Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate
Abstract
:1. Introduction
2. Results
2.1. Influence of Metformin and Alendronate on the Subchondral Bone Changes
2.2. Influence of Metformin and Alendronate on the Serum Levels of Visfatin, CTX-II, MPP-13, and COMP
2.3. Serum Levels of Visfatin in Patients with Knee OA
3. Discussion
3.1. Subchondral Bone as a Therapeutic Target
3.2. Visfatin and Cartilage Biomarkers as Potential Targets for the Pharmacological Treatment in Osteoarthritis
4. Materials and Methods
4.1. Animals, Induction of OA, and Treatment
4.2. Histopathological Analysis
4.3. ELISA Assays
4.4. Patients
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quicke, J.G.; Conaghan, P.G.; Corp, N.; Peat, G. Osteoarthritis year in review 2021: Epidemiology & therapy. Osteoarthr. Cartil. 2022, 30, 196–206. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; Thoma, L.M.; Golightly, Y.M. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 2022, 30, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Man, G.S.; Mologhianu, G. Osteoarthritis pathogenesis—A complex process that involves the entire joint. J. Med. Life 2014, 7, 37–41. [Google Scholar] [PubMed]
- Bolbos, R.I.; Zuo, J.; Banerjee, S.; Link, T.M.; Benjamin Ma, C.; Li, X.; Majumdar, S. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthr. Cartil. 2008, 16, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donell, S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 2019, 4, 221–229. [Google Scholar] [CrossRef]
- Danila, M.I. Biology of Normal Joint and Evaluation of the Joint Including Clinical, Imaging, and Pathologic Evaluation. In Pathobiology of Human Disease; A Dynamic Encyclopedia of Disease Mechanisms; Academic Press: Amsterdam, The Netherlands, 2014; pp. 1912–1919. [Google Scholar] [CrossRef]
- Blumenfeld, O.; Williams, F.M.K.; Hart, D.J.; Spector, T.D.; Arden, N.; Livshits, G. Association between cartilage and bone biomarkers and incidence of radiographic knee osteoarthritis (RKOA) in UK females: A prospective study. Osteoarthr. Cartil. 2013, 21, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.-J.; Yu, W.-B.; Luo, W.E.I.; Gao, S.-G.; Li, Y.-S.; Lei, G.-H. Effect of osteopontin on TIMP-1 and TIMP-2 mRNA in chondrocytes of human knee osteoarthritis in vitro. Exp. Ther. Med. 2014, 8, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.G.; Magna, H.A.; Reeves, L.M.; Lopresti-Morrow, L.L.; Yocum, S.A.; Rosner, P.J.; Geoghegan, K.F.; Hambor, J.E. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Investig. 1996, 97, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Koelling, S.; Clauditz, T.; Kaste, M.; Miosge, N. Cartilage oligomeric matrix protein is involved in human limb development and in the pathogenesis of osteoarthritis. Arthritis Res. Ther. 2006, 8, R56. [Google Scholar] [CrossRef] [Green Version]
- Gheita, T.A.; El-Awar, A.H.; El-Ansary, M.M.; Raslan, H.M.; El-Defrawy, A.O. Cartilage oligomeric matrix protein (COMP) levels in serum and synovial fluid in osteoarthritis (OA) patients: Correlation with clinical, radiological and laboratory parameters. Osteoarthr. Cartil. 2015, 23, A85. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.; Reddi, A.H.; Di Cesare, P.E. Cartilage Oligomeric Matrix Protein (COMP): A Biomarker of Arthritis. Biomark Insights 2009, 4, BMI-S645. [Google Scholar] [CrossRef]
- Catterall, J.; Dewitt Parr, S.; Fagerlund, K.; Caterson, B. CTX-II is a marker of cartilage degradation but not of bone turnover. Osteoarthr. Cartil. 2013, 21, S77. [Google Scholar] [CrossRef] [Green Version]
- Christgau, S.; Garnero, P.; Fledelius, C.; Moniz, C.; Ensig, M.; Gineyts, E.; Rosenquist, C.; Qvist, P. Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone 2001, 29, 209–215. [Google Scholar] [CrossRef]
- Hao, H.Q.; Zhang, J.F.; He, Q.Q.; Wang, Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2019, 27, 726–736. [Google Scholar] [CrossRef]
- Cheng, H.; Hao, B.; Sun, J.; Yin, M. C-Terminal Cross-Linked Telopeptides of Type II Collagen as Biomarker for Radiological Knee Osteoarthritis: A Meta-Analysis. Cartilage 2018, 11, 512–520. [Google Scholar] [CrossRef]
- Puenpatom, R.A.; Victor, T.W. Increased Prevalence of Metabolic Syndrome in Individuals with Osteoarthritis: An Analysis of NHANES III Data. Postgrad. Med. 2015, 121, 9–20. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y.; Yan, C.H.; Zhang, W. Adipokine Signaling Pathways in Osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 611. [Google Scholar] [CrossRef]
- Tan, Q.; Jiang, A.; Li, W.; Song, C.; Leng, H. Metabolic syndrome and osteoarthritis: Possible mechanisms and management strategies. Med. Nov. Technol. Devices 2021, 9, 100052. [Google Scholar] [CrossRef]
- Lambova, S.N.; Batsalova, T.; Moten, D.; Stoyanova, S.; Georgieva, E.; Belenska-Todorova, L.; Kolchakova, D.; Dzhambazov, B. Serum Leptin and Resistin Levels in Knee Osteoarthritis—Clinical and Radiologic Links: Towards Precise Definition of Metabolic Type Knee Osteoarthritis. Biomedicines 2021, 9, 1019. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, J.; Xu, S.; Zhang, M.; Huang, S.; He, F.; Yang, X.; Xiao, H.; Zhang, H.; Ding, C. Association between circulating adipokines, radiographic changes, and knee cartilage volume in patients with knee osteoarthritis. Scand. J. Rheumatol. 2015, 45, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Hao, D.; Li, M.; Wu, Z.; Li, D.; Yang, X.; Qiu, G. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol. Int. 2011, 32, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, Z.; Wang, H.; Chen, D.; Tong, L. Novel strategies for the treatment of osteoarthritis based on biomaterials and critical molecular signaling. J. Mater. Sci. Technol. 2023, 149, 42–55. [Google Scholar] [CrossRef]
- Richard, M.J.; Driban, J.B.; McAlindon, T.E. Pharmaceutical treatment of osteoarthritis. Osteoarthr. Cartil. 2023, 31, 458–466. [Google Scholar] [CrossRef]
- Foster, N.E.; Eriksson, L.; Deveza, L.; Hall, M. Osteoarthritis year in review 2022: Epidemiology & therapy. Osteoarthr. Cartil. 2023. [Google Scholar] [CrossRef]
- Mathieu, S.; Tournadre, A.; Soubrier, M.; Sellam, J. Effect of disease-modifying anti-rheumatic drugs in osteoarthritis: A meta-analysis. Jt. Bone Spine 2022, 89, 105444. [Google Scholar] [CrossRef]
- Buckland-Wright, J.C.; Messent, E.A.; Bingham, C.O.; Ward, R.J.; Tonkin, C. A 2 yr longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology 2006, 46, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.G.G. Bisphosphonates: The first 40years. Bone 2011, 49, 2–19. [Google Scholar] [CrossRef]
- Acibadem, E.; Keskinruzgar, A.; Bozdag, Z.; Yavuz, G.Y. Therapeutic effect of alendronate in an experimental temporomandibular joint osteoarthritis. J. Oral Rehabil. 2022, 50, 113–121. [Google Scholar] [CrossRef]
- Siebelt, M.; Waarsing, J.H.; Groen, H.C.; Müller, C.; Koelewijn, S.J.; de Blois, E.; Verhaar, J.A.N.; de Jong, M.; Weinans, H. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone 2014, 66, 163–170. [Google Scholar] [CrossRef]
- Ziqubu, K.; Mazibuko-Mbeje, S.E.; Mthembu, S.X.H.; Mabhida, S.E.; Jack, B.U.; Nyambuya, T.M.; Nkambule, B.B.; Basson, A.K.; Tiano, L.; Dludla, P.V. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 2227. [Google Scholar] [CrossRef]
- Lambova, S.N. Pleiotropic Effects of Metformin in Osteoarthritis. Life 2023, 13, 437. [Google Scholar] [CrossRef]
- Mai, Q.-G.; Zhang, Z.-M.; Xu, S.; Lu, M.; Zhou, R.-P.; Zhao, L.; Jia, C.-H.; Wen, Z.-H.; Jin, D.-D.; Bai, X.-C. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J. Cell. Biochem. 2011, 112, 2902–2909. [Google Scholar] [CrossRef]
- Belenska-Todorova, L.; Lambova, S.N.; Stoyanova, S.; Georgieva, E.; Batsalova, T.; Moten, D.; Kolchakova, D.; Dzhambazov, B. Disease-Modifying Potential of Metformin and Alendronate in an Experimental Mouse Model of Osteoarthritis. Biomedicines 2021, 9, 1017. [Google Scholar] [CrossRef]
- Gyurkovska, V.; Stefanova, T.; Dimitrova, P.; Danova, S.; Tropcheva, R.; Ivanovska, N. Tyrosine Kinase Inhibitor Tyrphostin AG490 Retards Chronic Joint Inflammation in Mice. Inflammation 2014, 37, 995–1005. [Google Scholar] [CrossRef]
- Aho, O.-M.; Finnilä, M.; Thevenot, J.; Saarakkala, S.; Lehenkari, P. Subchondral bone histology and grading in osteoarthritis. PLoS ONE 2017, 12, e0173726. [Google Scholar] [CrossRef] [Green Version]
- Intema, F.; Hazewinkel, H.A.W.; Gouwens, D.; Bijlsma, J.W.J.; Weinans, H.; Lafeber, F.P.J.G.; Mastbergen, S.C. In early OA, thinning of the subchondral plate is directly related to cartilage damage: Results from a canine ACLT-meniscectomy model. Osteoarthr. Cartil. 2010, 18, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, H.; Tian, F.; Song, H.; Zhang, Y. Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degeneration in the early phase of experimental osteoarthritis. Clin. Exp. Med. 2011, 11, 235–243. [Google Scholar] [CrossRef]
- Hayami, T.; Pickarski, M.; Wesolowski, G.A.; McLane, J.; Bone, A.; Destefano, J.; Rodan, G.A.; Duong, L.T. The role of subchondral bone remodeling in osteoarthritis: Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004, 50, 1193–1206. [Google Scholar] [CrossRef]
- Fernández-Martín, S.; López-Peña, M.; Muñoz, F.; Permuy, M.; González-Cantalapiedra, A. Bisphosphonates as disease-modifying drugs in osteoarthritis preclinical studies: A systematic review from 2000 to 2020. Arthritis Res. Ther. 2021, 23, 60. [Google Scholar] [CrossRef]
- Vaysbrot, E.E.; Osani, M.C.; Musetti, M.C.; McAlindon, T.E.; Bannuru, R.R. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthr. Cartil. 2018, 26, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laslett, L.L.; Doré, D.A.; Quinn, S.J.; Boon, P.; Ryan, E.; Winzenberg, T.M.; Jones, G. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: A randomised controlled trial. Ann. Rheum. Dis. 2012, 71, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Crema, M.D.; Felson, D.T.; Roemer, F.W.; Wang, K.; Marra, M.D.; Nevitt, M.C.; Lynch, J.A.; Torner, J.; Lewis, C.E.; Guermazi, A. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: The MOST study. Osteoarthr. Cartil. 2013, 21, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, G.; Aitken, D.; Laslett, L.L.; Pelletier, J.-P.; Martel-Pelletier, J.; Hill, C.; March, L.; Wluka, A.E.; Wang, Y.; Antony, B.; et al. Effect of Intravenous Zoledronic Acid on Tibiofemoral Cartilage Volume Among Patients with Knee Osteoarthritis with Bone Marrow Lesions. Jama 2020, 323, 1456–1466. [Google Scholar] [CrossRef]
- Cooles, F.A.H.; Isaacs, J.D. Pathophysiology of rheumatoid arthritis. Curr. Opin. Rheumatol. 2011, 23, 233–240. [Google Scholar] [CrossRef]
- Moschen, A.R.; Kaser, A.; Enrich, B.; Mosheimer, B.; Theurl, M.; Niederegger, H.; Tilg, H. Visfatin, an Adipocytokine with Proinflammatory and Immunomodulating Properties. J. Immunol. 2007, 178, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- Garnero, P.; Ayral, X.; Rousseau, J.-C.; Christgau, S.; Sandell, L.J.; Dougados, M.; Delmas, P.D. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum. 2002, 46, 2613–2624. [Google Scholar] [CrossRef]
- Cheng, J.; Rong, G.; Wang, Z.; Liu, S.; Yang, Q.; Liu, W.; Zhang, D.; Li, J.; Li, B. ECM-Mimicking Hydrogels Loaded with Bone Mesenchymal Stem Cell-Derived Exosomes for the Treatment of Cartilage Defects. Evid.-Based Complement. Altern. Med. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Croucher, L.J.; Hollander, A.P. Differential detection of type II collagen N-terminal and C-terminal denaturation epitopes in degrading cartilage. Mol. Pathol. 1999, 52, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Vilím, V.; Olejárová, M.; Macháček, S.; Gatterová, J.; Kraus, V.B.; Pavelka, K. Serum levels of cartilage oligomeric matrix protein (COMP) correlate with radiographic progression of knee osteoarthritis. Osteoarthr. Cartil. 2002, 10, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Neidhart, M.; Hauser, N.; Paulsson, M.; DiCesare, P.E.; Michel, B.A.; Hauselmann, H.J. Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Rheumatology 1997, 36, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Morozzi, G.; Fabbroni, M.; Bellisai, F.; Cucini, S.; Simpatico, A.; Galeazzi, M. Low serum level of COMP, a cartilage turnover marker, predicts rapid and high ACR70 response to adalimumab therapy in rheumatoid arthritis. Clin. Rheumatol. 2007, 26, 1335–1338. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Pan, T.; Luo, L. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats. Arq. Bras. Endocrinol. Metabol. 2014, 58, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Ozkaya, M.; Cakal, E.; Ustun, Y.; Engin-Ustun, Y. Effect of metformin on serum visfatin levels in patients with polycystic ovary syndrome. Fertil. Steril. 2010, 93, 880–884. [Google Scholar] [CrossRef]
- Kay, J.P.; Alemzadeh, R.; Langley, G.; D’Angelo, L.; Smith, P.; Holshouser, S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism 2001, 50, 1457–1461. [Google Scholar] [CrossRef]
- Laiguillon, M.-C.; Houard, X.; Bougault, C.; Gosset, M.; Nourissat, G.; Sautet, A.; Jacques, C.; Berenbaum, F.; Sellam, J. Expression and function of visfatin (Nampt), an adipokine-enzyme involved in inflammatory pathways of osteoarthritis. Arthritis Res. Ther. 2014, 16, R38. [Google Scholar] [CrossRef] [Green Version]
- Porras, A.G.; Holland, S.D.; Gertz, B.J. Pharmacokinetics of Alendronate. Clin. Pharmacokinet. 1999, 36, 315–328. [Google Scholar] [CrossRef]
- Monma, Y.; Funayama, H.; Mayanagi, H.; Endo, Y. Effects of Weekly Administrations of Alendronate+Clodronate on Young Mouse Tibia: Localized Action at the Proximal Growth Plate. Calcif. Tissue Int. 2003, 74, 115–121. [Google Scholar] [CrossRef]
- Vieira, J.S.; Cunha, E.J.; de Souza, J.F.; Sant’Ana, R.D.; Zielak, J.C.; Costa-Casagrande, T.A.; Giovanini, A.F. Alendronate induces postnatal maxillary bone growth by stimulating intramembranous ossification and preventing premature cartilage mineralization in the midpalatal suture of newborn rats. Int. J. Oral Maxillofac. Surg. 2019, 48, 1494–1503. [Google Scholar] [CrossRef]
- Schmitz, N.; Laverty, S.; Kraus, V.B.; Aigner, T. Basic methods in histopathology of joint tissues. Osteoarthr. Cartil. 2010, 18, S113–S116. [Google Scholar] [CrossRef] [Green Version]
- Glasson, S.S.; Chambers, M.G.; Van Den Berg, W.B.; Little, C.B. The OARSI histopathology initiative—Recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 2010, 18, S17–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | Treatment | Degree of Histopathological Changes | Associated Criteria (Tissue Reaction) |
---|---|---|---|
Group 1 | No treatment, healthy control | 0 | No subchondral sclerosis is observed and subchondral plate is thin. Articular cartilage is directly connected to bone marrow via open fenestrae in subchondral plate. |
Group 2 | No treatment, CIOA | 3 | Characterized by severe sclerosis and a massive increase in subchondral bone volume as the typical features. Loss of articular cartilage and flattened subchondral plate can be seen. |
Group 3 | CIOA + metformin | 2 | Characterized by a distinct increase in subchondral bone sclerosis and volume. Fibrillation in subchondral bone plate can be seen. No open connection between bone marrow and cartilage can be identified. |
Group 4 | CIOA + alendronate | 2 | Characterized by a distinct increase in subchondral bone sclerosis and volume. Fibrillation in subchondral bone plate can be seen. No open connection between bone marrow and cartilage can be identified. |
Group 5 | CIOA + metformin + alendronate | 1 | Characterized by subchondral sclerosis and an increase in bone volume. Open subchondral bone fenestrae connecting bone marrow to articular cartilage still exist. Thickened subchondral bone trabeculae can be seen. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambova, S.N.; Ivanovska, N.; Stoyanova, S.; Belenska-Todorova, L.; Georgieva, E.; Batsalova, T.; Moten, D.; Apostolova, D.; Dzhambazov, B. Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate. Int. J. Mol. Sci. 2023, 24, 10103. https://doi.org/10.3390/ijms241210103
Lambova SN, Ivanovska N, Stoyanova S, Belenska-Todorova L, Georgieva E, Batsalova T, Moten D, Apostolova D, Dzhambazov B. Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate. International Journal of Molecular Sciences. 2023; 24(12):10103. https://doi.org/10.3390/ijms241210103
Chicago/Turabian StyleLambova, Sevdalina Nikolova, Nina Ivanovska, Stela Stoyanova, Lyudmila Belenska-Todorova, Elenka Georgieva, Tsvetelina Batsalova, Dzhemal Moten, Desislava Apostolova, and Balik Dzhambazov. 2023. "Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate" International Journal of Molecular Sciences 24, no. 12: 10103. https://doi.org/10.3390/ijms241210103
APA StyleLambova, S. N., Ivanovska, N., Stoyanova, S., Belenska-Todorova, L., Georgieva, E., Batsalova, T., Moten, D., Apostolova, D., & Dzhambazov, B. (2023). Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate. International Journal of Molecular Sciences, 24(12), 10103. https://doi.org/10.3390/ijms241210103