Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterizations
2.2. Catalytic Performance
2.3. Activation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of the MnFe2O4/BGA Composite
3.3. Degradation of TC on the MnFe2O4/BGA Composite
3.4. Characterization Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, P.; Zhao, F.; Hu, X. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation. J. Alloys Compd. 2021, 867, 159044. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, K.; Huang, Q.; Guo, Z.; Huang, Y.; Yu, K.; He, Y. Comprehensive insights into the occurrence, distribution, risk assessment and indicator screening of antibiotics in a large drinking reservoir system. Sci. Total Environ. 2020, 716, 137060. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.; Panda, J.; Paul, P.K.; Sarkar, R.; Tudu, B. MnFe2O4 decorated reduced graphene oxide heterostructures: Nanophotocatalyst for methylene blue dye degradation. Vacuum 2020, 173, 109150. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, W.; Li, Y.; Gao, J.; Yang, X.; Yao, J. Zeolitic imidazolate framework-67@cellulose aerogel for rapid and efficient degradation of organic pollutants. J. Solid State Chem. 2020, 291, 121621. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, M.; Yuan, D.; Li, X.; Zhang, X.; Wang, Z.; Jiao, T.; Wang, K. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation. Sep. Purif. Technol. 2021, 255, 117690. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, S.; Song, Y.; Wang, B.; Zhang, F. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 2018, 809, 74–79. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, Y.; Dong, W.; Wen, X.; Jiang, M.; Lu, J. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 2016, 298, 225–233. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Fu, Y.; Dionysiou, D.D. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. J. Hazard. Mater. 2016, 305, 229–239. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Mashayekhi, M.; Naderi, M.; Boczkaj, G.; Jorfi, S.; Safari, M. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst. Ultrason. Sonochem. 2019, 55, 117–124. [Google Scholar] [CrossRef]
- He, D.; Zhu, K.; Huang, J.; Shen, Y.; Lei, L.; He, H.; Chen, W. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism. J. Hazard. Mater. 2022, 424, 127569. [Google Scholar] [CrossRef]
- Pulicharla, R.; Drouinaud, R.; Brar, S.K.; Drogui, P.; Proulx, F.; Verma, M.; Surampalli, R.Y. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere 2018, 207, 543–551. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Pang, S.-Y.; Zhou, Y.; Li, J.; Sun, S.; Gao, Y.; Jiang, C. Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. Chem. Eng. J. 2018, 352, 1004–1013. [Google Scholar] [CrossRef]
- Deonikar, V.G.; Rathod, P.V.; Pornea, A.M.; Kim, H. Superior decontamination of toxic organic pollutants under solar light by reduced graphene oxide incorporated tetrapods-like Ag3PO4/MnFe2O4 hierarchical composites. J. Environ. Manag. 2020, 256, 109930. [Google Scholar] [CrossRef]
- Ren, W.; Gao, J.; Lei, C.; Xie, Y.; Cai, Y.; Ni, Q.; Yao, J. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. 2018, 349, 766–774. [Google Scholar] [CrossRef]
- Abroshan, E.; Farhadi, S.; Zabardasti, A. Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation. Sol. Energy Mater. Sol. Cells 2018, 178, 154–163. [Google Scholar] [CrossRef]
- Huang, X.; Liu, L.; Xi, Z.; Zheng, H.; Dong, W.; Wang, G. One-pot solvothermal synthesis of magnetically separable rGO/MnFe2O4 hybrids as efficient photocatalysts for degradation of MB under visible light. Mater. Chem. Phys. 2019, 231, 68–74. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Y.; Zhang, L.; Mu, J.; Zhang, Z.; Zhang, X.; Che, H.; Bai, Y.; Hou, J. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery. J. Magn. Magn. Mater. 2016, 401, 647–650. [Google Scholar] [CrossRef]
- Sakho, E.H.M.; Jose, J.; Thomas, S.; Kalarikkal, N.; Oluwafemi, O.S. Antimicrobial properties of MFe2O4 (M=Mn, Mg)/reduced graphene oxide composites synthesized via solvothermal method. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 43–48. [Google Scholar] [CrossRef]
- Wang, X.; Wang, A.; Ma, J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C(3)N(4)@MnFe(2)O(4)-graphene nanocomposites. J. Hazard. Mater. 2017, 336, 81–92. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, L.; Jing, Z.; Wang, S.; Lai, Y.; Xie, M.; Ma, L.; Feng, Z.; Zhan, J. Facile synthesis of superparamagnetic beta-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2,4- dichlorophenol: Structure, performance, and mechanism. J. Hazard. Mater. 2020, 394, 122528. [Google Scholar] [CrossRef]
- Okla, M.K.; Harini, G.; Dawoud, T.M.; Akshhayya, C.; Mohebaldin, A.; Al-ghamdi, A.A.; Soufan, W.; Abdel-Maksoud, M.A.; AbdElgawad, H.; Raju, L.L.; et al. Fabrication of MnFe2O4 spheres modified CeO2 nano-flakes for sustainable photodegradation of MB dye and antimicrobial activity: A brief computational investigation on reactive sites and degradation pathway. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128566. [Google Scholar] [CrossRef]
- He, Y.; Qian, J.; Wang, P.; Wu, J.; Lu, B.; Tang, S.; Gao, P. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chem. Eng. J. 2022, 431, 133933. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, S. Magnetic recoverable MnFe(2)O(4) and MnFe(2)O(4)-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef]
- Deng, M.; Huang, Y. The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceram. Int. 2020, 46, 2565–2570. [Google Scholar] [CrossRef]
- Sun, X.; Ji, S.; Wang, M.; Dou, J.; Yang, Z.; Qiu, H.; Kou, S.; Ji, Y.; Wang, H. Fabrication of porous TiO2-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes. J. Alloys Compd. 2020, 819, 153033. [Google Scholar] [CrossRef]
- Qiao, H.; Huang, Z.; Liu, S.; Tao, Y.; Zhou, H.; Li, M.; Qi, X. Novel mixed-dimensional photocatalysts based on 3D graphene aerogel embedded with TiO2/MoS2 hybrid. J. Phys. Chem. C 2019, 123, 10949–10955. [Google Scholar] [CrossRef]
- Maouche, C.; Zhou, Y.; Peng, J.; Wang, S.; Sun, X.; Rahman, N.; Yongphet, P.; Liu, Q.; Yang, J. A 3D nitrogen-doped graphene aerogel for enhanced visible-light photocatalytic pollutant degradation and hydrogen evolution. RSC Adv. 2020, 10, 12423–12431. [Google Scholar] [CrossRef]
- Ren, F.; Zhu, W.; Zhao, J.; Liu, H.; Zhang, X.; Zhang, H.; Zhu, H.; Peng, Y.; Wang, B. Nitrogen-doped graphene oxide aerogel anchored with spinel CoFe2O4 nanoparticles for rapid degradation of tetracycline. Sep. Purif. Technol. 2020, 241, 116690. [Google Scholar] [CrossRef]
- Chowdhury, S.; Jiang, Y.; Muthukaruppan, S.; Balasubramanian, R. Effect of boron doping level on the photocatalytic activity of graphene aerogels. Carbon 2018, 128, 237–248. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, X.; Lian, Y. The efficient photocatalytic degradation of organic pollutants on the MnFe2O4/BGA composite under visible light. Nanomaterials 2021, 11, 1276. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Ponpandian, N. Morphological design of MnFe2O4 facets (cube, flakes and capsules) for their role in electrical, magnetic and photocatalytic activity. Mater. Res. Bull. 2023, 164, 112242. [Google Scholar] [CrossRef]
- Tang, Z.R.; Zhang, Y.; Zhang, N.; Xu, Y.J. New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide. Nanoscale 2015, 7, 7030–7034. [Google Scholar] [CrossRef] [PubMed]
- Khai, T.V.; Na, H.G.; Kwak, D.S.; Kwon, Y.J.; Ham, H.; Shim, K.B.; Kim, H.W. Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem. Eng. J. 2012, 211–212, 369–377. [Google Scholar] [CrossRef]
- Ge, S.; He, J.; Ma, C.; Liu, J.; Xi, F.; Dong, X. One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta 2019, 199, 581–589. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Gao, Y.; Zhu, G.; Cheng, Q.; Cheng, X. Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants. Sep. Purif. Technol. 2019, 213, 456–464. [Google Scholar] [CrossRef]
- Yong Lee, S.; Kim, H.; Jang, H.; Hwang, M.-J.; Bong Lee, K.; Choi, J.-W.; Jung, K.-W. Fabrication of manganese ferrite (MnFe2O4) microsphere-coated magnetic biochar composite for antimonate sequestration: Characterization, adsorption behavior, and mechanistic understanding. Appl. Surf. Sci. 2022, 578, 152005. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, Z.; Deng, L. Enhanced heterogeneous degradation of sulfamethoxazole via peroxymonosulfate activation with novel magnetic MnFe2O4/GCNS nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126531. [Google Scholar] [CrossRef]
- Niu, L.; Li, Z.; Hong, W.; Sun, J.; Wang, Z.; Ma, L.; Wang, J.; Yang, S. Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochim. Acta 2013, 108, 666–673. [Google Scholar] [CrossRef]
- Jin, C.; Kang, J.; Li, Z.; Wang, M.; Wu, Z.; Xie, Y. Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate. Appl. Surf. Sci. 2020, 514, 146076. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Kang, J.; Tang, Y.; Liu, J.; Li, S.; Xu, Z.; Tang, P. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism. Sep. Purif. Technol. 2022, 296, 121440. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, L.; Liu, C.; Lu, Y.; Wu, Q.; Wang, C.; Hu, Q. 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways. Sep. Purif. Technol. 2022, 283, 120164. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, K.; Liu, Z.; Xu, W.; Liang, F.; Mo, S.; Wu, X.; Beiyuan, J. Novel 0D-1D-2D nanostructured MCN/NCDs recyclable composite for boosted peroxymonosulfate activation under visible light toward tetracycline degradation. Sep. Purif. Technol. 2022, 296, 121328. [Google Scholar] [CrossRef]
- Chen, R.; Xia, J.; Chen, Y.; Shi, H. S-scheme-enhanced PMS activation for rapidly degrading tetracycline using CuWO4−x/Bi12O17Cl2 heterostructures. Acta Phys. Chim. Sin. 2022, 39, 2209012. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Jiang, H.; Wang, H. In Situ stable growth of Bi2WO6 on natural hematite for efficient antibiotic wastewater purification by photocatalytic activation of peroxymonosulfate. Chem. Eng. J. 2022, 446, 136704. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, J.; Liu, D.; Liu, W.; Li, L.; Liu, X.; Sun, Y. Efficient degradation of tetracycline hydrochloride by peroxymonosulfate activated by composite materials FeSe2/Fe3O4 under visible light. Chem. Phys. Lett. 2022, 805, 139944. [Google Scholar] [CrossRef]
- Tan, J.; Wei, G.; Wang, Z.; Su, H.; Liu, L.; Li, C.; Bian, J. Application of Zn1−xCdxS photocatalyst for degradation of 2-CP and TC, catalytic nechanism. Catalysts 2022, 12, 1100. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhang, J.; Zhu, C.; Liu, L. Synergistic photocatalytic degradation of TC-HCl by Mn3+/Co2+/Bi2O3 and PMS. Inorg. Chem. Commun. 2023, 150, 110468. [Google Scholar] [CrossRef]
- Yuan, X.; Leng, Y.; Fang, C.; Gao, K.; Liu, C.; Song, J.; Guo, Y. The synergistic effect of PMS activation by LaCoO3/g-C3N4 for degradation of tetracycline hydrochloride: Performance, mechanism and phytotoxicity evaluation. New J. Chem. 2022, 46, 12217–12228. [Google Scholar] [CrossRef]
- Guo, H.; Niu, H.-Y.; Liang, C.; Niu, C.-G.; Liu, Y.; Tang, N.; Yang, Y.; Liu, H.-Y.; Yang, Y.-Y.; Wang, W.-J. Few-layer graphitic carbon nitride nanosheet with controllable functionalization as an effective metal-free activator for peroxymonosulfate photocatalytic activation: Role of the energy band bending. Chem. Eng. J. 2020, 401, 126072. [Google Scholar] [CrossRef]
- Wang, R.; Su, S.; Ren, X.; Guo, W. Polyoxometalate intercalated La-doped NiFe-LDH for efficient removal of tetracycline via peroxymonosulfate activation. Sep. Purif. Technol. 2021, 274, 119113. [Google Scholar] [CrossRef]
- Jin, C.; Wang, M.; Li, Z.; Kang, J.; Zhao, Y.; Han, J.; Wu, Z. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance. Chem. Eng. J. 2020, 398, 125569. [Google Scholar] [CrossRef]
- Wang, A.; Chen, Y.; Zheng, Z.; Wang, H.; Li, X.; Yang, Z.; Qiu, R.; Yan, K. In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants. Chem. Eng. J. 2021, 411, 128497. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J. Pi-pi stacking derived from graphene-like biochar/g-C(3)N(4) with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 2022, 423, 126944. [Google Scholar] [CrossRef]
- Chen, J.; Rasool, R.T.; Ashraf, G.A.; Guo, H. The stimulation of peroxymonosulfate via novel Co0.5Cu0.5Fe2O4 heterogeneous photocatalyst in aqueous solution for organic contaminants removal. Mater. Sci. Semicond. Process. 2023, 157, 107321. [Google Scholar] [CrossRef]
- Dou, X.; Chen, Y.; Shi, H. CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem. Eng. J. 2022, 431, 134054. [Google Scholar] [CrossRef]
- Judith Vijaya, J.; Sekaran, G.; Bououdina, M. Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceram. Int. 2015, 41, 15–26. [Google Scholar] [CrossRef]
- Yang, J.; Gao, M.; Yang, L.; Zhang, Y.; Lang, J.; Wang, D.; Wang, Y.; Liu, H.; Fan, H. Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl. Surf. Sci. 2008, 255, 2646–2650. [Google Scholar] [CrossRef]
- Dang, H.; Qiu, Y.; Cheng, Z.; Yang, W.; Wu, H.; Fan, H.; Dong, X. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application. Ceram. Int. 2016, 42, 10520–10525. [Google Scholar] [CrossRef]
- Liao, G.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726. [Google Scholar] [CrossRef]
Catalysts | Concentration of TC (mg·L−1) | Catalyst Dosage (g·L−1) | Time (min) | Concentration of PMS (mM) | Degradation Rate (%) | Ref. |
---|---|---|---|---|---|---|
MoS2/Ag/g-C3N4 | 20 | 0.2 | 50 | 0.1 | 98.9 | [40] |
g-C3N4/FeWO4 | 20 | 0.2 | 60 | 0.6 | 100 | [41] |
ZnFe2O4/Bi2O2CO3/BiOBr | 20 | 0.5 | 20 | 0.8 | 93.0 | [42] |
MCN/NCDs | 10 | 0.5 | 60 | 0.5 | 98.4 | [43] |
CuWO4−x/Bi12O17Cl2 | 10 | 0.3 | 30 | 0.2 | 94.7 | [44] |
Bi2WO6/natural hematite | 50 | 0.5 | 100 | 0.8 | 91.0 | [45] |
FeSe2/Fe3O4 | 50 | 0.4 | 60 | 2.0 | 87.8 | [46] |
Zn1−xCdxS | 40 | 0.5 | 120 | 0.3 | 90.0 | [47] |
Mn3+-Co2+-Bi2O3 | 30 | 0.5 | 60 | 1.0 | 88.0 | [48] |
LaCoO3/g-C3N4 | 30 | 0.2 | 30 | 0.2 | 69.2 | [49] |
FCN-12 | 30 | 0.6 | 120 | 0.6 | 83.4 | [50] |
La-doped NiFe-LDH | 20 | 0.04 | 60 | 2.0 | 90.0 | [51] |
Co3O4/g-C3N4 | 20 | 0.2 | 60 | 0.1 | 90.2 | [52] |
H-CoMnOx@NC | 13 | 0.1 | 30 | 0.3 | 88.9 | [53] |
graphene-like biochar/g-C3N4 | 10 | 0.2 | 60 | 0.3 | ~90 | [54] |
Co0.5Cu0.5Fe2O4 | 10 | 0.06 | 40 | 0.1 | 86.0 | [55] |
CuBi2O4/BiOBr | 10 | 0.2 | 35 | 2.0 | 90.3 | [56] |
MnFe2O4/BGA | 20 | 0.2 | 60 | 0.1 | 92.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhou, Q.; Lian, Y. Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light. Int. J. Mol. Sci. 2023, 24, 9378. https://doi.org/10.3390/ijms24119378
Jiang X, Zhou Q, Lian Y. Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light. International Journal of Molecular Sciences. 2023; 24(11):9378. https://doi.org/10.3390/ijms24119378
Chicago/Turabian StyleJiang, Xiaoyu, Qin Zhou, and Yongfu Lian. 2023. "Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light" International Journal of Molecular Sciences 24, no. 11: 9378. https://doi.org/10.3390/ijms24119378
APA StyleJiang, X., Zhou, Q., & Lian, Y. (2023). Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light. International Journal of Molecular Sciences, 24(11), 9378. https://doi.org/10.3390/ijms24119378