Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of g-C3N4 and Pt/g-C3N4
3.2. Characterization
3.3. Photothermal Synergistic Catalytic Degradation of Benzene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, P.; Shi, Z.; Yang, S.; Zhou, R. High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chem. Eng. Sci. 2015, 126, 361–369. [Google Scholar] [CrossRef]
- Usón, L.; Colmenares, M.G.; Hueso, J.L.; Sebastián, V.; Today, J.S.J.C. VOCs abatement using thick eggshell Pt/SBA-15 pellets with hierarchical porosity. Catal. Today 2014, 227, 179–186. [Google Scholar] [CrossRef]
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Fang, J.; Li, D.; Shao, Y.; Hu, J. Unusual photocatalytic materials with UV-VIS-NIR spectral response: Deciphering the photothermocatalytic synergetic effect of Pt/LaVO4/TiO2. J. Mater. Chem. A 2016, 4, 14213–14221. [Google Scholar] [CrossRef]
- Zou, X.; Dong, Y.; Li, S.; Ke, J.; Cui, Y.; Ou, X. Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible light photocatalytic performance for degradation of gaseous ortho-dichlorobenzene. J. Taiwan Inst. Chem. Eng. 2018, 93, 158–165. [Google Scholar] [CrossRef]
- Zuo, S.; Sun, X.; Lv, N.; Qi, C. Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene. ACS Appl. Mater. Interfaces 2014, 6, 11988–11996. [Google Scholar] [CrossRef]
- Zou, X.; Ran, C.; Dong, Y.; Chen, Z.; Dong, D.; Hu, D.; Li, X.; Cui, Y. Synthesis and characterization of BiPO4/g-C3N4 nanocomposites with significantly enhanced visible-light photocatalytic activity for benzene degradation. RSC Adv. 2016, 6, 20664–20670. [Google Scholar] [CrossRef]
- Zhang, X.; Junhui, Y.; Jing, Y.; Ting, C.; Bei, X.; Zhe, L.; Kunfeng, Z.; Ling, Y.; Dannong, H. Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation. Appl. Catal. A Gen. 2018, 566, 104–112. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xiao, Y.; Zhang, L.; Guo, L.; Zhang, L.; Dong, X. Free-standing composite films of multiple 2D nanosheets: Synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition. Chem. Eng. J. 2020, 394, 125014. [Google Scholar] [CrossRef]
- Vikrant, K.; Weon, S.; Kim, K.-H.; Sillanpää, M. Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants. Appl. Mater. Today 2021, 23, 100993. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Wu, J.; Hu, Q.; Zhou, C. Photothermocatalysis for efficient abatement of CO and VOCs. J. Mater. Chem. A 2020, 8, 8171–8194. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Zeng, G.; Liu, Y.; Zhou, Y.; Deng, Y.; Wang, J.; Peng, B. Plasmonic Bi Metal Deposition and g-C3N4 Coating on Bi2WO6 Microspheres for Efficient Visible-Light Photocatalysis. ACS Sustain. Chem. Eng. 2016, 5, 1062–1072. [Google Scholar] [CrossRef]
- Taghizadeh, A.; Taghizadeh, M.; Sabzehmeidani, M.M.; Sadeghfar, F.; Ghaedi, M. Electronic structure: From basic principles to pho-tocatalysis. Interface Sci. Technol. 2021, 32, 1–53. [Google Scholar]
- Zhu, D.; Cai, L.; Sun, Z.; Zhang, A.; Heroux, P.; Kim, H.; Yu, W.; Liu, Y. Efficient degradation of tetracycline by RGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion. Sci. Total Environ. 2021, 787, 147536. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.A.; Xh, B.; Guan, Z.J.J.o.C.P. TiO2 and its derivatives for photothermal catalysis: Mechanisms, materials and applications. J. Clean. Prod. 2022, 37, 2–8. [Google Scholar]
- Juez, A.I.; Fresno, F.; Coronado, J.M.; Highfield, J.; Ruppert, A.M.; Keller, N. Emerging high-prospect applications in photothermal catalysis. Curr. Opin. Green Sustain. Chem. 2022, 37, 100652. [Google Scholar] [CrossRef]
- Ma, R.; Sun, J.; Li, D.H.; Wei, J.J. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrogen Energy 2020, 45, 30288–30324. [Google Scholar] [CrossRef]
- Fang, S.; Hu, Y.H. Thermo-photo catalysis: A whole greater than the sum of its parts. Chem. Soc. Rev. 2022, 51, 3609–3647. [Google Scholar] [CrossRef]
- Kong, J.; Jiang, C.; Rui, Z.; Liu, S.; Xian, F.; Ji, W.; Ji, H. Photothermocatalytic synergistic oxidation: An effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation. Chem. Eng. J. 2020, 397, 125485. [Google Scholar] [CrossRef]
- Luo, M.; Tian, J.; Liu, S.; Zhang, W. An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally. Appl. Surf. Sci. 2022, 593, 153382. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, S.; Li, J.; Elimian, E.A.; Chen, J.; Jia, H. Ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide to enhance light-driven photothermal catalytic degradation of VOCs. J. Hazard. Mater. 2021, 412, 125266. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Chen, Z.; Zheng, Q.; Li, D. Photocatalytic decomposition of benzene enhanced by the heating effect of light: Improving solar energy utilization with photothermocatalytic synergy. Catal. Sci. Technol. 2017, 7, 3303–3311. [Google Scholar] [CrossRef]
- Yang, X.; Liu, S.; Li, J.; Chen, J.; Rui, Z. Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO3. Chemosphere 2020, 249, 126096. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 7848, 271–275. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, W.; Huang, Z.; Wang, S. Coating Hollow Carbon Nitride Nanospheres with Porous WO3 Shells to Construct Z-Scheme Heterostructures for Efficient Photocatalytic Water Oxidation. ChemPhotoChem 2022, 6, e202200143. [Google Scholar] [CrossRef]
- Zhang, G.; Zang, S.; Wang, X. Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. ACS Catal. 2015, 5, 941–947. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Xia, J.; Fang, Y.; Hou, Y.; Fu, X.; Shalom, M.; Wang, X. One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem 2022, 15, e202200330. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, C.; Jiu, H.; Meng, Y.; Zhang, Q.; Gao, Y. Synthesized Hollow TiO2@g-C3N4 Composites for Carbon dioxide Reduction Under Visible Light. Catal. Lett. 2018, 148, 2812–2821. [Google Scholar] [CrossRef]
- Toghan, A.; Abd El-Lateef, H.M.; Taha, K.K.; Modwi, A. Mesoporous TiO2@g-C3N4 composite: Construction, characterization, and boosting indigo carmine dye destruction. Diam. Relat. Mater. 2021, 118, 108491. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Liu, J.; Wang, Z.; Chen, S.; Fu, X. Photocatalytic degradation of benzene over different morphology BiPO4: Revealing the significant contribution of high–energy facets and oxygen vacancies. Appl. Catal. B Environ. 2019, 243, 780–789. [Google Scholar] [CrossRef]
- Xin, H.; Sun, L.; Zhao, Y.; Dai, Z.; Luo, Q.; Guo, S.; Li, D.; Chen, Y.; Ogiwara, N.; Kitagawa, H.; et al. Surpassing Pt hydrogen production from {200} facet-riched polyhedral Rh2P nanoparticles by one-step synthesis. Appl. Catal. B Environ. 2023, 330, 122645. [Google Scholar] [CrossRef]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Iqbal, A.; Rahman, N.R.A. Cu2+ coordinated graphitic carbon nitride (Cu-g-C3N4) nanosheets from melamine for the liquid phase hydroxylation of benzene and VOCs. Appl. Surf. Sci. 2017, 398, 43–55. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghiaci, M.; Kulinich, S.A.; Wunderlich, W.; Farrokhpour, H.; Saraji, M.; Shahvar, A. Au-Pd@g-C3N4 as an Efficient Photocatalyst for Visible-Light Oxidation of Benzene to Phenol: Experimental and Mechanistic Study. J. Phys. Chem. C 2018, 122, 27477–27485. [Google Scholar] [CrossRef]
- Li, H.; Jing, Y.; Ma, X.; Liu, T.; Yang, L.; Liu, B.; Yin, S.; Wei, Y.; Wang, Y. Construction of a well-dispersed Ag/graphene-like g-C3N4 photocatalyst and enhanced visible light photocatalytic activity†. RSC Adv. 2017, 7, 8688–8693. [Google Scholar] [CrossRef] [Green Version]
- Humayun, M.; Ullah, H.; Shu, L.; Ao, X.; Tahir, A.A.; Wang, C.; Luo, W. Plasmon Assisted Highly Efficient Visible Light Catalytic CO2 Reduction Over the Noble Metal Decorated Sr-Incorporated g-C3N4. Nano-Micro Lett. 2021, 13, 209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ran Zhang, X.; Yang, P.; Chen, H.-S.; Ping Jiang, S. Black magnetic Cu-g-C3N4 nanosheets towards efficient photocatalytic H2 generation and CO2/benzene conversion. Chem. Eng. J. 2022, 450, 138030. [Google Scholar] [CrossRef]
- Al Mamari, S.; Khudaish, E.; Kim, Y.; Khraisheh, M.; Selvaraj, R. Lotus-bud like hexagonal ZnO/g-C3N4 composites for the photodegradation of benzene present in aqueous solution. Inorg. Chem. Commun. 2023, 150, 110539. [Google Scholar] [CrossRef]
- Lin, H.; Xiao, Y.; Geng, A.; Bi, H.; Xu, X.; Xu, X.; Zhu, J. Research Progress on Graphitic Carbon Nitride/Metal Oxide Composites: Synthesis and Photocatalytic Applications. Int. J. Mol. Sci. 2022, 23, 12979. [Google Scholar] [CrossRef]
- Nisar, M.S.; Kang, S.; Zhao, X. Photothermal Effect in Plasmonic Nanotip for LSPR Sensing. Sensors 2020, 20, 671. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Du, Y.; Wu, F.; Cai, Y.; Zhou, T. Review on LSPR assisted photocatalysis: Effects of physical fields and opportunities in multifield decoupling. Nanoscale Adv. 2022, 4, 2608–2631. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Kang, Y.S.; Zhang, X.L. Silver based photocatalysts in emerging applications. Nanoscale 2022, 14, 11909–11922. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Deshmukh, P.R.; Sohn, Y.; Shin, W.G. ZnO-TiO2 core-shell nanowires decorated with Au nanoparticles for plasmon-enhanced photoelectrochemical water splitting. J. Alloys Compd. 2019, 787, 1310–1319. [Google Scholar] [CrossRef]
- Wallace, T.F.; Ravi, P.; Clóvis, G.V.; Dirléia, S.L.; Vágner, E.C.; Edmar, A.S.; Silvio, B.; Hannes, R.; Oscar, W.P.-L.; Daniel, L.B.; et al. New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles. Appl. Surf. Sci. 2022, 574, 151647. [Google Scholar] [CrossRef]
- Polo-Garzon, F.; Blum, T.F.; Bao, Z.; Wang, K.; Fung, V.; Huang, Z.; Bickel, E.E.; Jiang, D.-E.; Chi, M.; Wu, Z. In Situ Strong Metal–Support Interaction (SMSI) Affects Catalytic Alcohol Conversion. ACS Catal. 2021, 11, 1938–1945. [Google Scholar] [CrossRef]
- Pan, C.-J.; Tsai, M.-C.; Su, W.-N.; Rick, J.; Akalework, N.G.; Agegnehu, A.K.; Cheng, S.-Y.; Hwang, B.-J. Tuning/exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186. [Google Scholar] [CrossRef]
- Huang, R.; Kwon, O.; Lin, C.; Gorte, R.J. The effects of SMSI on m-Cresol hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J. Catal. 2021, 398, 102–108. [Google Scholar] [CrossRef]
- Zheng, D.; Pang, C.; Liu, Y.; Wang, X.J.C.C. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun. 2015, 51, 9706–9709. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl. Catal. B Environ. 2017, 207, 27–34. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, N.; Zhu, J.; Song, C.J.C.T. Preparation of monolithic Pt–Pd bimetallic catalyst and its performance in catalytic combustion of benzene series. Catal. Today 2013, 216, 71–75. [Google Scholar] [CrossRef]
- Pan, Z.; Zhao, M.; Zhuzhang, H.; Zhang, G.; Anpo, M.; Wang, X. Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. ACS Catal. 2021, 11, 13463–13471. [Google Scholar] [CrossRef]
- Zang, S.; Cai, X.; Chen, M.; Teng, D.; Jing, F.; Leng, Z.; Zhou, Y.; Lin, F. Tunable Carrier Transfer of Polymeric Carbon Nitride with Charge-Conducting CoV2O6∙2H2O for Photocatalytic O2 Evolution. Nanomaterials 2022, 12, 1931. [Google Scholar] [CrossRef] [PubMed]
- Chougule, S.S.; Jeffery, A.A.; Roy Chowdhury, S.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte. Carbon Energy 2023, e293. [Google Scholar] [CrossRef]
- Cheng, K.; Zhu, K.; Liu, S.; Li, M.; Huang, J.; Yu, L.; Xia, Z.; Zhu, C.; Liu, X.; Li, W.; et al. A Spatially Confined g-C3N4–Pt Electrocatalyst with Robust Stability. ACS Appl. Mater. Interfaces 2018, 10, 21306–21312. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.J.; Cho, H.D.; Kim, S.G.; Kim, M.D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sens. Actuators B Chem. 2022, 378, 133140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Cai, X.; Zang, S.; Li, Y.; Zheng, D.; Li, F. Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. Int. J. Mol. Sci. 2023, 24, 6872. https://doi.org/10.3390/ijms24076872
Huang Z, Cai X, Zang S, Li Y, Zheng D, Li F. Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. International Journal of Molecular Sciences. 2023; 24(7):6872. https://doi.org/10.3390/ijms24076872
Chicago/Turabian StyleHuang, Zhongcheng, Xiaorong Cai, Shaohong Zang, Yixin Li, Dandan Zheng, and Fuying Li. 2023. "Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene" International Journal of Molecular Sciences 24, no. 7: 6872. https://doi.org/10.3390/ijms24076872
APA StyleHuang, Z., Cai, X., Zang, S., Li, Y., Zheng, D., & Li, F. (2023). Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. International Journal of Molecular Sciences, 24(7), 6872. https://doi.org/10.3390/ijms24076872