A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
- -
- Inclusion criteria: only experimental articles, both clinical trials and randomized controlled trials, published in full-text version in the last 10 years, that include human population over 18 years of age with T2DM, which are prescribed at least one class of novel non-insulin drugs, respectively, DPP-4i, SGLT-2i, GLP-1 Ra and tirzepatide;
- -
- Exclusion criteria: abstracts, short communications, reviews, letters to editors, commentaries, or studies published in a language other than English, published more than 10 years ago, and studies on cell cultures or mammals.
3. Results and Discussions
3.1. DPP-4i
3.2. SGLT-2i
3.3. GLP-1 Ra
3.4. Tirzepatide
3.5. Future Perspectives
3.6. Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Estimates: Life Expectancy and Healthy Life Expectancy. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy#:~:text=Globally%2C%20life%20expectancy%20has%20increased,reduced%20years%20lived%20with%20disability (accessed on 2 May 2022).
- Brown, G.C. Living too long: The current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy. EMBO Rep. 2015, 16, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Yang, Y.; Schwebel, D.C.; Liu, Z.; Li, L.; Cheng, P.; Ning, P.; Hu, G. Population ageing and mortality during 1990–2017: A global decomposition analysis. PLoS Med. 2020, 17, e1003138. [Google Scholar] [CrossRef] [PubMed]
- Salive, M.E. Multimorbidity in older adults. Epidemiol. Rev. 2013, 35, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang-Hanisko, L.; Tan, J.Y.; Chiang, L.C. Polypharmacy issues in older adults. Hu Li Za Zhi 2014, 61, 97–104. [Google Scholar]
- Czarkowski, W.M.; Bisch, S.; Mleczko, K.; Dziadkiewicz, P.; Kmita, D.A.; Wójcik, M.; Janecki, M. Polypragmasy as a therapeutic problem among palliative and geriatric patients. Med. Paliatywna W Park. 2021, 13, 24. [Google Scholar] [CrossRef]
- Davis, J.W.; Chung, R.; Juarez, D.T. Prevalence of comorbid conditions with aging among patients with diabetes and cardiovascular disease. Hawaii J. Med. Public Health 2011, 70, 209–213. [Google Scholar]
- Mair, A.; Wilson, M.; Dreischulte, T. Addressing the Challenge of Polypharmacy. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S. Geriatric polypharmacy: A growing epidemic. How to prevent it? Br. J. Med. Med. Res. 2017, 21, 1–11. [Google Scholar] [CrossRef]
- Okpechi, I.G.; Tinwala, M.M.; Muneer, S.; Zaidi, D.; Ye, F.; Hamonic, L.N.; Khan, M.; Sultana, N.; Brimble, S.; Grill, A.; et al. Prevalence of polypharmacy and associated adverse health outcomes in adult patients with chronic kidney disease: Protocol for a systematic review and meta-analysis. Syst. Rev. 2021, 10, 198. [Google Scholar] [CrossRef]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Pedraza, L.; Laosa, O.; Rodríguez-Mañas, L.; Gutiérrez-Romero, D.F.; Frías, J.; Carnicero, J.A.; Ramírez, E. Drug Induced Liver Injury in Geriatric Patients Detected by a Two-Hospital Prospective Pharmacovigilance Program: A Comprehensive Analysis Using the RousselUclaf Causality Assessment Method. Front. Pharmacol. 2021, 11, 2060. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, J.I.; Shikata, T.; Ito, S.; Kimura, T.; Takamoto, K.; Manabe, E.; Asakura, M.; Ishihara, M.; Tsujino, T. Polypharmacy is associated with accelerated deterioration of renal function in cardiovascular outpatients. Cardiol. Res. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Boudreau, R.M.; Donohue, J.M.; Zgibor, J.C.; Marcum, Z.A.; Costacou, T.; Newman, A.B.; Waters, T.M.; Strotmeyer, E.S. Persistent polypharmacy and fall injury risk: The Health, Aging and Body Composition Study. BMC Geriatr. 2021, 21, 710. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Itoh, T.; Yabe, A.; Imai, S.; Nakamura, Y.; Mizokami, Y.; Okouchi, Y.; Ikeshita, A.; Kominato, H. Polypharmacy is associated with malnutrition and activities of daily living disability among daycare facility users: A cross-sectional study. Medicine 2021, 100, e27073. [Google Scholar] [CrossRef]
- Resnick, B.; Galik, E.; Boltz, M.; Holmes, S.; Fix, S.; Vigne, E.; Zhu, S.; Lewis, R. Polypharmacy in Assisted Living and Impact on Clinical Outcomes. Consult. Pharm. 2018, 33, 321–330. [Google Scholar] [CrossRef]
- Fukuba, N.; Nishida, M.; Hayashi, M.; Furukawa, N.; Ishitobi, H.; Nagaoka, M.; Takahashi, Y.; Fukuhara, H.; Yuki, M.; Komazawa, Y.; et al. The Relationship between Polypharmacy and Hospital-stay Duration: A Retrospective Study. Cureus 2020, 12, e7267. [Google Scholar] [CrossRef] [Green Version]
- Schenker, Y.; Park, S.Y.; Jeong, K.; Pruskowski, J.; Kavalieratos, D.; Resick, J.; Abernethy, A.; Kutner, J.S. Associations between Polypharmacy, Symptom Burden, and Quality of Life in Patients with Advanced, Life-Limiting Illness. J. Gen. Inter. Med. 2019, 34, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Bosch-Lenders, D.; Jansen, J.; Stoffers, H.E.J.H.; Winkens, B.; Aretz, K.; Twellaar, M.; Schols, J.M.G.A.; van der Kuy, P.-H.M.; Knottnerus, J.A.; van den Akker, M. The Effect of a Comprehensive, Interdisciplinary Medication Review on Quality of Life and Medication Use in Community-Dwelling Older People with Polypharmacy. J. Clin. Med. 2021, 10, 600. [Google Scholar] [CrossRef]
- Kurczewska-Michalak, M.; Lewek, P.; Jankowska-Polańska, B.; Giardini, A.; Granata, N.; Maffoni, M.; Costa, E.; Midão, L.; Kardas, P. Polypharmacy Management in the Older Adults: A Scoping Review of Available Interventions. Front. Pharmacol. 2021, 12, 734045. [Google Scholar] [CrossRef]
- Payne, R.A. The epidemiology of polypharmacy. Clin. Med. 2016, 16, 465–469. [Google Scholar] [CrossRef]
- Franchi, C.; Ludergnani, M.; Merlino, L.; Nobili, A.; Fortino, I.; Leoni, O.; Ardoino, I. Multiple Medication Adherence and Related Outcomes in Community-Dwelling Older People on Chronic Polypharmacy: A Retrospective Cohort Study on Administrative Claims Data. Int. J. Environ. Res. Public Health 2022, 19, 5692. [Google Scholar] [CrossRef] [PubMed]
- Munger, M.A. Polypharmacy and combination therapy in the management of hypertension in elderly patients with comorbid diabetes mellitus. Drugs Aging 2010, 27, 871–883. [Google Scholar] [CrossRef]
- Ermakov, D.; Fomina, E.; Kartashova, O. Specific features of rational pharmacotherapy in elderly patients. Eur. J. Hosp. Pharm. 2021. [Google Scholar] [CrossRef]
- Shakib, S. Problems of polypharmacy. Aust. Fam. Physician 2002, 31, 125–128. [Google Scholar] [PubMed]
- Dobrică, E.C.; Găman, M.A.; Cozma, M.A.; Bratu, O.G.; Pantea Stoian, A.; Diaconu, C.C. Polypharmacy in Type 2 Diabetes Mellitus: Insights from an Internal Medicine Department. Medicina 2019, 55, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peron, E.P.; Ogbonna, K.C.; Donohoe, K.L. Antidiabetic medications and polypharmacy. Clin. Geriatr. Med. 2015, 31, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Paschou, S.A.; Oikonomou, E.; Tsigkou, V.; Antonopoulos, A.S.; Vavuranakis, M.; Tousoulis, D. Novel Antidiabetic Agents: Cardiovascular and Safety Outcomes. Curr. Pharm. Des. 2020, 26, 5911–5932. [Google Scholar] [CrossRef]
- Zhuang, X.D.; He, X.; Yang, D.Y.; Guo, Y.; He, J.G.; Xiao, H.P.; Liao, X.X. Comparative cardiovascular outcomes in the era of novel antidiabetic agents: A comprehensive network meta-analysis of 166,371 participants from 170 randomized controlled trials. Cardiovasc. Diabetol. 2018, 17, 79. [Google Scholar] [CrossRef]
- Mazin, I.; Chernomordik, F.; Fefer, P.; Matetzky, S.; Beigel, R. The Impact of Novel Antidiabetic Medications on CV Outcomes: A New Therapeutic Horizon for Diabetic and Non-Diabetic Cardiac Patients. J. Clin. Med. 2022, 11, 1904. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, H.; Kosaka, T.; Nakamura, K.; Shimomura, F.; Kuwahara, Y.; Tsukamoto, T. Safety and efficacy of teneligliptin: A novel DPP-4 inhibitor for hemodialysis patients with type 2 diabetes. Int. Urol. Nephrol. 2014, 46, 427–432. [Google Scholar] [CrossRef]
- Kadowaki, T.; Kondo, K. Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2013, 15, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Eto, T.; Inoue, S.; Kadowaki, T. Effects of once-daily teneligliptin on 24-h blood glucose control and safety in Japanese patients with type 2 diabetes mellitus: A 4-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2012, 14, 1040–1046. [Google Scholar] [CrossRef]
- Hong, S.; Park, C.Y.; Han, K.A.; Chung, C.H.; Ku, B.J.; Jang, H.C.; Ahn, C.W.; Lee, M.K.; Moon, M.K.; Son, H.S.; et al. Efficacy and safety of teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, in Korean patients with type 2 diabetes mellitus: A 24-week multicentre, randomized, double-blind, placebo-controlled phase III trial. Diabetes Obes. Metab. 2016, 18, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Ma, J.; Lu, W.; Liu, J.; Zeng, J.; Yang, J.; Li, W.; Zhang, X.; Xiao, X.; Takayanagi, G.; et al. Phase III, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of teneligliptin monotherapy in Chinese patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. J. Diabetes Investig. 2021, 12, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.; Ferrannini, E.; Fonseca, V.A.; Wilpshaar, W.; Dhanjal, P.; Houzer, A. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: A dose-finding study. Diabetes Obes. Metab. 2013, 15, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.A.; Ferrannini, E.; Wilding, J.P.; Wilpshaar, W.; Dhanjal, P.; Ball, G.; Klasen, S. Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Kadokura, T.; Akiyama, N.; Kashiwagi, A.; Utsuno, A.; Kazuta, K.; Yoshida, S.; Nagase, I.; Smulders, R.; Kageyama, S. Pharmacokinetic and pharmacodynamic study of ipragliflozin in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Diabetes Res. Clin. Pract. 2014, 106, 50–56. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Kazuta, K.; Yoshida, S.; Nagase, I. Randomized, placebo-controlled, double-blind glycemic control trial of novel sodium-dependent glucose cotransporter 2 inhibitor ipragliflozin in Japanese patients with type 2 diabetes mellitus. J. Diabetes Investig. 2014, 5, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K.; Isaka, H.; Toyoshima, J.; Sakatani, T. Clinical pharmacology study of ipragliflozin in Japanese patients with type 1 diabetes mellitus: A phase 2, randomized, placebo-controlled trial. Diabetes Obes. Metab. 2019, 21, 1445–1454. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K.; Watada, H.; Iwamoto, Y.; Utsunomiya, K.; Terauchi, Y.; Tobe, K.; Tanizawa, Y.; Araki, E.; Ueda, M.; Suganami, H.; et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: A combined Phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc. Diabetol. 2014, 13, 65. [Google Scholar] [PubMed] [Green Version]
- Ikeda, S.; Takano, Y.; Cynshi, O.; Tanaka, R.; Christ, A.D.; Boerlin, V.; Beyer, U.; Beck, A.; Ciorciaro, C.; Meyer, M.; et al. A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2015, 17, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K.; SURPASS-2 Investigators. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Ludvik, B.; Giorgino, F.; Jódar, E.; Frias, J.P.; Fernández Landó, L.; Brown, K.; Bray, R.; Rodríguez, Á. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021, 398, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Benson, C.; Bray, R.; Cui, X.; Milicevic, Z.; Urva, S.; Haupt, A.; Robins, D.A. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes. Metab. 2020, 22, 938–946. [Google Scholar]
- Eckel, R.H.; Farooki, A.; Henry, R.R.; Koch, G.G.; Leiter, L.A. Cardiovascular Outcome Trials in Type 2 Diabetes: What Do They Mean for Clinical Practice? Clin. Diabetes 2019, 37, 316–337. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. NEJM 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. NEJM 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Pitt, B.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. NEJM 2021, 384, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. NEJM 2021, 384, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.; McMurray, J.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. NEJM 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. NEJM 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyan, N.A.; Koshy, R.M.; Jacob, K.; Pappachan, J.M. Efficacy and cardiovascular safety of DPP-4 inhibitors. Curr. Drug Saf. 2021, 16, 154–164. [Google Scholar] [CrossRef]
- Ali, A.; Bain, S.; Hicks, D.; Jones, P.N.; Patel, D.C.; Evans, M.; Fernando, K.; James, J.; Milne, N.; Viljoen, A.; et al. SGLT2 Inhibitors: Cardiovascular Benefits Beyond HbA1c—Translating Evidence into Practice. Diabetes Ther. 2019, 10, 1595–1622. [Google Scholar] [CrossRef] [Green Version]
- Consoli, A.; Formoso, G.; Baldassarre, M.P.A.; Febo, F. A comparative safety review between GLP-1 receptor agonists and SGLT2 inhibitors for diabetes treatment. Expert Opin. Drug Saf. 2018, 17, 293–302. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Buse, J.B.; Woo, V.; Vilsbøll, T.; Langbakke, I.H.; Kvist, K.; Gough, S.C. Benefits of combination of insulin degludec and liraglutide are independent of baseline glycated haemoglobin level and duration of type 2 diabetes. Diabetes Obes. Metab. 2016, 18, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Ahrén, B.; Masmiquel, L.; Kumar, H.; Sargin, M.; Karsbøl, J.D.; Jacobsen, S.H.; Chow, F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): A 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017, 5, 341–354. [Google Scholar] [CrossRef]
- Yamada, Y.; Katagiri, H.; Hamamoto, Y.; Deenadayalan, S.; Navarria, A.; Nishijima, K.; Seino, Y.; PIONEER 9 Investigators. Dose-response, efficacy, and safety of oral semaglutide monotherapy in Japanese patients with type 2 diabetes (PIONEER 9): A 52-week, phase 2/3a, randomised, controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 377–391. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. Implications of the recent CVOTs in type 2 diabetes: The right place for DPP-IV inhibitors today. Diabetes Res. Clin. Pract. 2019, 157, 107906. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Peralta, F.; Abreu, C.; Gomez-Rodriguez, S.; Barranco, R.J.; Umpierrez, G.E. Safety and Efficacy of DPP4 Inhibitor and Basal Insulin in Type 2 Diabetes: An Updated Review and Challenging Clinical Scenarios. Diabetes Ther. 2018, 9, 1775–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssen, N.M.; Jandeleit-Dahm, K.A. Dipeptidyl peptidase-4 inhibitors and cardiovascular and renal disease in type 2 diabetes: What have we learned from the CARMELINA trial? Diab. Vasc. Dis. Res. 2019, 16, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs. Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- Kaplinsky, E. DAPA-HF trial: Dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context 2020, 9, 2019-11-3. [Google Scholar] [CrossRef]
- Ferrannini, E.; Ramos, S.J.; Salsali, A.; Tang, W.; List, J.F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: A randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010, 33, 2217–2224. [Google Scholar] [CrossRef] [Green Version]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Butler, J.; Filippatos, G.; Khan, M.S.; Marx, N.; Lam, C.; Schnaidt, S.; Ofstad, A.P.; Brueckmann, M.; Jamal, W.; et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients with Heart Failure by Baseline Diabetes Status: Results from the EMPEROR-Reduced Trial. Circulation 2021, 143, 337–349. [Google Scholar] [CrossRef]
- Fitchett, D.; Inzucchi, S.E.; Cannon, C.P.; McGuire, D.K.; Scirica, B.M.; Johansen, O.E.; Sambevski, S.; Kaspers, S.; Pfarr, E.; George, J.T.; et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation 2019, 139, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, S.; Celik, M.; Vural, A.; Aydin, B. The effect of low and high dose empagliflozin on HbA1c and lipid profile in type 2 diabetes mellitus: A real-world data. North. Clin. Istanb. 2019, 7, 167–173. [Google Scholar] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M.; et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients with Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.Ø.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E.; et al. Oral Semaglutide Versus Empagliflozin in Patients with Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef] [Green Version]
- Sorli, C.; Harashima, S.I.; Tsoukas, G.M.; Unger, J.; Karsbøl, J.D.; Hansen, T.; Bain, S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): A double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Drucker, D.J.; Buse, J.B.; Taylor, K.; Kendall, D.M.; Trautmann, M.; Zhuang, D.; Porter, L.; DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: A randomised, open-label, non-inferiority study. Lancet 2008, 372, 1240–1250. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Wysham, C.; Macconell, L.; Malloy, J.; Walsh, B.; Yan, P.; Wilhelm, K.; Malone, J.; Porter, L.E.; DURATION-2 Study Group. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): A randomised trial. Lancet 2010, 376, 431–439. [Google Scholar] [CrossRef]
- Wysham, C.; Blevins, T.; Arakaki, R.; Colon, G.; Garcia, P.; Atisso, C.; Kuhstoss, D.; Lakshmanan, M. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care 2014, 37, 2159–2167. [Google Scholar] [CrossRef] [Green Version]
- Giorgino, F.; Benroubi, M.; Sun, J.H.; Zimmermann, A.G.; Pechtner, V. Efficacy and Safety of Once-Weekly Dulaglutide Versus Insulin Glargine in Patients with Type 2 Diabetes on Metformin and Glimepiride (AWARD-2). Diabetes Care 2015, 38, 2241–2249. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; D’Alessio, D.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Coskun, T.; Urva, S.; Roell, W.C.; Qu, H.; Loghin, C.; Moyers, J.S.; O’Farrell, L.S.; Briere, D.A.; Sloop, K.W.; Thomas, M.K.; et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab. 2022, 34, 1234–1247.e9. [Google Scholar] [CrossRef] [PubMed]
- Urva, S.; Coskun, T.; Loh, M.T.; Du, Y.; Thomas, M.K.; Gurbuz, S.; Haupt, A.; Benson, C.T.; Hernandez-Illas, M.; D’Alessio, D.A.; et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: A phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 2022, 400, 1869–1881. [Google Scholar] [CrossRef]
- Enebo, L.B.; Berthelsen, K.K.; Kankam, M.; Lund, M.T.; Rubino, D.M.; Satylganova, A.; Lau, D.C.W. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: A randomised, controlled, phase 1b trial. Lancet 2021, 397, 1736–1748. [Google Scholar] [CrossRef]
- Sudlow, A.; Pournaras, D.J.; le Roux, C.W. Combining metabolic surgery with medications for type 2 diabetes: Is there a benefit? J. Bariatr. Surg. 2023, 2, 13. [Google Scholar]
- Nahra, R.; Wang, T.; Gadde, K.M.; Oscarsson, J.; Stumvoll, M.; Jermutus, L.; Hirshberg, B.; Ambery, P. Effects of Cotadutide on Metabolic and Hepatic Parameters in Adults with Overweight or Obesity and Type 2 Diabetes: A 54-Week Randomized Phase 2b Study. Diabetes Care 2021, 44, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Visentin, R.; Göbel, B.; Riz, M.; Cobelli, C.; Klabunde, T.; Dalla Man, C. Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagon-like peptide-1/glucagon receptor agonist SAR425899 in comparison with liraglutide. Diabetes Obes. Metab. 2021, 23, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Flatt, P.R.; Conlon, J.M. An update on peptide-based therapies for type 2 diabetes and obesity. Peptides 2023, 161, 170939. [Google Scholar] [CrossRef]
- Li, C.; Yang, M.; Wang, X.; Zhang, H.; Yao, C.; Sun, S.; Liu, Q.; Pan, H.; Liu, S.; Huan, Y.; et al. Glutazumab, a novel long-lasting GLP-1/anti-GLP-1R antibody fusion protein, exerts anti-diabetic effects through targeting dual receptor binding sites. Biochem. Pharmacol. 2018, 150, 46–53. [Google Scholar] [CrossRef]
- Jepsen, M.M.; Christensen, M.B. Emerging glucagon-like peptide 1 receptor agonists for the treatment of obesity. Expert Opin. Emerg. Drugs 2021, 26, 231–243. [Google Scholar] [CrossRef]
- Saxena, A.R.; Gorman, D.N.; Esquejo, R.M.; Bergman, A.; Chidsey, K.; Buckeridge, C.; Griffith, D.A.; Kim, A.M. Danuglipron (PF-06882961) in type 2 diabetes: A randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nat. Med. 2021, 27, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachinidis, A.; Nikolic, D.; Stoian, A.P.; Papanas, N.; Tarar, O.; Rizvi, A.A.; Rizzo, M. Cardiovascular outcomes trials with incretin-based medications: A critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors. Metabolism 2020, 111, 154343. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.M.; Rizvi, A.A.; Giglio, R.V.; Stoian, A.P.; Ligi, D.; Mannello, F. Impact of Glucose-Lowering Medications on Cardiovascular and Metabolic Risk in Type 2 Diabetes. J. Clin. Med. 2020, 9, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Otsuki et al. [32] | Kadowaki et al. [33] | Eto et al. [34] | Hong et al. [35] | Ji et al. [36] | |
---|---|---|---|---|---|
Drug | Teneligliptin | ||||
Study type | RCT | RCT | RCT | RCT | RCT |
Total population | 51 | 324 | 99 | 142 | 254 |
Experimental population | 14 | 81 | 33 | 99 | 125 |
Control population | 29 | 80 | 32 | 43 | 126 |
Duration (weeks) | 28 | 12 | 4 | 24 | 24 |
Age (years) | 69.8 ± 8.5 | 57.5 ± 10.4 | 57.1 ± 8.7 | NR | 56 ± 10.2 |
Frequency of follow up | NR | NR | NR | NR | NR |
HbA1c (%) [experimental] | 10.4 ± 1 | 6.8 ± 0.5 | 8.3 ± 0.8 | 6.83 ± 0.92 | NR |
HbA1c (%) [control] | 10.8 ± 0.8 | 8 ± 0.9 | 8.2 ± 1.1 | 7.86 ± 1.1 | NR |
p-value | p = 0.006 | ||||
Fasting plasma glucose (mg/dL) [experimental] | 196 ± 59 | 125.3 ± 18.3 | 163.1 ± 30.8 | 135.2 ± 28.1 | NR |
Fasting plasma glucose (mg/dL) [control] | 178 ± 89 | 148.2 ± 31.1 | 153.6 ± 31.9 | 161.2 ± 41.2 | NR |
Hypoglycemia (%) | 0 | 3.7 | 0 | 0 | 3.1 |
Class-specific AR (%) | 0 | 0 | 0 | 29.59 | 0.8 |
Wilding et al. [37] | Fonseca et al. [38] | Kadokura et al. [39] | Kashiwagi et al. [40] | Kaku et al. [41] | Kaku et al. [42] | Ikeda et al. [43] | |
---|---|---|---|---|---|---|---|
Drug | Ipragliflozin | Ipragliflozin | Ipragliflozin | Ipragliflozin | Ipragliflozin | Tofogliflozin | Tofogliflozin |
Study type | RCT | RCT | RCT | RCT | RCT | RCT | RCT |
Total population | 343 | 1035 | 30 | 361 | 43 | 229 | 394 |
Experimental population | 276 | 336 | 18 | 292 | 31 | 58 | 64 |
Control population | 66 | 11 | 10 | 69 | 10 | 56 | 66 |
Duration (weeks) | 12 | 12 | 2 | 12 | NR | 24 | 12 |
Age (years) | 56.6 ± 8.9 | 54.2 ± 10.7 | 57.0 ± 13.19 | 56.0 ± 10.4 | 41.7 ± 14 | 56.6 ± 10.2 | NR |
Frequency of follow up | NS | 4 weeks | 1–14 days | NS | 1–3 weeks | NS | NR |
HbA1c (%) [experimental] | 7.87 ± 0.82 | 7.90 ± 0.67 | 8.2 ± 1 | 7.4 ± 0.68 | 8.85 ± 0.72 | 8.34 ± 0.81 | 8.74 ± 1.876 |
HbA1c (%) [control] | 7.68 ± 0.6 | 7.84 ± 0.78 | 8.4 ± 0.9 | 8.62 ± 1.19 | 8.66 ± 0.74 | 8.41 ± 0.78 | 8.76 ± 1.877 |
p-value | p = 0.55 | p = 0.69 | |||||
Fasting plasma glucose (mg/dL) [Experimental] | 154.8 ± 27 | 162.5 ± 44.8 | 177.5 ± 33.8 | 189.7 ± 36.7 | 150.9 ± 72.4 | 168.7 ± 29.6 | NR |
Fasting plasma glucose (mg/dL) [Control] | 156.6 ± 37.8 | 160 ± 36.18 | 165.3 ± 35.1 | 130.6 ± 17.6 | 198.2 ± 75.4 | 168.8 ± 24.9 | NR |
Hypoglycemia (%) | 2.8 | 1.5 | 0 | 1.4 | 70 | 1.7 | 0 |
Class-specific AR—UTI (%) | 6.9 | 10.3 | 0 | 1.4 | NR | 1.7 | 4.5 |
Rosenstock et al. [44] | Frías et al. [45] | Ludvik et al. [46] | Frías et al. [47] | Frias et al. [48] | |
---|---|---|---|---|---|
Drug | Tirzepatide | ||||
Study type | RCT | RCT | RCT | RCT | RCT |
Total population | 478 | 1878 | 1444 | 318 | 111 |
Experimental population | 115 | 470 | 360 | 53 | 29 |
Control population | 121 | 469 | 359 | 51 | 26 |
Duration (weeks) | 40 | 40 | 52 | 26 | 12 |
Age (years) | 52.9 ± 12.3 | 55.9 ± 10.4 | 57.5 ± 10.2 | 56 ± 7.6 | 56.0 ± 10.13 |
Frequency of follow-up (weeks) | 4 | 40 | 4 | 26 | NR |
HbA1c (%) [experimental] | 7.85 ± 1.02 | 8.26 ± 1 | 4.81 ± 0.05 | 8.1 ± 1.1 | 8.4 ± 0.9 |
HbA1c (%) [control] | 8.05 ± 0.8 | 8.25 ± 1.01 | 6.85 ± 0.05 | 8.1 ± 1 | 8.2 ± 1.22 |
p-value | p = 0.97 | ||||
Fasting plasma glucose (mg/dL) [experimental] | 153.3 ± 40.4 | 172.4 ± 54.37 | 110.5 ± 1.9 | 164.8 ± 48.6 | 177.9 ± 54.68 |
Fasting plasma glucose (mg/dL) [control] | 154.8 ± 40.3 | 171.4 ± 49.77 | 114.1 ± 1.8 | 178.1 ± 64.5 | 168.5 ± 62.06 |
Hypoglycemia (%) | 7 | 1.7 | 2 | 0 | 17.9 |
Class specific AR—gastrointestinal (%) | 41 | 44.9 | NR | 66 | 35.7 |
Classes | Drugs | Studies | At Study End | At Baseline | p Value | Weight Parameter | Comparator |
---|---|---|---|---|---|---|---|
DPP-4i | Tenegliptin | Otsuki et al. [32] | 57.1 ± 15.2 | 56.4 ± 14.5 | 0.08 | BW (kg) | Ongoing antidiabetic therapy |
Kadowaki et al. [33] | 95% CI 0.5 (0.1, 0.9) | <0.05 | BW (kg) | Placebo | |||
Eto et al. [34] | 24.8 ± 3.8 | 25.7 ± 4.5 | 0.282 | BMI (kg/m2) | Placebo | ||
Hong et al. [35] | 24.96 ± 2.51 | 25.07 ± 3.23 | 0.8436 | BMI (kg/m2) | Placebo | ||
Ji et al. [36] | 95% CI 0.22 (−0.32, 0.76) | 0.4192 | BW (kg) | Placebo | |||
SGLT-2i | Ipragliflozin | Wilding et al. [37] | 95% CI −2.21 (−2.83, 1.58) | <0.001 | BW (kg) | Placebo | |
Fonseca et al. [38] | 95% CI −1.67 (−2.44, 0.89) | 0.766 | BW (kg) | Placebo | |||
Kadokura et al. [39] | −1.19 ± 0.44 | 75.07 ± 13.89 | NR | BW (kg) | Placebo | ||
Kashiwagi et al. [40] | −2.1 ± 0.18 | <0.001 | BW (kg) | Placebo | |||
Kaku et al. [41] | −0.94 ± 0.89 | 66.53 ± 6.82 | <0.001 | BW (kg) | Placebo | ||
Tofogliflozin | Kaku et al. [42] | 95% CI −2.971 (−3.440, −2.502) | <0.001 | BW (kg) | Placebo | ||
Ikeda et al. [43] | 95% CI −2.824 (−3.297, −2.351) | <0.0001 | BW (kg) | Placebo | |||
Dual GIP and GLP-1 Ra | Tirzepatide | Rosenstock et al. [44] | 95% CI −8.8 (−10.3, −7.2) | <0.0001 | BW (kg) | Placebo | |
Frías et al. [45] | 95% CI −6.2 (−7.1, −5.3) | <0.001 | BW (kg) | Semaglutide 1 mg | |||
Ludvik et al. [46] | 95% CI −15.2 (−16.2, −14.2) | <0.0001 | BW (kg) | Insuline degludec | |||
Frías et al. [47] | −4.1 ± 0.31 | 32.2 ± 0.81 | <0.01 | BMI (kg/m2) | Placebo | ||
Frias et al. [48] | 95% CI −5.2 (−7.5, −2.9) | <0.001 | BW (kg) | Placebo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmen, T.; Serbanoiu, L.-I.; Bica, I.-C.; Serafinceanu, C.; Muzurović, E.; Janez, A.; Busnatu, S.; Banach, M.; Rizvi, A.A.; Rizzo, M.; et al. A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 9760. https://doi.org/10.3390/ijms24119760
Salmen T, Serbanoiu L-I, Bica I-C, Serafinceanu C, Muzurović E, Janez A, Busnatu S, Banach M, Rizvi AA, Rizzo M, et al. A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2023; 24(11):9760. https://doi.org/10.3390/ijms24119760
Chicago/Turabian StyleSalmen, Teodor, Liviu-Ionut Serbanoiu, Ioana-Cristina Bica, Cristian Serafinceanu, Emir Muzurović, Andrej Janez, Stefan Busnatu, Maciej Banach, Ali Abbas Rizvi, Manfredi Rizzo, and et al. 2023. "A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 24, no. 11: 9760. https://doi.org/10.3390/ijms24119760
APA StyleSalmen, T., Serbanoiu, L. -I., Bica, I. -C., Serafinceanu, C., Muzurović, E., Janez, A., Busnatu, S., Banach, M., Rizvi, A. A., Rizzo, M., & Pantea Stoian, A. (2023). A Critical View over the Newest Antidiabetic Molecules in Light of Efficacy—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 24(11), 9760. https://doi.org/10.3390/ijms24119760