An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations and Suggestions for Model Design
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rothen-Rutishauser, B.; Gibb, M.; He, R.; Petri-Fink, A.; Sayes, C.M. Human lung cell models to study aerosol delivery–Considerations for model design and development. Eur. J. Pharm. Sci. 2022, 180, 106337. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.L. Alternative test methods in inhalation toxicology: Challenges and opportunities. Exp. Toxicol. Pathol. 2008, 60, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, M. Respiratory sensitization. In Inhalation Toxicology; CRC Press: Boca Raton, FL, USA, 2006; pp. 243–267. [Google Scholar]
- Michaels, D.D. RE: Occupational Safety and Health Administration (OSHA) Draft Weight of Evidence Guidance Document (OSHA-2016-0004); CDC OSHA: Washington, DC, USA, 2016. [Google Scholar]
- Boverhof, D.R.; Billington, R.; Gollapudi, B.B.; Hotchkiss, J.A.; Krieger, S.M.; Poole, A.; Wiescinski, C.M.; Woolhiser, M.R. Respiratory sensitization and allergy: Current research approaches and needs. Toxicol. Appl. Pharmacol. 2008, 226, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gibb, M.; Sayes, C. An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem.-Biol. Interact. 2022, 368, 110232. [Google Scholar] [CrossRef]
- Kimber, I.; Basketter, D.A.; Gerberick, G.F.; Ryan, C.A.; Dearman, R.J. Chemical allergy: Translating biology into hazard characterization. Toxicol. Sci. 2011, 120 (Suppl. S1), S238–S268. [Google Scholar] [CrossRef]
- Chary, A.; Hennen, J.; Klein, S.G.; Serchi, T.; Gutleb, A.C.; Blömeke, B. Respiratory sensitization: Toxicological point of view on the available assays. Arch. Toxicol. 2018, 92, 803–822. [Google Scholar] [CrossRef]
- Stoccoro, A.; Karlsson, H.L.; Coppedè, F.; Migliore, L. Epigenetic effects of nano-sized materials. Toxicology 2013, 313, 3–14. [Google Scholar] [CrossRef]
- Fröhlich, E.; Salar-Behzadi, S. Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int. J. Mol. Sci. 2014, 15, 4795–4822. [Google Scholar] [CrossRef]
- Hoymann, H.G. Lung function measurements in rodents in safety pharmacology studies. Front. Pharmacol. 2012, 3, 156. [Google Scholar] [CrossRef] [Green Version]
- Bracken, M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009, 102, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Hackam, D.G.; Redelmeier, D.A. Translation of research evidence from animals to humans. JAMA 2006, 296, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Perlman, R.L. Mouse models of human diseaseAn evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [PubMed] [Green Version]
- Powell, K. Technology Feature| Replacing the replacements: Animal model alternatives. Science 2018, 362, 246. [Google Scholar] [CrossRef] [Green Version]
- Zarei, F.; Azari, M.R.; Salehpour, S.; Khodakarim, S.; Omidi, L.; Tavakol, E. Respiratory effects of simultaneous exposure to respirable crystalline silica dust, formaldehyde, and triethylamine of a group of foundry workers. J. Res. Health Sci. 2017, 17, 371. [Google Scholar]
- Silica, Crystalline. 2023. Available online: https://www.osha.gov/silica-crystalline (accessed on 15 January 2023).
- Berg, J.M.; Romoser, A.A.; Figueroa, D.E.; West, C.S.; Sayes, C.M. Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2. Toxicol. Vitr. 2013, 27, 24–33. [Google Scholar] [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.-S.; Duffin, R.; Bradley, M.; Megson, I.L.; MacNee, W.; Howie, S.E.; Donaldson, K. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur. Respir. J. 2012, 39, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Park, E.-J.; Bae, E.; Yi, J.; Kim, Y.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C.; Park, K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010, 30, 162–168. [Google Scholar] [CrossRef]
- De Jong, W.H.; Van Der Ven, L.T.; Sleijffers, A.; Park, M.V.; Jansen, E.H.; Van Loveren, H.; Vandebriel, R.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 2013, 34, 8333–8343. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Hwang, S.-H.; Jeong, J.; Han, Y.; Kim, S.-H.; Lee, D.-K.; Lee, H.-S.; Chung, S.-T.; Jeong, J.; Roh, C. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part. Fibre Toxicol. 2015, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Roach, K.A.; Anderson, S.E.; Stefaniak, A.B.; Shane, H.L.; Kodali, V.; Kashon, M.; Roberts, J.R. Surface area-and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhal. Toxicol. 2019, 31, 299–324. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.H.; Kuper, C.F. Animal models to test respiratory allergy of low molecular weight chemicals: A guidance. Methods 2007, 41, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Pauluhn, J.; Mohr, U. Experimental approaches to evaluate respiratory allergy in animal models. Exp. Toxicol. Pathol. 2005, 56, 203–234. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 2010, 376, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Blank, F.; Rothen-Rutishauser, B.; Gehr, P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am. J. Respir. Cell Mol. Biol. 2007, 36, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Blank, F.; Wehrli, M.; Lehmann, A.; Baum, O.; Gehr, P.; von Garnier, C.; Rothen-Rutishauser, B.M. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology 2011, 216, 86–95. [Google Scholar] [CrossRef]
- Fytianos, K.; Chortarea, S.; Rodriguez-Lorenzo, L.; Blank, F.; Von Garnier, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 2017, 11, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, X.; Liu, X.; Zheng, J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM2. 5: A comparison of growth under ALI and submerged conditions. Toxicol. Res. 2020, 9, 636–651. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Liu, X.; Zheng, J.; Chen, R.; Kan, H. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol. Lett. 2019, 301, 133–145. [Google Scholar] [CrossRef]
- Bedoret, D.; Wallemacq, H.; Marichal, T.; Desmet, C.; Calvo, F.Q.; Henry, E.; Closset, R.; Dewals, B.; Thielen, C.; Gustin, P. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Investig. 2009, 119, 3723–3738. [Google Scholar] [CrossRef] [Green Version]
- Sibille, Y.; Reynolds, H.Y. Macrophages and Polymorphonuclear neutrophils in lung defense and Injury1-2. Am. Rev. Respir. Dis. 1990, 141, 471–501. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, M.; Fievez, L.; Drion, P.; Cataldo, D.; Bureau, F.; Lekeux, P.; Desmet, C. Myeloid hypoxia-inducible factor 1α prevents airway allergy in mice through macrophage-mediated immunoregulation. Mucosal Immunol. 2013, 6, 485–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Major histocompatibility complex molecules and antigen presentation to T lymphocytes. In Cellular and Molecular Immunology, 7th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2010; pp. 109–138. [Google Scholar]
- Holt, P.G.; Haining, S.; Nelson, D.J.; Sedgwick, J.D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 1994, 153, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Forreryd, A.; Johansson, H.; Albrekt, A.-S.; Borrebaeck, C.A.; Lindstedt, M. Prediction of chemical respiratory sensitizers using GARD, a novel in vitro assay based on a genomic biomarker signature. PLoS ONE 2015, 10, e0118808. [Google Scholar] [CrossRef] [PubMed]
- Hosoki, K.; Boldogh, I.; Sur, S. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, B.; Smith, J.B.; Freeman, G.L. Ischemia-reperfusion of rat myocardium activates nuclear factor-κB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 2001, 103, 2296–2302. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, R.J.; Lloyd, C.M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 2021, 21, 347–362. [Google Scholar] [CrossRef]
- Wuyts, A.; D’Haese, A.; Cremers, V.; Menten, P.; Lenaerts, J.-P.; De Loof, A.; Heremans, H.; Proost, P.; Van Damme, J. NH2-and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. J. Immunol. 1999, 163, 6155–6163. [Google Scholar] [CrossRef]
- Balamayooran, G.; Batra, S.; Cai, S.; Mei, J.; Worthen, G.S.; Penn, A.L.; Jeyaseelan, S. Role of CXCL5 in leukocyte recruitment to the lungs during secondhand smoke exposure. Am. J. Respir. Cell Mol. Biol. 2012, 47, 104–111. [Google Scholar] [CrossRef] [Green Version]
- de Souza, A.R.; Zago, M.; Eidelman, D.H.; Hamid, Q.; Baglole, C.J. Aryl hydrocarbon receptor (AhR) attenuation of subchronic cigarette smoke-induced pulmonary neutrophilia is associated with retention of nuclear RelB and suppression of intercellular adhesion molecule-1 (ICAM-1). Toxicol. Sci. 2014, 140, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Foronjy, R.F.; Salathe, M.A.; Dabo, A.J.; Baumlin, N.; Cummins, N.; Eden, E.; Geraghty, P. TLR9 expression is required for the development of cigarette smoke-induced emphysema in mice. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L154–L166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyaseelan, S.; Manzer, R.; Young, S.K.; Yamamoto, M.; Akira, S.; Mason, R.J.; Worthen, G.S. Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am. J. Respir. Cell Mol. Biol. 2005, 32, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikota, J.K.; Shen, P.; Morissette, M.C.; Fernandes, K.; Roos, A.; Chu, D.K.; Barra, N.G.; Iwakura, Y.; Kolbeck, R.; Humbles, A.A. Cigarette smoke primes the pulmonary environment to IL-1α/CXCR-2–dependent nontypeable Haemophilus influenzae–exacerbated neutrophilia in mice. J. Immunol. 2014, 193, 3134–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bethin, K.E.; Vogt, S.K.; Muglia, L.J. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc. Natl. Acad. Sci. USA 2000, 97, 9317–9322. [Google Scholar] [CrossRef] [Green Version]
- Waage, A.; Brandtzaeg, P.; Halstensen, A.; Kierulf, P.; Espevik, T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med. 1989, 169, 333–338. [Google Scholar] [CrossRef]
- Gubernatorova, E.O.; Gorshkova, E.A.; Namakanova, O.A.; Zvartsev, R.V.; Hidalgo, J.; Drutskaya, M.S.; Tumanov, A.V.; Nedospasov, S.A. Non-redundant functions of IL-6 produced by macrophages and dendritic cells in allergic airway inflammation. Front. Immunol. 2018, 9, 2718. [Google Scholar] [CrossRef] [Green Version]
- Bickel, M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol. 1993, 64 (Suppl. S5), 456–460. [Google Scholar]
- Milara, J.; Mata, M.; Mauricio, M.D.; Donet, E.; Morcillo, E.J.; Cortijo, J. Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. Eur. J. Pharmacol. 2009, 609, 132–139. [Google Scholar] [CrossRef]
- Pantelidis, P.; Southcott, A.; Black, C.; Du Bois, R. Up-regulation of IL-8 secretion by alveolar macrophages from patients with fibrosing alveolitis: A subpopulation analysis. Clin. Exp. Immunol. 1997, 108, 95–104. [Google Scholar] [CrossRef]
- Jorens, P.G.; Van Damme, J.; De Backer, W.; Bossaert, L.; De Jongh, R.F.; Herman, A.G.; Rampart, M. Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine 1992, 4, 592–597. [Google Scholar] [CrossRef]
- Nocker, R.E.; Schoonbrood, D.F.; van de Graaf, E.A.; Hack, E.; Lutter, R.; Jansen, H.M.; Out, T.A. lnterleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 1996, 109, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, C.L.; Shaughnessy, T.E.; Matthay, M.A.; Fahy, J.V. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and biologic significance. Am. J. Respir. Crit. Care Med. 2000, 161, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.J.; Lukacs, N.W. A closer look at chemokines and their role in asthmatic responses. Eur. J. Pharmacol. 2006, 533, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Han, D.H.; Kim, D.-Y.; Lee, C.H.; Rhee, C.-S. Role of interleukin-17A on the chemotactic responses to ccl7 in a murine allergic rhinitis model. PLoS ONE 2017, 12, e0169353. [Google Scholar] [CrossRef] [Green Version]
- Ovidiu, B.; Mihai, D.; Ramona, C.; Catalin, T.; Anca, S.-P.; Roxana, S.-C.; Calin, G. The Relationship between Chemokine Ligand 3 and Allergic Rhinitis. Cureus 2020, 12, e7783. [Google Scholar]
- Lloyd, C. Chemokines in allergic lung inflammation. Immunology 2002, 105, 144. [Google Scholar] [CrossRef]
- Castan, L.; Magnan, A.; Bouchaud, G. Chemokine receptors in allergic diseases. Allergy 2017, 72, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.L.; Holian, A. Sex differences in the inflammatory immune response to multi-walled carbon nanotubes and crystalline silica. Inhal. Toxicol. 2019, 31, 285–297. [Google Scholar] [CrossRef]
- Golden, E.; Maertens, M.; Hartung, T.; Maertens, A. Mapping chemical respiratory sensitization: How useful are our current computational tools? Chem. Res. Toxicol. 2020, 34, 473–482. [Google Scholar] [CrossRef]
- Alves, V.M.; Capuzzi, S.J.; Muratov, E.N.; Braga, R.C.; Thornton, T.E.; Fourches, D.; Strickland, J.; Kleinstreuer, N.; Andrade, C.H.; Tropsha, A. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization. Green Chem. 2016, 18, 6501–6515. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Hartung, T. Food for thought… on animal tests. ALTEX-Altern. Anim. Exp. 2008, 25, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leist, M.; Hartung, T. Inflammatory findings on species extrapolations: Humans are definitely no 70-kg mice. Arch. Toxicol. 2013, 87, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dik, S.; Rorije, E.; Schwillens, P.; van Loveren, H.; Ezendam, J. Can the direct peptide reactivity assay be used for the identification of respiratory sensitization potential of chemicals? Toxicol. Sci. 2016, 153, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Lalko, J.F.; Dearman, R.J.; Gerberick, G.F.; Troutman, J.; Api, A.; Kimber, I. Reactivity of chemical respiratory allergens in the Peroxidase Peptide Reactivity Assay. Toxicol. Vitr. 2013, 27, 651–661. [Google Scholar] [CrossRef]
- Palmberg, L.; Larsson, B.-M.; Malmberg, P.; Larsson, K. Induction of IL-8 production in human alveolar macrophages and human bronchial epithelial cells in vitro by swine dust. Thorax 1998, 53, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Hellman, P.; Eriksson, H. Early activation markers of human peripheral dendritic cells. Hum. Immunol. 2007, 68, 324–333. [Google Scholar] [CrossRef]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.-J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Cella, M.; Engering, A.; Pinet, V.; Pieters, J.; Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997, 388, 782–787. [Google Scholar] [CrossRef]
- Pierre, P.; Turley, S.J.; Gatti, E.; Hull, M.; Meltzer, J.; Mirza, A.; Inaba, K.; Steinman, R.M.; Mellman, I. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 1997, 388, 787–792. [Google Scholar] [CrossRef]
- Sallusto, F.; Schaerli, P.; Loetscher, P.; Schaniel, C.; Lenig, D.; Mackay, C.R.; Qin, S.; Lanzavecchia, A. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 1998, 28, 2760–2769. [Google Scholar] [CrossRef]
- Mbongue, J.C.; Nieves, H.A.; Torrez, T.W.; Langridge, W.H. The role of dendritic cell maturation in the induction of insulin-dependent diabetes mellitus. Front. Immunol. 2017, 8, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.V.; Nino-Castro, A.C.; Schultze, J.L. Regulatory dendritic cells: There is more than just immune activation. Front. Immunol. 2012, 3, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Harris, F.L.; Brown, L.A.S. Alcohol induced mitochondrial oxidative stress and alveolar macrophage dysfunction. BioMed Res. Int. 2014, 2014, 371593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.E.; Alvarez, J.A.; Staitieh, B.; Tangpricha, V.; Hao, L.; Ziegler, T.R.; Martin, G.S.; Brown, L.A.S. Oxidative stress in critically ill ventilated adults: Effects of vitamin D3 and associations with alveolar macrophage function. Eur. J. Clin. Nutr. 2018, 72, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Al-Humadi, N.H.; Siegel, P.D.; Lewis, D.M.; Barger, M.W.; Ma, J.Y.; Weissman, D.N.; Ma, J.K. Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure. Environ. Health Perspect. 2002, 110, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbiati, V.; Marinovich, M.; Corsini, E. Mechanistic understanding of dendritic cell activation in skin sensitization: Additional evidences to support potency classification. Toxicol. Lett. 2020, 322, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Drasler, B.; Karakocak, B.B.; Tankus, E.B.; Barosova, H.; Abe, J.; Sousa de Almeida, M.; Petri-Fink, A.; Rothen-Rutishauser, B. An inflamed human alveolar model for testing the efficiency of anti-inflammatory drugs in vitro. Front. Bioeng. Biotechnol. 2020, 8, 987. [Google Scholar] [CrossRef]
- Pollmächer, J.; Figge, M.T. Agent-based model of human alveoli predicts chemotactic signaling by epithelial cells during early Aspergillus fumigatus infection. PLoS ONE 2014, 9, e111630. [Google Scholar] [CrossRef]
- Prasad, A.; Sedlářová, M.; Balukova, A.; Ovsii, A.; Rác, M.; Křupka, M.; Kasai, S.; Pospíšil, P. Reactive oxygen species imaging in U937 cells. Front. Physiol. 2020, 11, 552569. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shen, C.; Rey-Ladino, J.; Yu, H.; Brunham, R.C. Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia muridarum antigen presentation and induction of protective immunity. Infect. Immun. 2008, 76, 2392–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessa, M.J.; Brandão, F.; Fokkens, P.H.; Leseman, D.L.; Boere, A.J.F.; Cassee, F.R.; Salmatonidis, A.; Viana, M.; Vulpoi, A.; Simon, S. In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: Air–liquid interface versus submerged cultures. Nanomaterials 2021, 11, 3225. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Jürets, A.; Wallner, M.; Briza, P.; Ruzek, S.; Hainzl, S.; Pichler, U.; Kitzmüller, C.; Bohle, B.; Huber, C.G. Assessing protein immunogenicity with a dendritic cell line-derived endolysosomal degradome. PLoS ONE 2011, 6, e17278. [Google Scholar] [CrossRef] [Green Version]
- Paardekooper, L.M.; Dingjan, I.; Linders, P.T.; Staal, A.H.; Cristescu, S.M.; Verberk, W.C.; Van den Bogaart, G. Human monocyte-derived dendritic cells produce millimolar concentrations of ROS in phagosomes per second. Front. Immunol. 2019, 10, 1216. [Google Scholar] [CrossRef] [Green Version]
Specified Pathway | Regulation | Cytokines | Biological Consequence Related to Sensitization |
---|---|---|---|
Chemokine Signaling | UP | CCL1, CCL2, CCL3, CCL5, CCL7, CCL17, CCL18, CCL19, CCL20, CCL22, CXCL1, CXCL2, CXCL5, CXCL9, CXCL10, CXCL13, PPBP | Cell infiltration, growth, survival, differentiation, ROS production, cytoskeletal changes, leukocyte migration |
DOWN | CCL8, CCL11, CCL13, CCL21, CCL24, CXCL11, CXCL12, CXCL16, CX3CL1, XCL1, | Inhibition of cell cycling | |
Cytosolic DNA-sensing pathway | UP | CXCL5, CXCL10, IL-1b, IL-6, IL-18 | Production of pro-inflammatory cytokines, type I interferons, NK cell activation |
DOWN | IFNa2 | Decreased NK cell activation, improved cell survival | |
Rheumatoid arthritis | UP | CCL2, CCL20, CCL3, CCL5, CXCL1, CXCL2, CXCL5, CSF1/2, IFNg, IL-1a, IL-1b, IL-6, IL-11, IL-15, IL-17a, IL-18, LTB, TGFb2, TNF, VEGFa, TNFSF11, TNFSF13b | Fibroblast activation, angiogenesis, VEGFa signaling, leukocyte migration, inflammatory cell infiltration |
DOWN | CXCL12, IL-23a | Decreased inflammatory cell responses, decreased vasculature permeability | |
Toll-like receptor signaling pathway | UP | CCL3, CCL5, CXCL9, CXCL10, IL-1b, IL-6, IL-12a, IL-12b, SPP1, TNF | Production of inflammatory cytokines, T cell stimulation and recruitment |
DOWN | INFa2, CXCL11 | decreased TH2 response | |
Jak-STAT signaling pathway | UP | LIF, CNTF, CSF2, IFNg, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12a, IL-12b, IL-15, IL-21, IL-22, IL-24, OSM, THPO | Cell proliferation, differentiation, survival |
DOWN | IFNa2, CSF3, IL-13, IL-23a, IL-27 | Decreased cell cycling | |
Inflammatory bowel disease | UP | IFNg, IL-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12a, IL-12b, IL-17a, IL-17f, IL-18, IL-21, IL-22, TGFb2, TNF | Inflammatory pathways and autoimmune responses, T helper (Th) 1, 2, 17 differentiation |
DOWN | IL-13, IL-23a | Decrease in T helper (TH) 1 and 17 effector cells, regulatory T cells, and NKT cells | |
RIG-I-like receptor signaling pathway | UP | CXCL10, IFNa2, IL-12a, IL-12b, TNF | Inflammatory cytokines, type 1 interferons, protein synthesis, dendritic cell activation, NK cell activation, cytotoxic T lymphocyte (CTL) differentiation, antibody production |
Type 1 diabetes mellitus | UP | FASLG, IFNg, IL-1a, IL-b, IL-2, IL-12a, IL-12b, LTA, TNF | Upregulation of MHCII, macrophage activation, cytotoxic T lymphocyte (CTL) differentiation, CD4 T cell activation |
Asthma | UP | CD40lg, IL-3, IL-4, IL-5, IL-9, IL-10, TNF | Lung epithelial cell and fibroblast activation, T helper cell 2 differentiation and B cell interactions, mast cell activation, eosinophil recruitment and activation |
DOWN | CCL11, IL-13 | Decrease in smooth muscle cell recruitment and repair, decrease in eosinophil recruitment | |
PI3-Akt signaling pathway | UP | FASLG, CSF1, IFNa2, IL-2, IL-3, IL-4, IL-6, IL-7, OSM, SPP1, VEGFa | Cell proliferation, DNA repair, angiogenesis, cell survival |
DOWN | CSF3 | Decreases in cell survival | |
T cell receptor signaling pathway | UP | CD40lg, CSF2, IFNg, IL-2, IL-4, IL-5, IL-10, TNF | Proliferation, differentiation, immune response, PI3-Akt and Nf-kappa B pathway activation |
NF-kappa B signaling pathway | UP | CCL19, CXCL1, CXCL2, CD40lg, TNFSF11, TNFSF13b, IL-1b, LTA, LTB, TNF | Auto-ubiquitination, cell survival |
DOWN | CCL13, CCL21, CXCL12 | Decreased CD8 T-cell homing, decreased epithelial cell repair after lung injury | |
TGF-beta signaling pathway | UP | BMP2, BMP6, BMP7, IFNg, TGFb2, TNF, NODAL | Iron metabolism, transcription factor activation, ubiquitin-mediated proteolysis |
BMP4 | Decreased T cell differentiation, decreased iron metabolism | ||
NOD-like receptor signaling pathway | UP | CCL2, CCL5, CXCL1, CXCL2, IFNa2, IL-1b, IL-6, IL-18, TNF | Proinflammatory cytokine release, NLRP3 inflammasome activation |
Natural killer cell mediated cytotoxicity | UP | FASLG, TNFSF10, CSF2, IFNa2, IFNg, TNF | Inflammatory cytokine release, release of granules from granulocytes |
TNF signaling | UP | CCL2, CCL5, CCL20, CXCL1, CXCL2, CXCL5, CXCL10, LIF, CSF1/2, IL-1b, IL-6, IL-15, LTA, TNF | Leukocyte recruitment and activation, inflammatory cytokine release, cell survival |
DOWN | CX3CL1 | Decreased leukocyte recruitment and activation |
Specified Pathway | Regulation | Cytokines | Biological Consequence Related to Sensitization |
---|---|---|---|
Chemokine signaling | UP | XCL1, CCL1, CCL12, CCL17, CCL19, CCL2, CCL20, CCL22, CCL24, CCL3, CCl4, CCL5, CCL7, CXCL1, CXCL10, CXCL11, CXCL13, CXCL16, CXCL5, CXCL9, CX3CL1, PF4, PPBP | Cell infiltration, growth, survival, differentiation, ROS production, cytoskeletal changes, leukocyte migration |
DOWN | CCL11, CXCL12, CXCL3 | Inhibition of activated granulocytes | |
Cytosolic DNA-sensing pathway | UP | CCL4, CCL5, CXCL10, IFNa2, IL-1b, IL-18, IL-6 | Production of pro-inflammatory cytokines, type I interferons, NK cell activation |
Rheumatoid arthritis | UP | CCL12, CCL2, CCL20, CCL3, CCL5, CXCL1, CXCL5, CSF1/2, IFNg, IL-1a, IL-1b, IL-11, IL-17a, IL-18, IL-23a, IL-6, LTB, TGFB2, TNFSF11, TNFSF13b, TNF, VEGFa | Fibroblast activation, angiogenesis, VEGFa signaling, leukocyte migration, inflammatory cell infiltration |
DOWN | CXCL12, CXCL3, IL-15, | Decreases in autocrine function of self-reactive Th1 cells, decreases in Th17 differentiation, decreases in blood vessel permeability | |
Toll-like receptor signaling pathway | UP | CCL3, CCL4, CCL5, CXCL10, CXCL11, CXCL9, IFNa2, IL-1b, IL-12a, IL-12b, IL-6, SPP1, TNF | Chemotaxis of leukocytes, T cell stimulation and recruitment |
Jak-STAT signaling pathway | UP | CTF1, CNTF, CSF2/3, IFNa2, IFNg, IL-10, IL-11, IL-12a, IL-12b, IL-13, IL-2, IL-23a, IL-24, IL-27, IL-3, IL-5, IL-6, IL7, IL-9, OSM, THPO | Cell proliferation, differentiation, survival |
DOWN | IL-15, IL-21, IL-22, IL-4, LIF | Decreases in cell cycling, proliferation, differentiation, and survival | |
Inflammatory bowel disease | UP | IFNg, IL-1a, IL-1b, IL-10, IL-12a, IL-12b, IL-13, IL-17a, IL-17f, IL-18, IL-2, IL-23a, IL-5, IL-6, TGFB2, TNF | Inflammatory pathways and autoimmune responses |
DOWN | IL-21, IL-22, IL-4, | Decrease in T helper (TH) 1 and 17 effector cells, regulatory T cells, and NKT cells | |
RIG-I-like receptor signaling pathway | UP | CXCL10, IFNa2, IL-12a, IL-12b, TNF | Protein synthesis, dendritic cell activation, NK cell activation, cytotoxic T lymphocyte (CTL) differentiation, antibody production |
Type 1 diabetes mellitus | DOWN | FASL, IFNg, IL-1a, IL-1b, IL-12a, IL-12b, IL-2, LTA, TNF | Decreases in cytotoxic CD8+ T cells |
Asthma | UP | CD40lg, IL-10, IL-13, IL-3, IL-4, IL-5, IL-9, TNF | Decreases in mast cell activation |
DOWN | CCL11 | Decrease in smooth muscle cell recruitment and repair, decrease in eosinophil recruitment | |
PI3-Akt signaling pathway | UP | FASL, CSF1, CSF3, IFNa2, IL-2, IL-3, IL-6, IL-7, OSM, SPP1, VEGFa | Cell proliferation, DNA repair, angiogenesis, cell survival |
Down | IL-4 | Decreases in cell survival | |
T cell receptor signaling pathway | UP | CD40LG, CSF2, IFNg, IL-10, IL-2, IL-4, IL-5, TNF | Proliferation, differentiation, immune response, PI3-Akt and Nf-kappa B pathway activation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibb, M.; Sayes, C.M. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int. J. Mol. Sci. 2023, 24, 10104. https://doi.org/10.3390/ijms241210104
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. International Journal of Molecular Sciences. 2023; 24(12):10104. https://doi.org/10.3390/ijms241210104
Chicago/Turabian StyleGibb, Matthew, and Christie M. Sayes. 2023. "An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential" International Journal of Molecular Sciences 24, no. 12: 10104. https://doi.org/10.3390/ijms241210104
APA StyleGibb, M., & Sayes, C. M. (2023). An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. International Journal of Molecular Sciences, 24(12), 10104. https://doi.org/10.3390/ijms241210104