Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis
Abstract
:1. Introduction
2. Results
2.1. Variants Were Successfully Obtained from Variant 8 and Cry11Aa
2.2. Cry 11 Proteins and Variants Are Produced in Bt BMB171
2.3. The Residues Phenylalanine (553) and Tryptophan (556) Are Relevant to the Insecticidal Activity of the Variant 8 Protein
2.4. Cry Proteins Have an Antiproliferative Effect on the SW480 Cell Line
2.5. Modeled Structures by De Novo Methodology
3. Discussion
4. Materials and Methods
4.1. Culture Media, Strains, and DNA Extraction
4.2. Synthesis and Design of Cry11Bb and Variant 8 Mutants
4.2.1. Cry11Bb Mutant Library
4.2.2. Variant 8 Mutant Library
4.3. Obtaining Final Complete Culture (FCC) of Bt
4.4. Protein Electrophoresis on Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.5. Protein Preparation and Half-Lethal Concentration (LC50)
4.6. Variants of Cry in the Control of the Human Colorectal Cancer Cells
4.7. Structural Modeling of Cry11 Variants
4.8. Generation of Additional Variants and Sampling of the Models
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badran, A.H.; Guzov, V.M.; Huai, Q.; Kemp, M.M.; Vishwanath, P.; Kain, W.; Nance, A.M.; Evdokimov, A.; Moshiri, F.; Turner, K.H.; et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 2016, 533, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Orduz, S.; Lemeshko, V.V. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin. Biochim. Biophys. Acta 2009, 1788, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.E.; Pérez, C.; Segovia, L.; Rodríguez, M.H.; Gill, S.S.; Bravo, A.; Soberón, M. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop alpha-8 of domain II. FEBS Lett. 2005, 579, 3508–3514. [Google Scholar] [CrossRef] [PubMed]
- Sauka, D.H.; Monella, R.H.; Benintende, G.B. Detection of the mosquitocidal toxin genes encoding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method. Rev. Argent. Microbiol. 2010, 42, 23–26. [Google Scholar] [CrossRef]
- Orduz, S.; Realpe, M.; Arango, R.; Murillo, L.A.; Delécluse, A. Sequence of the cry11Bb11 gene from Bacillus thuringiensis subsp. medellin and toxicity analysis of its encoded protein. Biochim. Biophys. Acta 1998, 1388, 267–272. [Google Scholar] [CrossRef]
- Marcos, M.L.; Echave, J. Too packed to change: Side-chain packing and site-specific substitution rates in protein evolution. PeerJ 2015, 3, e911. [Google Scholar] [CrossRef]
- Vílchez, S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins 2020, 12, 600. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Q.; Xia, L.; Ding, X.; Hu, Q.; Federici, B.A.; Park, H.W. Identification and characterization of three previously undescribed crystal proteins from Bacillus thuringiensis subsp. Jegathesan. Appl. Environ. Microbiol. 2013, 79, 3364–3370. [Google Scholar] [CrossRef]
- Mehlo, L.; Gahakwa, D.; Nghia, P.T.; Loc, N.T.; Capell, T.; Gatehouse, J.A.; Gatehouse, A.M.; Christou, P. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc. Natl. Acad. Sci. USA 2005, 102, 7812–7816. [Google Scholar] [CrossRef]
- Florez, A.M.; Suarez-Barrera, M.O.; Morales, G.M.; Rivera, K.V.; Orduz, S.; Ochoa, R.; Guerra, D.; Muskus, C. Toxic Activity, Molecular Modeling and Docking Simulations of Bacillus thuringiensis Cry11 Toxin Variants Obtained via DNA Shuffling. Front. Microbiol. 2018, 9, 2461. [Google Scholar] [CrossRef]
- Deist, B.R.; Rausch, M.A.; Fernandez-Luna, M.T.; Adang, M.J.; Bonning, B.C. Bt Toxin Modification for Enhanced Efficacy. Toxins 2014, 6, 3005–3027. [Google Scholar] [CrossRef] [PubMed]
- Lucena, W.A.; Pelegrini, P.B.; Martins-de-Sa, D.; Fonseca, F.C.A.; Gomes, J.E., Jr.; De Macedo, L.L.P.; Da Silva, M.C.M.; Oliveira, R.S.; Grossi-de-Sa, M.F. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins. Toxins 2014, 6, 2393–2423. [Google Scholar] [CrossRef] [PubMed]
- Alzate, O.; Osorio, C.; Florez, A.M.; Dean, D.H. Participation of valine 171 in alpha-Helix 5 of Bacillus thuringiensis Cry1Ab delta-endotoxin in translocation of toxin into Lymantria dispar midgut membranes. Appl. Environ. Microbiol. 2010, 76, 7878–7880. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, E.H.; Sierra, D.A.; Suarez, M.O.; Orduz, S.; Florez, A.M. DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis. BMC Biophys. 2017, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Pinzón-Reyes, E.H.; Sierra-Bueno, D.A.; Suarez-Barrera, M.O.; Rueda-Forero, N.J.; Abaunza-Villamizar, S.; Rondón-Villareal, P. Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling. Evol. Bioinform. 2020, 16, 1176934320924681. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, M.C.; Vela-Sanchez, R.A.; Rojas-Ruiz, N.E.; Carabarin-Lima, A. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life 2021, 11, 999. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Soberon, M.; Pardo-Lopez, L.; Lopez, I.; Gomez, I.; Tabashnik, B.E.; Bravo, A. Engineering modified Bt toxins to counter insect resistance. Science 2007, 318, 1640–1642. [Google Scholar] [CrossRef]
- Fabrick, J.A.; Wu, Y. Roles of insect midgut cadherin in Bt intoxication and resistance. In Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins; CABI: Wallingford, UK, 2015; pp. 69–86. [Google Scholar] [CrossRef]
- Batool, K.; Alam, I.; Jin, L.; Xu, J.; Wu, C.; Wang, J.; Huang, E.; Guan, X.; Yu, X.Q.; Zhang, L. CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in Aedes aegypti. J. Agric. Food Chem. 2019, 67, 8896–8904. [Google Scholar] [CrossRef]
- Jiménez, A.I.; Reyes, E.Z.; Cancino-Rodezno, A.; Bedoya-Pérez, L.P.; Caballero-Flores, G.G.; Muriel-Millan, L.F.; Likitvivatanavong, S.; Gill, S.S.; Bravo, A.; Soberón, M. Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins. Insect Biochem. Mol. Biol. 2012, 42, 683–689. [Google Scholar] [CrossRef]
- Raúl, S.G.R.; Damaris, I.A.; de Jesús, J.C.Á.; Leticia, M.F. Cry1Ac Protoxin Confers Antitumor Adjuvant Effect in a Triple-Negative Breast Cancer Mouse Model by Improving Tumor Immunity. Breast Cancer 2022, 16, 11782234211065154. [Google Scholar] [CrossRef]
- Rendon-Marin, S.; Quintero-Gil, C.; Lemeshko, V.V.; Orduz, S. Cytolytic activity of peptides derived from the Cry11Bb insecticidal toxin of B. thuringiensis subsp. Medellin. Arch. Biochem. Biophys. 2021, 704, 108891. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, X.; Dick, A.; Sharma, P.P.; Chen, C.H.; Rathi, B.; Kang, D.; Wang, Z.; Ji, X.; Lee, K.H.; et al. Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorganic Med. Chem. 2021, 48, 116414. [Google Scholar] [CrossRef] [PubMed]
- Alachkar, A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys. Life Rev. 2022, 42, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, F.; Alzate, O.; Cotrill, J.A.; Curtiss, A.; Dean, D.H. Protein engineering of Bacillus thuringiensis delta-endotoxin: Mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc. Natl. Acad. Sci. USA 1996, 93, 14338–14343. [Google Scholar] [CrossRef]
- Tiewsiri, K.; Angsuthanasombat, C. Structurally conserved aromaticity of Tyr249 and Phe264 in helix 7 is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 2007, 40, 163–171. [Google Scholar] [CrossRef]
- Likitvivatanavong, S.; Aimanova, K.G.; Gill, S.S. Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity. FEBS Lett. 2009, 583, 2021–2030. [Google Scholar] [CrossRef]
- Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; De Maagd, R.A. Bacillus thuringiemis Delta-Endotoxin Cry1 Hybrid Proteins with Increased Activity against the Colorado Potato Beetle. Appl. Environ. Microbiol. 2001, 67, 5328–5330. [Google Scholar] [CrossRef]
- de Maagd, R.A.; Kwa, M.S.; Van der Klei, H.; Yamamoto, T.; Schipper, B.; Vlak, J.M.; Stiekema, W.J.; Bosch, D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 1996, 62, 1537–1543. [Google Scholar] [CrossRef]
- Mushtaq, R.; Shakoori, A.R.; Jurat-Fuentes, J.L. Domain III of Cry1Ac Is Critical to Binding and Toxicity against Soybean Looper (Chrysodeixis includens) but Not to Velvetbean Caterpillar (Anticarsia gemmatalis). Toxins 2018, 10, 95. [Google Scholar] [CrossRef]
- Li, J.; Carroll, J.; Ellar, D.J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 1991, 353, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Aronson, A.I. Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity. J. Biol. Chem. 1992, 267, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Tetreau, G.; Sawaya, M.R.; De Zitter, E.; Andreeva, E.A.; Banneville, A.S.; Schibrowsky, N.A.; Coquelle, N.; Brewster, A.S.; Grünbein, M.L.; Kovacs, G.N.; et al. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat. Commun. 2022, 13, 4376. [Google Scholar] [CrossRef] [PubMed]
- Alzate, O.; Hemann, C.F.; Osorio, C.; Hille, R.; Dean, D.H. Ser170 of Bacillus thuringiensis Cry1Ab -endotoxin becomes anchored in a hydrophobic moiety upon insertion of this protein into Manduca sexta brush border membranes. BMC Biochem. 2009, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-J.; Florez, A.M.; Homoelle, B.J.; Dean, D.H.; Alzate, O. Two disulfide mutants in domain I of Bacillus thuringiensis Cry3Aa δ-endotoxin increase stability with no effect on toxicity. Adv. Biol. Chem. 2012, 2, 123–131. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. SDS-Polyacrylamide Gel Electrophoresis of Proteins. Cold Spring Harb. Protoc. 2006, 2006, 4540. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 15 April 2023).
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [Google Scholar] [CrossRef]
- Kuhlman, B. Designing protein structures and complexes with the molecular modeling program Rosetta. J. Biol. Chem. 2019, 294, 19436–19443. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Dunbrack, R.L. Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 2002, 12, 431–440. [Google Scholar] [CrossRef]
Origin of Bt Protein | Strain | LC50 (ng·mL−1) (95% Cl) |
---|---|---|
Aedes aegypti | ||
Variant8 Derivatives | 8F553L | >500 |
8W556L | >500 | |
8F553L/8W556L | >500 | |
Cry11Bb Derivatives | C157R | >500 |
A92D | 313.71 (158.73–317.46) | |
Controls | Cry11Aa | 39.20 (20.04–45.12) |
Cry11Bb | 27.40 (15.64–31.47) | |
Variant 8 | 8.22 (2.01–9.33) |
Amino Acids | Position | The Difference in RMSF between the Two Systems (Å) |
---|---|---|
LEU | 350 | 3.71 Å |
SER | 361 | 3.72 Å |
LEU | 378 | 3.84 Å |
PRO | 512 | 2.40 Å |
PHE | 524 | 2.18 Å |
THR | 534 | 2.00 Å |
LEU | 556 | 5.78 Å |
SER | 562 | 2.32 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Barrera, M.O.; Herrera-Pineda, D.F.; Rondón-Villarreal, P.; Pinzón-Reyes, E.H.; Ochoa, R.; Visser, L.; Rueda-Forero, N.J. Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis. Int. J. Mol. Sci. 2023, 24, 9079. https://doi.org/10.3390/ijms24109079
Suárez-Barrera MO, Herrera-Pineda DF, Rondón-Villarreal P, Pinzón-Reyes EH, Ochoa R, Visser L, Rueda-Forero NJ. Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis. International Journal of Molecular Sciences. 2023; 24(10):9079. https://doi.org/10.3390/ijms24109079
Chicago/Turabian StyleSuárez-Barrera, Miguel O., Diego F. Herrera-Pineda, Paola Rondón-Villarreal, Efraín Hernando Pinzón-Reyes, Rodrigo Ochoa, Lydia Visser, and Nohora Juliana Rueda-Forero. 2023. "Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis" International Journal of Molecular Sciences 24, no. 10: 9079. https://doi.org/10.3390/ijms24109079
APA StyleSuárez-Barrera, M. O., Herrera-Pineda, D. F., Rondón-Villarreal, P., Pinzón-Reyes, E. H., Ochoa, R., Visser, L., & Rueda-Forero, N. J. (2023). Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis. International Journal of Molecular Sciences, 24(10), 9079. https://doi.org/10.3390/ijms24109079