Management of Neonatal Isolated and Combined Growth Hormone Deficiency: Current Status
Abstract
:1. Introduction
Congenital | Perinatal/Neonatal |
---|---|
Congenital infections | Breech delivery/asphyxia |
Midline defect syndromes (e.g., septo-optic dysplasia) | Neonatal sepsis |
Gene mutations * |
Gene | OMIM | Genomic Location | Inheritance | Clinical Presentation | Radiological Presentation (MRI) | IGHD | MPHD |
---|---|---|---|---|---|---|---|
ISOLATED GROWTH HORMONE DEFICIENCY | |||||||
GH1 | * 139250 | 17q23.3 | 1A: AR 1B: AR 2: AD | Postnatal severe (1A) or milder (1B) growth failure and GHD | Normal/hypoplastic anterior pituitary (AP) lobe (type 1A and 1B) | + | + (type II) |
Growth hormone 1 | Ectopic posterior pituitary (PP) (type II) | ||||||
GHRHR | * 139191 | 7p14.3 | AR | GHD symptoms, Milder growth insufficiency (1B) | Normal/hypoplastic AP lobe | + | - |
Growth hormone releasing hormone receptor | |||||||
NON-SYNDROMIC HYPOPITUITARISM | |||||||
PIT1 (POU1F1) | * 173110 | 3p11.2 | AD, AR | Hypopituitarism symptoms | Hypoplastic/normally sized AP lobe | + | + (GH, PRL, TSH) |
Pituitary specific positive transcription factor 1 | No extra pituitary abnormalities | ||||||
PROP1 | * 601538 | 5q35.3 | AR | Hypopituitarism symptoms | Hypoplastic/normal or enlarged AP lobe | + | + (GH, TSH, PRL, LH, FSH, ACTH *) |
Homeobox protein prophet of PIT1 | No extra pituitary abnormalities | ||||||
SYNDROMIC HYPOPITUITARISM | |||||||
1. Septo-optic dysplasia (SOD) and its variants | |||||||
HESX1 | * 601802 | 13p14.3 | AD, AR | SOD, IGHD to MPHD with or without optic nerve hypoplasia and or mid-line brain abnormalities, intellectual disability | Normal/hypoplastic/agenesis AP lobe, ectopic PP lobe, agenesis PS, CC agenesis | + | + (GH, TSH, PRL, LH, FSH, ACTH, DI) |
Homeobox expressed in ES cells 1 | |||||||
SOX2 | * 184429 | 3q26.33 | AD | Micro-/anophthalmia, esophageal atresia, genital, dental and brain anomalies, sensorineural hearing loss, micropenis, intellectual disability | Hypoplastic AP lobe, eutopic/ectopic/not visible PP lobe, hypothalamic hamartoma | + | + (LH, FSH, GH) |
Sex determining region Y box 2 | |||||||
SOX3 | * 313430 | Xq27.1 | X-Linked | Craniofacial abnormalities with or without intellectual disability, hearing impairment. | Hypoplastic AP lobe, agenesis/thin PS, CC abnormalities | + | + (GH, TSH, ACTH, LH, FSH) |
Sex determining region Y box 3 | |||||||
OTX2 | * 600037 | 14q22.3 | AD | Micro/anophthalmia, seizures, brain malformations, intellectual disability, microcephaly, cleft palate | Hypoplastic/normal AP lobe, agenesis PS, Chiari I malformation | + | + (GH, TSH, LH, FSH ACTH) |
Orthodenticle homeobox 2 | |||||||
PAX6 | * 607108 | 11p13 | AD | Midline craniofacial malformations, ophthalmologic abnormalities | Hypoplastic AP lobe | + | + (GH, ACTH, LH, FSH) |
Paired Box Gene 6 | |||||||
BMP4 | * 112262 | 14q22.2 | AR | Macrocephaly, mild psychomotor retardation, skeletal malformations, anophthalmia/microphthalmia | Hypoplastic AP lobe, ectopic/not visible PP lobe, CC abnormalities | - | + |
Bone morphogenetic proteins | |||||||
FGFR1 | * 136350 | 8p11.23 | AD | SOD, midline craniofacial and hand malformations, seizures, Kallmann syndrome | Normal or hypoplastic AP lobe, ectopic/eutopic PP lobe, normal/thin/agenesis PS, CC agenesis | - | + (GH, TSH, ACTH, LH, FSH, DI) |
Fibroblast growth factor receptor 1 | |||||||
ARNT2 | * 606036 | 15q25.1 | AR | Eye malformations, microcephaly, renal abnormalities, seizures | Hypoplastic AP lobe, ectopic PP, thin PS, CC abnormalities | + | + (DI, ACTH, GH, TSH) |
Aryl hydrocarbon receptor nuclear translocator 2 | |||||||
PROKR2 | * 607123 | 20p12.3 | AD, AR | Neonatal hypoglycemia, micropenis, SOD, Hirschsprung disease, microcephaly, epilepsy | Hypoplastic AP lobe, ectopic/eutopic PP lobe, agenesis PS, hypoplastic CC | + ° | + (GH, TSH, ACTH) |
Prokineticin receptor 2 | |||||||
2. Holoprosencephaly | |||||||
GLI2 | * 165230 | 2q14.2 | AD | Holoprosencephaly, anophthalmia, cleft lip/palate, midline malformations, imperforate anus, renal agenesis | AP hypoplasia, ectopic/not visible PP lobe | + | + (GH, TSH, ACTH, LH, FSH) |
Zinc finger protein 2 | |||||||
FGF8 | * 600483 | 10q24.32 | AD, AR | Holoprosencephaly, SOD, Kallmann Syndrome, Moebius syndrome, microcephaly, spastic diplegia | Enlarged/normal AP lobe, eutopic PP lobe | + | + (LH, FSH, TSH, ACTH, DI, GH ^) |
Fibroblast growth factor 8 | |||||||
3. Pituitary stalk interruption syndrome | |||||||
GPR161 | * 612250 | 1q24.2 | AR | Facial (congenital ptosis, alopecia) and hands (syndactyly, nail hypoplasia), dysmorphisms | Hypoplastic AP lobe, ectopic PP lobe, pituitary stalk interruption syndrome described | + ° | + (GH, TSH, ADH) |
G Protein-Coupled Receptor 161 | |||||||
PROKR2 | * 607123 | 20p12.3 | AD, AR | Neonatal hypoglycemia, micropenis, SOD, Hirschsprung disease, microcephaly, epilepsy | Hypoplastic AP lobe, ectopic/eutopic PP lobe, agenesis PS, hypoplastic corpus callosum | + ° | + (GH, TSH, ACTH) |
Prokineticin receptor 2 | |||||||
OTX2 | * 600037 | 14q22.3 | AD | Micro/anophthalmia, seizures, brain malformations, intellectual disability, microcephaly, cleft palate | Hypoplastic/normal AP lobe, agenesis PS, Chiari I malformation | + | + (GH, TSH, LH, FSH ACTH) |
Orthodenticle homeobox 2 | |||||||
4. Other syndromes | |||||||
CHD7 | * 608892 | 8q12.2 | AD | CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and development, Genital hypoplasia and Ear and hearing abnormalities) | AP hypoplasia | + | + (GH, TSH, FSH, LH) |
Chromodomain Helicase DNA Binding Protein 7 | |||||||
GLI3 | * 165240 | 7p14.1 | AD | Pallister–Hall syndrome: polydactyly, bifid epiglottis, hypothalamic hamartoma, pituitary dysfunction, imperforate anus. | Hypothalamic hamartoma, AP hypoplasia | + | + (GH, TSH, LH, FSH, ACTH) |
Zinc finger protein 3 | |||||||
IGSF1 | * 300137 | Xq25 | X-linked | Macroorchidism, delay in puberty | Normal | + ** | + (GH, TSH, PRL) |
Immunoglobulin superfamily 1 | |||||||
LHX3 | * 600577 | 9q34.3 | AR | Spine abnormalities (short rigid cervical spine), variable degrees of sensorineural hearing loss | Enlarged/normal/hypoplastic AP lobe | + | + (GH, TSH, LH, FSH, PRL) |
LIM/homeobox protein 3 | |||||||
LHX4 | * 602146 | 1q25.2 | AD | Cerebellar abnormalities | Enlarged//hypoplastic AP lobe, agenesis PS, pituitary cysts, small sella turcica, cerebellar anomalies | + | + (GH, TSH, ACTH) |
LIM/homeobox protein 4 | |||||||
NFKB2 | * 164012 | 10q24.32 | AD | Variable Immune deficiency | Enlarged/normal/hypoplastic AP lobe, | + | + (ACTH, GH, TSH) |
Nuclear Factor Kappa-B, Subunit 2 | |||||||
PITX2 | * 601542 | 4q25 | AD | Axenfeld—Rieger syndrome: anterior eye chamber, dental hypoplasia, craniofacial dysmorphism, protuberant umbilicus | Hypoplastic AP lobe, hypoplasia of sella turcica | + | + (GH, LH, FSH) |
Paired-Like Homeodomain Transcription Factor 2 | |||||||
CDON | * 608707 | 11q24.2 | AD | Holoprosencephaly; possibly congenital heart disease, renal dysplasia, radial defects, gallbladder agenesis | Hypoplastic AP lobe, ectopic/eutopic PP, pituitary stalk interruption syndrome described | + | + (GH, TSH, ACTH) |
Cell adhesion molecule related/down regulated by oncogenes | |||||||
KCNQ1 | * 604115 | 11p15.5 | AR | Gingival fibromatosis, mild craniofacial dysmorphic features, short QT syndrome | Normal/small hypophysis, thin stalk | + | + (GH, TSH, LH, FSH, ACTH) |
Potassium Voltage-Gated Channel Subfamily Q Member 1 | |||||||
RAX | * 601881 | 18q21.32 | AR | Anophthalmia, microphthalmia and palatal anomalies (bilateral cleft lip and palate) | Aplastic pituitary | - | + (GH, TSH, LH, FSH, ACTH, DI) |
Retina and Anterior Neural Fold Homeobox Gene | |||||||
ROBO1 | * 602430 | 3p12.3 | AD | Eye anomalies (strabismus, ptosis) | Small/absent AP lobe, ectopic or absent PP lobe, interrupted or absent stalk | + ° | + (GH, TSH) |
Roundabout Guidance Receptor 1 | |||||||
MAGEL2 | * 605283 | 15q11.2 | AD | Hypotonia, obesity, developmental delay, contractures and dysmorphisms | Small PP lobe, thin CC, optic nerve hypoplasia | + | + (GHD, ACTH, ADH) |
Mage-Like 2 | |||||||
L1CAM | * 308840 | Xq28 | XLR | Arthrogryposis | Partial agenesis of CC | + | - |
L1 Cell Adhesion Molecule | |||||||
RNPC3 | * 618016 | 1p21.1 | AR | Typical phenotypic features of GHD | Pituitary hypoplasia | + | - |
RNA Binding Region (RNP1, RRM) Containing 3 | |||||||
TCF7L1 | * 604652 | 2p11.2 | AD | SOD | Absent PP lobe, AP hypoplasia, optic nerve hypoplasia, partial agenesis of CC, thin anterior commissure | + ° | + ° |
Transcription Factor 7 Like 1 | |||||||
TGIF1 | * 602630 | 18p11.31 | AD | Holoprosencephaly, midline cranial malformations | Hypoplastic AP lobe, ectopic PP lobe | + | + |
TGFB Induced Factor Homeobox 1 | |||||||
SIX3 | 2p21 | ||||||
FOXA2 | * 600288 | 20p11.21 | Deletion | Congenital hyperinsulinism and hypoglycemia | Small shallow sella, ectopic PP lobe, interrupted or absent stalk | + | + (GH, TSH, ACTH) |
Forkhead Box A2 | |||||||
TBC1D32 | * 615867 | 6q22.31 | AR | Oro-facial-digital syndrome: retinal dystrophy, developmental delay, facial dysmorphisms | Hypoplastic AP lobe, ectopic or absent PP lobe, CC agenesis | + | + |
TBC1 Domain Family, Member 32 | |||||||
EIF2S3 | * 300161 | Xp22.11 | XLR | MEHMO syndrome: profound intellectual disability, microcephaly, growth delay, hypogenitalism, obesity, early-onset diabetes, epilepsy | Hypoplastic AP lobe, white matter loss | + | + (GH, TSH) |
Eukaryotic Translation Initiation Factor 2, Subunit 3 | |||||||
IFT172 | * 607386 | 2p23.3 | AR | Retinopathy, metaphyseal dysplasia, and hypertension with renal failure | Hypoplastic AP lobe, ectopic PP lobe | + | - |
Intraflagellar Transport 172 | |||||||
LAMB2 | * 150325 | 3p21.31 | AR | Optic nerve hypoplasia, focal segmental glomerulosclerosis | Hypoplastic AP lobe | + | - |
Laminin, Beta-2 |
2. Clinical Presentation
3. Diagnosis
4. Treatment and Follow-Up
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binder, G.; Weber, K.; Rieflin, N.; Steinruck, L.; Blumenstock, G.; Janzen, N.; Franz, A.R. Diagnosis of severe growth hormone deficiency in the newborn. Clin. Endocrinol. 2020, 93, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Parkin, K.; Kapoor, R.; Bhat, R.; Greenough, A. Genetic causes of hypopituitarism. Arch. Med. Sci. 2019, 16, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Hindmarsh, P.C.; Stanhope, R.G.; Turton, J.P.; Cole, T.J.; Preece, M.A.; Dattani, M.T. The role of growth hormone in determining birth size and early postnatal growth, using congenital growth hormone deficiency (GHD) as a model. Clin. Endocrinol. 2005, 63, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Geffner, M.E. Hypopituitarism in childhood. Cancer Control 2002, 9, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Binder, G.; Weidenkeller, M.; Blumenstock, G.; Langkamp, M.; Weber, K.; Franz, A.R. Rational approach to the diagnosis of severe growth hormone deficiency in the newborn. J. Clin. Endocrinol. Metab. 2010, 95, 2219–2226. [Google Scholar] [CrossRef] [Green Version]
- Bosch, I.; Ara, L.; Katugampola, H.; Dattani, M.T. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front. Pediatr. 2021, 8, 600962. [Google Scholar] [CrossRef]
- Kurtoğlu, S.; Özdemir, A.; Hatipoğlu, N. Neonatal Hypopituitarism: Approaches to Diagnosis and Treatment. J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 4–12. [Google Scholar] [CrossRef]
- Alatzoglou, K.S.; Dattani, M.T. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum. Dev. 2009, 85, 705–712. [Google Scholar] [CrossRef]
- Ogilvy-Stuart, A.L. Growth hormone deficiency (GHD) from birth to 2 years of age: Diagnostic specifics of GHD during the early phase of life. Horm. Res. 2003, 60, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.; Adan, L.; Souberbielle, J.C.; Thalassinos, C.; Brunelle, F.; Brauner, R. Idiopathic growth hormone deficiency: Presentation, diagnostic and treatment during childhood. Ann. Endocrinol. 1999, 60, 224–231. [Google Scholar]
- Vasques, G.A.; Andrade, N.L.M.; Correa, F.A.; Jorge, A.A.L. Update on new GH-IGF axis genetic defects. Arch. Endocrinol. Metab. 2019, 63, 608–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, M.; Nagasaki, K.; Fujiwara, I.; Ishii, T.; Amano, N.; Asakura, Y.; Muroya, K.; Hasegawa, Y.; Adachi, M.; Hasegawa, T. Heterozygous defects in PAX6 gene and congenital hypopituitarism. Eur. J. Endocrinol. 2015, 172, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Mullis, P.E. Genetics of Isolated Growth Hormone Deficiency. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Gregory, L.C.; Dattani, M.T. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J. Clin. Endocrinol. Metab. 2020, 105, dgz184. [Google Scholar] [CrossRef]
- Arrigo, T.; Wasniewska, M.; De Luca, F.; Valenzise, M.; Lombardo, F.; Vivenza, D.; Vaccaro, T.; Coradi, E.; Biason-Lauber, A. Congenital adenohypophysis aplasia: Clinical features and analysis of the transcriptional factors for embryonic pituitary development. J. Endocrinol. Investig. 2006, 29, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, G.; Aversa, T.; Zirilli, G.; De Luca, F.; Gallizzi, R.; Wasniewska, M. Congenital hypopituitarism: How to select the patients for genetic analyses. Ital. J. Pediatr. 2018, 44, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xatzipsalti, M.; Voutetakis, A.; Stamoyannou, L.; Chrousos, G.P.; Kanaka-Gantenbein, C. Congenital Hypopituitarism: Various Genes, Various Phenotypes. Horm. Metab. Res. 2019, 51, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.J.; August, G.P.; Blethen, S.L.; Baptista, J. Neonatal hypoglycemia in a growth hormone registry: Incidence and pathogenesis. J. Pediatr. Endocrinol. Metab. 2004, 17, 629–635. [Google Scholar] [CrossRef]
- Urzola, A.; Leger, J.; Czernichow, P. Three cases of congenital growth hormone deficiency with micropenis and hypospadias: What does growth hormone have to do with it? Horm. Res. 1999, 51, 101–104. [Google Scholar] [CrossRef]
- Cimador, M.; Catalano, P.; Ortolano, R.; Giuffrè, M. The inconspicuous penis in children. Nat. Rev. Urol. 2015, 12, 205–215. [Google Scholar] [CrossRef]
- Bouvattier, C. Micropénis [Micropenis]. Arch. Pediatr. 2014, 21, 665–669. [Google Scholar] [CrossRef]
- Binder, G.; Martin, D.D.; Kanther, I.; Schwarze, C.P.; Ranke, M.B. The course of neonatal cholestasis in congenital combined pituitary hormone deficiency. J. Pediatr. Endocrinol. Metab. 2007, 20, 695–702. [Google Scholar] [CrossRef]
- Kaufman, F.R.; Costin, G.; Thomas, D.W.; Sinatra, F.R.; Roe, T.F.; Neustein, H.B. Neonatal cholestasis and hypopituitarism. Arch. Dis. Child. 1984, 59, 787–789. [Google Scholar] [CrossRef]
- Karnsakul, W.; Sawathiparnich, P.; Nimkarn, S.; Likitmaskul, S.; Santiprabhob, J.; Aanpreung, P. Anterior pituitary hormone effects on hepatic functions in infants with congenital hypopituitarism. Ann. Hepatol. 2007, 6, 97–103. [Google Scholar] [CrossRef]
- Sheehan, A.G.; Martin, S.R.; Stephure, D.; Scott, R.B. Neonatal cholestasis, hypoglycemia, and congenital hypopituitarism. J. Pediatr. Gastroenterol. Nutr. 1992, 14, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Aoyagi, H.; Tajima, T. A newborn with combined pituitary hormone deficiency developing shock and sludge. J. Pediatr. Endocrinol. Metab. 2017, 30, 1333–1336. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, L.E.; Del Vecchio, M.T.; Aronoff, S.C. Etiologies of conjugated hyperbilirubinemia in infancy: A systematic review of 1692 subjects. BMC Pediatr. 2015, 15, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blizzard, R.M.; Alberts, M. Hypopituitarism, hypoadrenalism, and hypogonadism in the newborn infant. J. Pediatr. 1956, 48, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Abu-Libdeh, A.; Abu-Libdeh, B.; Abdulhag, U.N. Neonatal Hypopituitarism: Unusual Presentation. J. Child Sci. 2017, 7, e103–e105. [Google Scholar] [CrossRef] [Green Version]
- Scommegna, S.; Galeazzi, D.; Picone, S.; Farinelli, E.; Agostino, R.; Bozzao, A.; Boscherini, B.; Cianfarani, S. Neonatal identification of pituitary aplasia: A life-saving diagnosis. Review of five cases. Horm. Res. 2004, 62, 10–16. [Google Scholar] [CrossRef]
- Gönç, E.N.; Kandemir, N.; Andiran, N.; Ozön, A.; Yordam, N. Cholestatic hepatitis as a result of severe cortisol deficiency in early infancy: Report of two cases and review of literature. Turk. J. Pediatr. 2006, 48, 376–379. [Google Scholar] [PubMed]
- Hawkes, C.P.; Grimberg, A. Measuring growth hormone and insulin-like growth factor-I in infants: What is normal? Pediatr. Endocrinol. Rev. 2013, 11, 126–146. [Google Scholar]
- Wit, J.M.; van Unen, H. Growth of infants with neonatal growth hormone deficiency. Arch. Dis. Child. 1992, 67, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Antoniazzi, F.; Cavarzere, P.; Gaudino, R. Growth hormone and early treatment. Minerva. Endocrinol. 2015, 40, 129–143. [Google Scholar]
- Chatelain, P. Dramatic early postnatal growth failure in children with early onset growth hormone deficiency. The International Board of the Kabi Pharmacia International Growth Study. Acta. Paediatr. Scand. Suppl. 1991, 379, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Gunn, A.J.; Wray, A.; Cutfield, W.S.; Chatelain, P.G.; Guilbaud, O.; Ambler, G.R.; Wilton, P.; Albertsson-Wikland, K. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J. Pediatr. 1992, 121, 920–923. [Google Scholar] [CrossRef]
- Carel, J.C.; Huet, F.; Chaussain, J.L. Treatment of growth hormone deficiency in very young children. Horm. Res. 2003, 60, 10–17. [Google Scholar] [CrossRef]
- Al-Jurayyan, R.N.; Al-Issa, S.D.; AlKhalifah, R.A.; Al-Otaibi, H.M.; Al-Jurayyan, N.A. Congenital Hypopituitarism in Saudi Arabia: Is it That Rare? Int. J. Pediatr. Neonat. Care 2018, 4, 145. [Google Scholar] [CrossRef] [Green Version]
- Craft, W.H.; Underwoood, L.E.; Van Wyk, J.J. High incidence of perinatal insult in children with idiopathic hypopituitarism. J. Pediatr. 1980, 96, 397–402. [Google Scholar] [CrossRef]
- López Úbeda, M.; de Arriba Muñoz, A.; Abenia Usón, P.; Labarta Aizpún, J.I. Hypopituitarism: An uncommon cause of developmental delay. Neurologia 2018, 33, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Rothermel, J.; Reinehr, T. Metabolic alterations in paediatric GH deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 757–770. [Google Scholar] [CrossRef]
- Stagi, S.; Scalini, P.; Farello, G.; Verrotti, A. Possible effects of an early diagnosis and treatment in patients with growth hormone deficiency: The state of art. Ital. J. Pediatr. 2017, 43, 81. [Google Scholar] [CrossRef] [Green Version]
- Kurtoğlu, S.; Kondolot, M.; Mazicioğlu, M.M.; Hatipoğlu, N.; Akin, M.A.; Akyildiz, B. Growth hormone, insulin like growth factor-1, and insulin-like growth factor-binding protein-3 levels in the neonatal period: A preliminary study. J. Pediatr. Endocrinol. Metab. 2010, 23, 885–889. [Google Scholar] [CrossRef]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H. Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.B.; Jeppesen, K.A.; Vielwerth, S.; Michaelsen, K.F.; Main, K.M.; Skakkebaek, N.E.; Juul, A. Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 as diagnostic markers of growth hormone deficiency in infancy. Horm. Res. 2005, 63, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Naafs, J.C.; Verkerk, P.H.; Fliers, E.; van Trotsenburg, A.S.P.; Zwaveling-Soonawala, N. Clinical and genetic characteristics of Dutch children with central congenital hypothyroidism, early detected by neonatal screening. Eur. J. Endocrinol. 2020, 183, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Lauffer, P.; Zwaveling-Soonawala, N.; Naafs, J.C.; Boelen, A.; van Trotsenburg, A.S.P. Diagnosis and Management of Central Congenital Hypothyroidism. Front. Endocrinol. 2021, 12, 686317. [Google Scholar] [CrossRef]
- Kelly, A.; Tang, R.; Becker, S.; Stanley, C.A. Poor specificity of low growth hormone and cortisol levels during fasting hypoglycemia for the diagnoses of growth hormone deficiency and adrenal insufficiency. Pediatrics 2008, 122, e522–e528. [Google Scholar] [CrossRef]
- Cherella, C.; Cohen, L. Congenital Hypopituitarism in Neonates. NeoReviews 2018, 19, e742–e752. [Google Scholar] [CrossRef]
- Shulman, D.I.; Palmert, M.R.; Kemp, S.F. Lawson Wilkins Drug and Therapeutics Committee. Adrenal insufficiency: Still a cause of morbidity and death in childhood. Pediatrics 2007, 119, e484–e494. [Google Scholar] [CrossRef] [Green Version]
- Oprea, A.; Bonnet, N.C.G.; Pollé, O.; Lysy, P.A. Novel insights into glucocorticoid replacement therapy for pediatric and adult adrenal insufficiency. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018818821294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagtap, V.; Shrikrishna, V.; Sarathi, V.; Lila, A.R.; Budyal, S.R.; Kasaliwal, R.; Sankhe, S.S.; Bandgar, T.R.; Menon, P.S.; Shah, N.S. Ectopic posterior pituitary and stalk Abnormality predicts severity and coexisting hormone deficiencies in patients with congenital growth hormone deficiency. Pituitary 2012, 15, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Laffan, E. Congenital Growth Hormone Deficiency—A Review with a Focus on Neuroimaging. Eur. Endocrinol. 2013, 9, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Laffan, E.; Lawrence, S. A retrospective review of pituitary MRI findings in children on growth hormone therapy. Pediatr. Radiol. 2012, 42, 799–804. [Google Scholar] [CrossRef]
- Maghnie, M.; Lindberg, A.; Koltowska-Häggström, M.; Ranke, M.B. Magnetic resonance imaging of CNS in 15,043 children with GH deficiency in KIGS (Pfizer International Growth Database). Eur. J. Endocrinol. 2013, 168, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Persani, L. Clinical review: Central hypothyroidism: Pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 2012, 97, 3068–3078. [Google Scholar] [CrossRef] [Green Version]
- Jonklaas, J.; Bianco, A.C.; Bauer, A.J.; Burman, K.D.; Cappola, A.R.; Celi, F.S.; Cooper, D.S.; Kim, B.W.; Peeters, R.P.; Rosenthal, M.S.; et al. Guidelines for the treatment of hypothyroidism: Prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 2014, 24, 1670–1751. [Google Scholar] [CrossRef] [Green Version]
- Stagi, S.; Municchi, G.; Ferrari, M.; Wasniewska, M.G. An Overview on Different L-Thyroxine (l-T4) Formulations and Factors Potentially Influencing the Treatment of Congenital Hypothyroidism During the First 3 Years of Life. Front. Endocrinol. 2022, 13, 859487. [Google Scholar] [CrossRef]
- Higuchi, A.; Hasegawa, Y. Dose Adjustments of Hydrocortisone and L-thyroxine in Hypopituitarism Associated with Cholestasis. Clin. Pediatr. Endocrinol. 2006, 15, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Bouvattier, C.; Maione, L.; Bouligand, J.; Dodé, C.; Guiochon-Mantel, A.; Young, J. Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 2011, 8, 172–182. [Google Scholar] [CrossRef]
- Rey, R.A. Recent advancement in the treatment of boys and adolescents with hypogonadism. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188211065660. [Google Scholar] [CrossRef] [PubMed]
- Cavarzere, P.; Biban, P.; Gaudino, R.; Perlini, S.; Sartore, L.; Chini, L.; Silvagni, D.; Antoniazzi, F. Diagnostic pitfalls in the assessment of congenital hypopituitarism. J. Endocrinol. Invest. 2014, 37, 1201–1209. [Google Scholar] [CrossRef]
- Thornton, P.S.; Stanley, C.A.; De Leon, D.D.; Harris, D.; Haymond, M.W.; Hussain, K.; Levitsky, L.L.; Murad, M.H.; Rozance, P.J.; Simmons, R.A.; et al. Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent Hypoglycemia in Neonates, Infants, and Children. J. Pediatr. 2015, 167, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S.; Brar, P.C. Severe, persistent neonatal hypoglycemia as a presenting feature in patients with congenital hypopituitarism: A review of our case series. J. Pediatr. Endocrinol. Metab. 2019, 32, 767–774. [Google Scholar] [CrossRef]
- Narvey, M.R.; Marks, S.D. The screening and management of newborns at risk for low blood glucose. Paediatr. Child Health 2019, 24, 536–554. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Coutinho, E.; Santos-Silva, R.; Castro-Correia, C.; Lemos, M.C.; Fontoura, M. Neonatal presentation of growth hormone deficiency in CHARGE syndrome: The benefit of early treatment on long-term growth. Arch. Endocrinol. Metab. 2020, 64, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Bonfig, W.; Salem, N.J.; Heiliger, K.; Hempel, M.; Lederer, G.; Bornkamm, M.; Wieland, K.; Lohse, P.; Burdach, S.; Oexle, K. Recurrent hypoglycemia due to growth hormone deficiency in an infant with Turner syndrome. J. Pediatr. Endocrinol. Metab. 2012, 25, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, T.; De Luca, F.; Bernasconi, S.; Bozzola, M.; Cavallo, L.; Crisafulli, G.; Ghizzoni, L.; Maghnie, M.; Zecchino, C. Catch-up growth and height prognosis in early treated children with congenital hypopituitarism. Horm. Res. 1995, 44 (Suppl. S3), 26–31. [Google Scholar] [CrossRef]
- Rappaport, R.; Mugnier, E.; Limoni, C. A 5-year prospective study of growth hormone (GH)-deficient children treated with GH before the age of 3 years. J. Clin. Endocrinol. Metab. 1997, 82, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Aycan, Z.; Baş, V.N. Prader-Willi syndrome and growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 62–67. [Google Scholar] [CrossRef]
- Carrel, A.L.; Myers, S.E.; Whitman, B.Y.; Eickhoff, J.; Allen, D.B. Long-term growth hormone therapy changes the natural history of body composition and motor function in children with prader-willi syndrome. J. Clin. Endocrinol. Metab. 2010, 95, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.; Rodgers, J.; Johnstone, H.; Adams, W.; Clarke, M.; Gibson, M.; Cheetham, T. Abnormal cognitive function in treated congenital hypopituitarism. Arch. Dis. Child. 2004, 89, 827–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, M.J.; Blackmore, D.G. Growth hormone (GH), brain development and neural stem cells. Pediatr. Endocrinol. Rev. 2011, 9, 549–553. [Google Scholar]
- Scheepens, A.; Möderscheim, T.A.; Gluckman, P.D. The role of growth hormone in neural development. Horm. Res. 2005, 64 (Suppl. S3), 66–72. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.; Casteleiro, N.; Rodicio, C.; López, N.; Reimunde, P. Growth hormone deficiency and cerebral palsy. Ther. Clin. Risk Manag. 2010, 6, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimunde, P.; Rodicio, C.; López, N.; Alonso, A.; Devesa, P.; Devesa, J. Effects of recombinant growth hormone replacement and physical rehabilitation in recovery of gross motor function in children with cerebral palsy. Ther. Clin. Risk Manag. 2010, 6, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Cherella, C.E.; Wassner, A.J. Congenital hypothyroidism: Insights into pathogenesis and treatment. Int. J. Pediatr. Endocrinol. 2017, 2017, 11. [Google Scholar] [CrossRef]
- Hatipoğlu, N.; Kurtoğlu, S. Micropenis: Etiology, diagnosis and treatment approaches. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 217–223. [Google Scholar] [CrossRef]
- Main, K.M.; Schmidt, I.M.; Toppari, J.; Skakkebaek, N.E. Early postnatal treatment of hypogonadotropic hypogonadism with recombinant human FSH and LH. Eur. J. Endocrinol. 2002, 146, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Mullis, P.E. Genetic control of growth. Eur. J. Endocrinol. 2005, 152, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Kolon, T.F.; Herndon, C.D.; Baker, L.A.; Baskin, L.S.; Baxter, C.G.; Cheng, E.Y.; Diaz, M.; Lee, P.A.; Seashore, C.J.; Tasian, G.E.; et al. Evaluation and treatment of cryptorchidism: AUA guideline. J. Urol. 2014, 192, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Ludwikowski, B.; Gonzalez, R. The controversy regarding the need for hormonal treatment in boys with unilateral cryptorchidism goes on: A review of the literature. Eur. J. Pediatr. 2013, 172, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Elder, J.S. Surgical management of the undescended testis: Recent advances and controversies. Eur. J. Pediatr. Surg. 2016, 26, 418–426. [Google Scholar] [CrossRef]
- Boehm, U.; Bouloux, P.M.; Dattani, M.T.; de Roux, N.; Dode, C.; Dunkel, L.; Dwyer, A.A.; Giacobini, P.; Hardelin, J.P.; Juul, A.; et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2015, 11, 547–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symptoms and Signs | IGHD | MPHD (Hormone Deficit) |
---|---|---|
Hypoglycaemia (with and without seizures) | √ | √ (GH, ACTH, TSH *) |
Poor feeding | √ | √ (GH, ACTH, TSH) |
Poor weight gain | √ | √ (GH, ACTH, DI) |
Lethargy | √ | √ (GH, ACTH, TSH) |
Cholestasis | √ | √ (GH, ACTH, TSH) |
Prolonged jaundice | ||
Conjugated | √ | √ (GH, ACTH, TSH) |
Unconjugated | - | √ (TSH) |
Hepatitis | √ | √ (GH, ACTH, TSH) |
Seizures without hypoglycaemia | - | √ (ACTH) |
Jitteriness | √ | √ (GH, ACTH) |
Cryptorchidism/scrotal hypoplasia | - | √ (GH, gonadotropin) |
Micropenis | √ | √ (GH, gonadotropin) |
Breech presentation | √ | √ (GH, TSH) |
Temperature dysregulation | - | √ (TSH) |
Electrolyte abnormalities | - | √ (ACTH) |
Haemodynamic instability | - | √ (ACTH) |
Respiratory distress | - | √ (ACTH, TSH) |
Apnoea | - | √ (ACTH) |
Polyuria | - | √ (DI) |
Polydipsia | - | √ (DI) |
Cyanosis | √ | √ (GH, ACTH, TSH ^) |
Hypotonia | √ | √ (GH, ACTH, TSH) |
Umbilical hernia | - | √ (TSH) |
Bradycardia | - | √ (TSH) |
Macroglossia | - | √ (TSH) |
Dry skin | - | √ (TSH) |
Constipation | - | √ (TSH) |
Neonatal and recurrent sepsis | - | √ (ACTH) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stagi, S.; Tufano, M.; Chiti, N.; Cerutti, M.; Li Pomi, A.; Aversa, T.; Wasniewska, M. Management of Neonatal Isolated and Combined Growth Hormone Deficiency: Current Status. Int. J. Mol. Sci. 2023, 24, 10114. https://doi.org/10.3390/ijms241210114
Stagi S, Tufano M, Chiti N, Cerutti M, Li Pomi A, Aversa T, Wasniewska M. Management of Neonatal Isolated and Combined Growth Hormone Deficiency: Current Status. International Journal of Molecular Sciences. 2023; 24(12):10114. https://doi.org/10.3390/ijms241210114
Chicago/Turabian StyleStagi, Stefano, Maria Tufano, Nicolò Chiti, Matteo Cerutti, Alessandra Li Pomi, Tommaso Aversa, and Malgorzata Wasniewska. 2023. "Management of Neonatal Isolated and Combined Growth Hormone Deficiency: Current Status" International Journal of Molecular Sciences 24, no. 12: 10114. https://doi.org/10.3390/ijms241210114
APA StyleStagi, S., Tufano, M., Chiti, N., Cerutti, M., Li Pomi, A., Aversa, T., & Wasniewska, M. (2023). Management of Neonatal Isolated and Combined Growth Hormone Deficiency: Current Status. International Journal of Molecular Sciences, 24(12), 10114. https://doi.org/10.3390/ijms241210114