F.; Ninham, B.W.; Monduzzi, M. Measurements and Theoretical Interpretation of Points of Zero Charge/Potential of BSA Protein. Langmuir 2011, 27, 11597–11604. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Yoshida, H. Production of Amino and Organic Acids from Protein Using Sub-Critical Water Technology. Int. J. Chem. React. Eng. 2013, 11, 1–16. [Google Scholar] [CrossRef]
- Saeed, S.M.G.; Sayeed, S.A.; Ashraf, S.; Batool, F.; Batool, F.; Ali, R.; Siddiqi, S.N.R. Investigations of in vitro digestibility of proteins bound to food colors. J. Pharm. Nutr. Sci. 2011, 1, 34–40. [Google Scholar] [CrossRef]
- Available online: https://www.thermofisher.com/order/catalog/product/23209 (accessed on 10 May 2023).
- Xiao, Y.; Isaacs, S.N. Enzyme-Linked Immunosorbent Assay (ELISA) and Blocking with Bovine Serum Albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods 2012, 384, 148–151. [Google Scholar] [CrossRef]
- Brorson, S.-H. Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin. Micron 1997, 28, 189–195. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. An overview of biopolymer nanostructures for encapsulation of food ingredients. In Nanoencapsulation in the Food Industry, Biopolymer Nanostructures for Food Encapsulation Purposes; Jafari, S.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–35. [Google Scholar] [CrossRef]
- Andrade, J.D.; Hlady, V.; Wei, A.P. Adsorption of complex proteins at interfaces. Pure Appl. Chem. 1992, 64, 1777–1781. [Google Scholar] [CrossRef]
- Norde, W. My Voyage of Discovery to Proteins in Flatland… and Beyond. Colloids Surf. B Biointerfaces 2008, 61, 1–9. [Google Scholar] [CrossRef]
- Kuznetsova, K.; Solovyeva, E.; Kuzikov, A.; Gorshkov, M.; Moshkovskii, S. Modification of Cysteine Residues for Mass Spectrometry-Based Proteomic Analysis: Facts and Artifacts. Biomeditsinskaya Khimiya 2020, 66, 18–29. [Google Scholar] [CrossRef]
- Lim, C.Y.-L. Point-of-Need Detection Using Surface-Based Biosensors with an Examination of Protein Immobilization and Development of Magnetic Labels. 2016. Available online: https://ui.adsabs.harvard.edu/abs/2016PhDT.......168L (accessed on 22 December 2022).
- Lim, C.Y.; Owens, N.A.; Wampler, R.D.; Ying, Y.; Granger, J.H.; Porter, M.D.; Takahashi, M.; Shimazu, K. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization. Langmuir 2014, 30, 12868–12878. [Google Scholar] [CrossRef]
- Gibizova, V.V.; Sergeeva, I.A.; Petrova, G.P.; Priezzhev, A.V.; Khlebtsov, N.G. Interaction of Albumin and γ-Globulin Molecules with Gold Nanoparticles in Water Solutions. Mosc. Univ. Phys. Bull. 2011, 66, 449–452. [Google Scholar] [CrossRef]
- Terashima, H.; Tsuji, T. Adsorption of Bovine Serum Albumin onto Mica Surfaces Studied by a Direct Weighing Technique. Colloids Surf. B 2002, 27, 115–122. [Google Scholar] [CrossRef]
- Close, S.; Demaneche, J.-P.; Chapel, L.J.; Monrozier, H. Quiquampoix Dissimilar PH Dependent Adsorption Features of Bovine Serum Albumin and α- Chymotrypsin on Mica Probed by AFM. Colloids Surf. B 2009, 70, 226–231. [Google Scholar]
- Sayle, R.A.; Milner-White, E.J. RASMOL: Biomolecular Graphics for All. Trends Biochem. Sci. 1995, 20, 374. [Google Scholar] [CrossRef]
- Available online: http://www.openrasmol.org/ (accessed on 15 April 2023).
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A Computer-Based Archival File for Macromolecular Structures. Eur. J. Biochem. 1977, 80, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Katchalski, E.; Benjamin, G.S.; Gross, V. The Availability of the Disulfide Bonds of Human and Bovine Serum Albumin and of Bovine γ-Globulin to Reduction by Thioglycolic Acid. J. Am. Chem. Soc. 1957, 79, 4096–4099. [Google Scholar] [CrossRef]
- Militello, V.; Vetri, V.; Leone, M. Conformational Changes Involved in Thermal Aggregation Processes of Bovine Serum Albumin. Biophys. Chem. 2003, 105, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Protopopova, A.D.; Barinov, N.A.; Zavyalova, E.G.; Kopylov, A.M.; Sergienko, V.I.; Klinov, D.V. Visualization of Fibrinogen AC Regions and Their Arrangement during Fibrin Network Formation by High-resolution AFM. J. Thromb. Haemost. 2015, 13, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Hultberg, B.; Lundblad, A.; Masson, P.K.; Ockerman, P.A. Specificity Studies on Alpha-Mannosidases Using Oligosaccharides from Mannosidosis Urine as Substrates. Biochim. Biophys. Acta 1975, 410, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Yoshii, S.; Kumagai, S.; Fujiwara, I.; Nishio, K.; Okuda, M.; Matsukawa, N.; Yamashita, I. High-Density and Highly Surface Selective Adsorption of Protein-Nanoparticle Complexes by Controlling Electrostatic Interaction. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2006, 45, 4259–4264. [Google Scholar] [CrossRef]
- Braga, P.C.; Ricci, D. Atomic Force Microscopy Biomedical Methods and Applications; Humana Press: Totowa, NJ, USA, 2004. [Google Scholar]
- Huff, J.L.; Lynch, M.P.; Nettikadan, S.; Johnson, J.C.; Vengasandra, S.; Henderson, E. Label-Free Protein and Pathogen Detection Using the Atomic Force Microscope. J. Biomol. Screen. 2004, 9, 491–497. [Google Scholar] [CrossRef]
- Zhou, W.; Merrick, B.A.; Khaledi, M.G.; Tomer, K.B. Detection and Sequencing of Phosphopeptides. J. Am. Soc. Mass Spectrom. 2000, 11, 273–282. [Google Scholar] [CrossRef]
- Available online: https://www.uniprot.org (accessed on 15 April 2023).
- Available online: https://web.expasy.org (accessed on 15 April 2023).
- Saraswathy, N.; Ramalingam, P. Protein Identification by Peptide Mass Fingerprinting (PMF). In Concepts and Techniques in Genomics and Proteomics; Woodhead Publishing Series in Biomedicine; Elsevier: Amsterdam, The Netherlands, 2011; pp. 185–192. [Google Scholar] [CrossRef]
- Available online: https://prospector.ucsf.edu/prospector/ (accessed on 15 April 2023).
- Cottrell, J.S. Protein Identification by Peptide Mass Fingerprinting. Pept. Res. 1994, 7, 115–124. [Google Scholar]
Sample Series/Protein Concentration | Alkylation | Number of Samples per Series | Average Number of Measured Masses of Peptides from the Peptide List * | Peptide List | |
---|---|---|---|---|---|
1 | 10−7 M BSA solution (no AFM chip immersed) | Yes | 3 | 12 ± 3 | Peptoset 1_1 |
No | 3 | 11 ± 1 | Peptoset 1_2 | ||
2 | AFM chip, DSP crosslinker/10−7 M BSA | Yes | 3 | 3 ± 1 | Peptoset 2_1 |
No | 3 | 5 ± 3 | Peptoset 2_2 | ||
3 | SucBB crosslinker/10−7 M BSA | Yes | 3 | 9 ± 8 | Peptoset 3_1 |
No | 3 | 10 ± 6 | Peptoset 3_2 | ||
4 | SucBB crosslinker/10−9 M BSA | No | 3 | 3 ± 2 | Peptoset 4_2 |
5 | Control 1 (blank) | No | 3 | 0 | Peptoset 5_2 |
6 | Control 2 | No | 3 | 3 ± 1 | Peptoset 6_2 |
7 | Control 3 | No | 3 | 3 ± 1 | Peptoset 7_2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeeva, A.I.; Valueva, A.A.; Ershova, M.O.; Rybakova, E.E.; Shumov, I.D.; Kozlov, A.F.; Ziborov, V.S.; Zavialova, M.G.; Zgoda, V.G.; Ivanov, Y.D.; et al. Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy. Int. J. Mol. Sci. 2023, 24, 8999. https://doi.org/10.3390/ijms24108999
Gordeeva AI, Valueva AA, Ershova MO, Rybakova EE, Shumov ID, Kozlov AF, Ziborov VS, Zavialova MG, Zgoda VG, Ivanov YD, et al. Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy. International Journal of Molecular Sciences. 2023; 24(10):8999. https://doi.org/10.3390/ijms24108999
Chicago/Turabian StyleGordeeva, Arina I., Anastasia A. Valueva, Maria O. Ershova, Elizaveta E. Rybakova, Ivan D. Shumov, Andrey F. Kozlov, Vadim S. Ziborov, Maria G. Zavialova, Victor G. Zgoda, Yuri D. Ivanov, and et al. 2023. "Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy" International Journal of Molecular Sciences 24, no. 10: 8999. https://doi.org/10.3390/ijms24108999
APA StyleGordeeva, A. I., Valueva, A. A., Ershova, M. O., Rybakova, E. E., Shumov, I. D., Kozlov, A. F., Ziborov, V. S., Zavialova, M. G., Zgoda, V. G., Ivanov, Y. D., Archakov, A. I., & Pleshakova, T. O. (2023). Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy. International Journal of Molecular Sciences, 24(10), 8999. https://doi.org/10.3390/ijms24108999