Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen
Abstract
:1. Introduction
2. Results
2.1. In Vitro Cytotoxicity
2.2. Effects of Vitamins and Polyphenols
2.3. Content of Minerals in Fish Products
2.4. Content of Metals in Fish Products
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture and Treatments
4.3. Bioaccessibility and Bioavailability
4.4. In Vitro Cytotoxicity Assay
4.5. Analysis of Minerals in Fish Products
4.6. Analysis of Metals in Fish Products
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Heffernan, S.; Giblin, L.; O’Brien, N. Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem. 2021, 359, 129852. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Selma-Royo, M.; Simal-Gandara, J.; Collado, M.C.; Barba, F.J. Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci. Technol. 2021, 112, 484–494. [Google Scholar] [CrossRef]
- Badiola, M.; Gartzia, I.; Basurko, O.C.; Mendiola, D. Land-based growth of Atlantic salmon (Salmo salar) and consumers’ acceptance. Aquac. Res. 2017, 48, 4666–4683. [Google Scholar] [CrossRef]
- Haq, M.; Ahmed, R.; Cho, Y.-J.; Chun, B.-S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass-Valorization 2017, 8, 1953–1967. [Google Scholar] [CrossRef]
- European Commission. The EU Fish Market 2020 Edition Is Now Online | Fisheries. Available online: https://ec.europa.eu/fisheries/press/eu-fish-market-2020-edition-now-online_en (accessed on 24 March 2021).
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem. 2017, 218, 396–405. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sookchoo, P.; Kishimura, H. Protein hydrolysate from salmon frames: Production, characteristics and antioxidative activity. J. Food Biochem. 2019, 43, e12734. [Google Scholar] [CrossRef]
- He, S.; Franco, C.; Zhang, W. Characterisation of processing wastes of Atlantic Salmon (Salmo salar) and Yellowtail Kingfish (Seriola lalandi) harvested in Australia. Int. J. Food Sci. Technol. 2011, 46, 1898–1904. [Google Scholar] [CrossRef]
- De la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F. Salmon (Salmo salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (PLE). Mar. Drugs 2021, 19, 323. [Google Scholar] [CrossRef]
- Zingales, V.; Sirerol-Piquer, M.S.; Fernández-Franzón, M.; Ruiz, M.-J. Role of quercetin on sterigmatocystin-induced oxidative stress-mediated toxicity. Food Chem. Toxicol. 2021, 156, 112498. [Google Scholar] [CrossRef] [PubMed]
- El-Desouky, T.A.; Sherif, M.R.; Sherif, M.S.; Khayria, N.M. Protective Effect of Aqueous Extract Pomegranate Peel against Sterigmatocystin Toxicity in Rat. J. Drug Deliv. Ther. 2011, 5, 9–18. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Dimić, G.; Lević, J.; Tanackov, I.; Tepić, A.; Vujičić, B.; Gvozdanović-Varga, J. Effects of Onion (Allium cepa L.) and Garlic (Allium sativum L.) Essential Oils on the Aspergillus versicolor Growth and Sterigmatocystin Production. J. Food Sci. 2012, 77, M278–M284. [Google Scholar] [CrossRef] [PubMed]
- Devore, E.E.; Kang, J.H.; Stampfer, M.J.; Grodstein, F. The Association of Antioxidants and Cognition in the Nurses’ Health Study. Am. J. Epidemiol. 2013, 177, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M.B.H. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res. 2006, 50, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.S.; Elewa, A.N. The effect of Egyptian honeybee propolis on the growth of Aspergillus versicolor and sterigmatocystin biosynthesis in Ras cheese. J. Dairy Res. 2007, 74, 74–78. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, Y.J.; Kim, H.; Kang, B.C.; Ku, S.-Y.; Suh, C.S. Modulatory Effects of Single and Complex Vitamins on the in Vitro Growth of Murine Ovarian Follicles. Tissue Eng. Regen. Med. 2019, 16, 275–283. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hedayatizadeh-Omran, A.; Alizadeh-Navaei, R.; Saeedi, M.; Zaboli, E.; Amjadi, O.; Kelidari, H.; Besharat, Z. Effects of Vitamin E on Doxorubicin Cytotoxicity in Human Breast Cancer Cells in Vitro. Asian Pac. J. Cancer Prev. 2022, 23, 201–205. [Google Scholar] [CrossRef]
- Ashfaq, R.; Mehmood, A.; Ramzan, A.; Hussain, I.; Tarar, M.N.; Riazuddin, S. Antioxidant pretreatment enhances umbilical cord derived stem cells survival in response to thermal stress in vitro. Regen. Med. 2020, 15, 1441–1453. [Google Scholar] [CrossRef]
- Taroncher, M.; Rodríguez-Carrasco, Y.; Aspevik, T.; Kousoulaki, K.; Barba, F.; Ruiz, M.-J. Cytoprotective Effects of Fish Protein Hydrolysates against H2O2-Induced Oxidative Stress and Mycotoxins in CaCO-2/TC7 Cells. Antioxidants 2021, 10, 975. [Google Scholar] [CrossRef]
- Kalantzi, I.; Pergantis, S.A.; Black, K.; Shimmield, T.; Papageorgiou, N.; Tsapakis, M.; Karakassis, I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 2016, 194, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Kandyliari, A.; Karavoltsos, S.; Sakellari, A.; Anastasiadis, P.; Asderis, M.; Papandroulakis, N.; Kapsofefalou, M. Trace metals in six fish by-products of two farmed fishes, the gilthead sea bream (Sparus aurata) and the meager (Argyrosomus regius): Interactions with the environment and feed. Hum. Ecol. Risk Assessment Int. J. 2020, 27, 1126–1146. [Google Scholar] [CrossRef]
- Erak, M.; Bellmann-Sickert, K.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide chemistry toolbox—Transforming natural peptides into peptide therapeutics. Bioorg. Med. Chem. 2018, 26, 2759–2765. [Google Scholar] [CrossRef]
- Marrón-Grijalba, E.; Cardona-Félix, C.S.; Cruz-Escalona, V.H.; Muñoz-Ochoa, M.; Cabral-Romero, C.; Hernández-Delgadillo, R.; Rivera-Pérez, C.; Aguila-Ramírez, R.N. Biochemical characterization and in vitro biological activities of the epithelial cell extracts from Hypanus dipterurus spine. Toxicon 2020, 187, 129–135. [Google Scholar] [CrossRef]
- RajeshKumar, R.K.; Vennila, R.; Karthikeyan, S.; Prasad, N.R.; Arumugam, M.; Velpandian, T.; Balasubramaniam, T. Antiproliferative activity of marine stingray Dasyatis sephen venom on human cervical carcinoma cell line. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 41. [Google Scholar] [CrossRef] [PubMed]
- Fuochi, V.; Volti, G.L.; Camiolo, G.; Tiralongo, F.; Giallongo, C.; Distefano, A.; Petronio, G.P.; Barbagallo, I.; Viola, M.; Furneri, P.M.; et al. Antimicrobial and Anti-Proliferative Effects of Skin Mucus Derived from Dasyatis pastinaca (Linnaeus, 1758). Mar. Drugs 2017, 15, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demircioğlu, N.; Öztürk, F. Can Resveratrol Used in Fish Salami Production as an Antioxidant be an Alternative to Ascorbic Acid? J. Aquat. Food Prod. Technol. 2020, 29, 901–911. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Yuan, F.; Lin, H.; Pavase, T.R. Effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (Pagrosomus major) during frozen storage. J. Sci. Food Agric. 2017, 97, 1102–1107. [Google Scholar] [CrossRef]
- Chai, H.-J.; Chan, Y.-L.; Li, T.-L.; Chen, Y.-C.; Wu, C.-H.; Shiau, C.-Y.; Wu, C.-J. Composition characterization of Myctophids (Benthosema pterotum): Antioxidation and safety evaluations for Myctophids protein hydrolysates. Food Res. Int. 2012, 46, 118–126. [Google Scholar] [CrossRef]
- Kowalczewski, P.; Olejnik, A.; Białas, W.; Rybicka, I.; Zielińska-Dawidziak, M.; Siger, A.; Kubiak, P.; Lewandowicz, G. The Nutritional Value and Biological Activity of Concentrated Protein Fraction of Potato Juice. Nutrients 2019, 11, 1523. [Google Scholar] [CrossRef] [Green Version]
- Krzepiłko, A.; Prażak, R.; Święciło, A. Chemical Composition, Antioxidant and Antimicrobial Activity of Raspberry, Blackberry and Raspberry-Blackberry Hybrid Leaf Buds. Molecules 2021, 26, 327. [Google Scholar] [CrossRef]
- Benchikha, N.; Chelalba, I.; Debbeche, H.; Messaoudi, M.; Begaa, S.; Larkem, I.; Amara, D.G.; Rebiai, A.; Simal-Gandara, J.; Sawicka, B.; et al. Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules 2022, 27, 3744. [Google Scholar] [CrossRef]
- Mcdowell, L.R.; Wilkinson, N.; Madison, R.; Felix, T. Vitamins and Minerals Functioning as Antioxidants with Supplementation Considerations. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 20–22 February 2023. [Google Scholar]
- Thanonkaew, A.; Benjakul, S.; Visessanguan, W. Chemical composition and thermal property of cuttlefish (Sepia pharaonis) muscle. J. Food Compos. Anal. 2006, 19, 127–133. [Google Scholar] [CrossRef]
- González, S.; Flick, G.; O’Keefe, S.; Duncan, S.; McLean, E.; Craig, S. Composition of farmed and wild yellow perch (Perca flavescens). J. Food Compos. Anal. 2006, 19, 720–726. [Google Scholar] [CrossRef]
- De la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F. Development of Antioxidant Protein Extracts from Gilthead Sea Bream (Sparus aurata) Side Streams Assisted by Pressurized Liquid Extraction (PLE). Mar. Drugs 2021, 19, 199. [Google Scholar] [CrossRef]
- De la Fuente, B.; Pallarés, N.; Barba, F.; Berrada, H. An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021, 10, 546. [Google Scholar] [CrossRef]
- Khristoforova, N.K.; Tsygankov, V.Y.; Lukyanova, O.N.; Boyarova, M.D. High mercury bioaccumulation in Pacific salmons from the Sea of Okhotsk and the Bering Sea. Environ. Chem. Lett. 2018, 16, 575–579. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Florek, M.; Kwiecień, M.; Kwiatkowska, K.; Krusiński, R. Cadmium and Lead Content in Chosen Commercial Fishery Products Consumed in Poland and Risk Estimations on Fish Consumption. Biol. Trace Elem. Res. 2017, 182, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, M.J.; Festila, E.L.; Fernandez, M. Comparison of basal cytotoxicity of seven carbamates in CHO-K1 cells. Toxicol. Environ. Chem. 2006, 88, 345–354. [Google Scholar] [CrossRef]
- Calleja-Gómez, M.; Castagnini, J.M.; Carbó, E.; Ferrer, E.; Berrada, H.; Barba, F.J. Evaluation of Pulsed Electric Field-Assisted Extraction on the Microstructure and Recovery of Nutrients and Bioactive Compounds from Mushroom (Agaricus bisporus). Separations 2022, 9, 302. [Google Scholar] [CrossRef]
- Taroncher, M.; Rodríguez-Carrasco, Y.; Barba, F.J.; Ruiz, M.J. Evaluation of cytotoxicity, analysis of metals and cumulative risk assessment in microalgae. Toxicol. Mech. Methods 2022, 13. [Google Scholar] [CrossRef] [PubMed]
Sample | Mg (mg/L) | P (mg/L) | Ca (mg/L) | Fe (mg/L) | Zn (mg/L) | Se (mg/L) |
---|---|---|---|---|---|---|
Product 1 | 76.0 ± 1.5 | 510.0 ± 4.0 | 65.0 ± 1.7 | 0.544 ± 0.006 | 2.65 ± 0.020 | 0.140 ± 0.008 |
Product 2 | 218.0 ± 3.0 | 366.0 ± 8.0 | 85.8 ± 1.4 | 0.338 ± 0.006 | 0.64 ± 0.011 | 0.720 ± 0.030 |
Product 3 | 123.0 ± 2.0 | 565.0 ± 18.0 | 50.0 ± 0.6 | 0.445 ± 0.007 | 1.40 ± 0.002 | 0.193 ± 0.018 |
Collagen | 78.3 ± 1.8 | 25.5 ± 0.8 | 633.0 ± 12.0 | 0.205 ± 0.001 | 0.12 ± 0.001 | 0.049 ± 0.003 |
Sample | Mg (mg/L) | P (mg/L) | Ca (mg/L) | Fe (mg/L) | Zn (mg/L) | Se (mg/L) |
---|---|---|---|---|---|---|
Product 1 | 9.1 ± 0.4 | 46.0 ± 1.0 | 7.9 ± 1.2 | 0.057 ± 0.007 | 0.190 ± 0.030 | <0.020 |
Product 2 | 30.1 ± 0.6 | 7.4 ± 1.8 | 17.7 ± 0.7 | <0.000 | <0.000 | 0.110 ± 0.009 |
Product 3 | 16.6 ± 0.5 | 52.6 ± 3.0 | 16.7 ± 0.8 | <0.000 | <0.000 | 0.034 ± 0.003 |
Collagen | 7.7 ± 0.4 | <0.0 | 59.1 ± 2.0 | <0.000 | <0.000 | <0.020 |
Sample | Mg (mg/Kg) | P (mg/Kg) | Ca (mg/Kg) | Fe (μg/Kg) | Zn (μg/Kg) | Se (μg/Kg) |
---|---|---|---|---|---|---|
Product 1 | <0.0 | 0.7 ± 0.7 | <0.0 | <0.0 | 65.3 ± 0.7 | <1.0 |
Product 2 | <0.0 | <0.0 | <0.0 | <0.0 | 14.0 ± 3.0 | 3.9 ± 0.2 |
Product 3 | <0.0 | 0.1 ± 0.7 | <0.0 | <0.0 | <0.0 | <1.0 |
Collagen | <0.0 | 1.6 ± 0.6 | <0.0 | <0.0 | 0.0 ± 2.0 | <1.0 |
Sample | As (μg/L) | Cd (μg/L) | Hg (μg/L) | Pb (μg/L) |
---|---|---|---|---|
Product 1 | 1149.00 ± 30.00 | 1.20 ± 0.14 | 4.50 ± 0.30 | 2.06 ± 0.07 |
Product 2 | 307.00 ± 8.00 | 16.50 ± 1.10 | 0.90 ± 0.01 | 1.19 ± 0.07 |
Product 3 | 1421.00 ± 15.00 | 2.35 ± 0.18 | 3.30 ± 0.20 | 1.10 ± 0.03 |
Collagen | 72.60 ± 0.90 | <0.20 | 0.13 ± 0.02 | 1.25 ± 0.05 |
Sample | As (μg/Kg) | Cd (μg/Kg) | Hg (μg/Kg) | Pb (μg/Kg) |
---|---|---|---|---|
Basal product 1 | 0.41 ± 0.03 | <0.20 | <0.00 | <0.00 |
Basal product 2 | <0.25 | <0.20 | <0.00 | <0.00 |
Basal product 3 | <0.25 | <0.20 | 0.18 ± 0.07 | <0.00 |
Basal collagen | <0.25 | <0.20 | <0.00 | <0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taroncher, M.; Rodríguez-Carrasco, Y.; Barba, F.J.; Ruiz, M.-J. Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen. Int. J. Mol. Sci. 2023, 24, 6871. https://doi.org/10.3390/ijms24076871
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz M-J. Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen. International Journal of Molecular Sciences. 2023; 24(7):6871. https://doi.org/10.3390/ijms24076871
Chicago/Turabian StyleTaroncher, Mercedes, Yelko Rodríguez-Carrasco, Francisco J. Barba, and María-José Ruiz. 2023. "Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen" International Journal of Molecular Sciences 24, no. 7: 6871. https://doi.org/10.3390/ijms24076871
APA StyleTaroncher, M., Rodríguez-Carrasco, Y., Barba, F. J., & Ruiz, M. -J. (2023). Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen. International Journal of Molecular Sciences, 24(7), 6871. https://doi.org/10.3390/ijms24076871