Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacterial Host Strains
Salmonella Strain Number | Genome Length | G+C Content | CDS | Gene/mRNA | rRNA | Repeat Region | tRNA | tmRNA |
---|---|---|---|---|---|---|---|---|
KKP 1762 | 4,578,573 bp | 52.2% | 4265 | 4385 | 22 | 2 | 87 | 1 |
KKP 3080 | 4,777,899 bp | 52.2% | 4439 | 4554 | 22 | 2 | 84 | 1 |
2.2. Bacteriophages and Their Host Range
2.3. One-Step Growth of Phages
2.4. Phage Adsorption to Host Bacterial Cells
2.5. Growth Kinetics of Bacterial Hosts after Phage Infection
2.6. Determination of Morphological Features of Phages and Their Plaques
2.7. Phage Genome Sequencing and Bioinformatics Analysis
2.8. Influence of Selected Factors on the Preservation of the Activity of Phages
2.9. Application of the Phage Cocktail to the Analyzed RTE Food Products
3. Materials and Methods
3.1. Bacterial Host Strains
3.2. Bacteriophage Isolation, Purification, and Propagation
3.3. Spot Test to Determine the Range of Bacterial Hosts for the Tested Phages
3.4. One-Step Growth
3.5. Phage Adsorption to Host Bacterial Cells
3.6. Changes in the Growth Kinetics of Bacterial Hosts after Phage Infection
3.7. Determination of Morphological Features of Phages
3.8. Extraction of Bacteriophage Genomic DNA
3.9. Phage Genome Sequencing and Bioinformatics Analysis
3.10. Influence of Selected Factors on the Preservation of the Activity of Phages
3.11. Application of the Phage Cocktail to the Analyzed RTE Food Products
3.11.1. HHP-Preserved Carrot–Mango–Apple Juice
3.11.2. Raw Carrot–Apple Juice
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haran, J.P.; McCormick, B.A. Aging, frailty, and the microbiome—How dysbiosis influences human aging and disease. Gastroenterology 2021, 160, 507–523. [Google Scholar] [CrossRef]
- Dixit, K.; Chaudhari, D.; Dhotre, D.; Shouche, Y.; Saroj, S. Restoration of dysbiotic human gut microbiome for homeostasis. Life Sci. 2021, 278, 119622. [Google Scholar] [CrossRef]
- Martínez, J.E.; Vargas, A.; Pérez-Sánchez, T.; Encío, I.J.; Cabello-Olmo, M.; Barajas, M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients 2021, 13, 2905. [Google Scholar] [CrossRef]
- Dos Santos, A.M.P.; Ferrari, R.G.; Conte-Junior, C.A. Virulence Factors in Salmonella typhimurium: The Sagacity of a Bacterium. Curr. Microbiol. 2018, 76, 762–773. [Google Scholar] [CrossRef]
- Luo, Y.; Yi, W.; Yao, Y.; Zhu, N.; Qin, P. Characteristic diversity and antimicrobial resistance of Salmonella from gastroenteritis. J. Infect. Chemother. 2018, 24, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, J.R.; Goggins, J.A.; McLachlan, J.B. Salmonella infection: Interplay between the bacteria and host immune system. Immunol. Lett. 2017, 190, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Wójcicki, M.; Świder, O.; Daniluk, K.J.; Średnicka, P.; Akimowicz, M.; Roszko, M.Ł.; Sokołowska, B.; Juszczuk-Kubiak, E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review. Pathogens 2021, 10, 801. [Google Scholar] [CrossRef]
- Campbell, J.S.O.; van Henten, S.; Koroma, Z.; Kamara, I.F.; Kamara, G.N.; Shewade, H.D.; Harries, A.D. Culture Requests and Multi-Drug Resistance among Suspected Urinary Tract Infections in Two Tertiary Hospitals in Freetown, Sierra Leone (2017–21): A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 4865. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef]
- de Mesquita Souza Saraiva, M.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar]
- Chief Sanitary Inspectorate. Sanitary Condition of the Country in 2021. Available online: https://www.gov.pl/web/gis/raport-stan-sanitarny-kraju (accessed on 27 February 2023).
- Wójcicki, M.; Chmielarczyk, A.; Świder, O.; Średnicka, P.; Strus, M.; Kasperski, T.; Shymialevich, D.; Cieślak, H.; Emanowicz, P.; Kowalczyk, M.; et al. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Chen, J.; Zhao, X.; Luo, Y.; Jin, M.; Fan, F.; Park, C.; Yang, X.; Sun, C.; Yan, J.; et al. Genetic and Chemical Engineering of Phages for Controlling Multidrug-Resistant Bacteria. Antibiotics 2021, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.; Del Fiol, F.S.; Balcão, V.M. Prospects for the use of new technologies to combat multidrug-resistant bacteria. Front. Pharmacol. 2019, 10, 692. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Young, R.; Schnabl, B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 135–144. [Google Scholar] [CrossRef]
- Osei, E.K.; Mahony, J.; Kenny, J.G. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022, 14, 1996. [Google Scholar] [CrossRef]
- Połaska, M.; Sokołowska, B. Bacteriophages—A new hope or huge problem in the food industry. AIMS Microbiol. 2019, 5, 324–346. [Google Scholar] [CrossRef]
- Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Application of bacteriophages in the agro-food sector: A long way toward approval. Front. Cell. Infect. Microbiol. 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage application for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Svircev, A.; Roach, D.; Castle, A. Framing the future with bacteriophages in agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Melo, A.G.; Levesque, S.; Moineau, S. Phages as friends and enemies in food processing. Curr. Opin. Biotechnol. 2018, 49, 185–190. [Google Scholar] [CrossRef]
- Wójcik, E.A.; Stańczyk, M.; Wojtasik, A.; Kowalska, J.D.; Nowakowska, M.; Łukasiak, M.; Bartnicka, M.; Kazimierczak, J.; Dastych, J. Comprehensive Evaluation of the Safety and Efficacy of BAFASAL® Bacteriophage Preparation for the Reduction of Salmonella in the Food Chain. Viruses 2020, 12, 742. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of a feed additive consisting on the bacteriophages PCM F/00069, PCM F/00070, PCM F/00071 and PCM F/00097 infecting Salmonella Gallinarum B/00111 (Bafasal®) for all avian species (Proteon Pharmaceuticals SA). EFSA J. 2021, 19, e06534. [Google Scholar]
- Gientka, I.; Wójcicki, M.; Żuwalski, A.W.; Błażejak, S. Use of phage cocktail for improving the overall microbiological quality of sprouts—Two methods of application. Appl. Microbiol. 2021, 1, 289–303. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Alsayeqh, A.F.; Aqib, A.I. Role of Bacteriophages for Optimized Health and Production of Poultry. Animals 2022, 12, 3378. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Battesti, A.; Ansaldi, M. Prophages in Salmonella enterica: A driving force in reshaping the genome and physiology of their bacterial host? Mol. Microbiol. 2019, 111, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Gymoese, P.; Kiil, K.; Torpdahl, M.; Østerlund, M.T.; Sørensen, G.; Olsen, J.E.; Nielsen, E.M.; Litrup, E. WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genom. 2019, 20, 870. [Google Scholar] [CrossRef] [Green Version]
- Charity, O.J.; Acton, L.; Bawn, M.; Tassinari, E.; Thilliez, G.; Chattaway, M.A.; Dallman, T.J.; Petrovska, L.; Kingsley, R.A. Increased phage resistance through lysogenic conversion accompanying emergence of monophasic Salmonella typhimurium ST34 pandemic strain. Microb. Genom. 2022, 8, 000897. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Proksee Software. Available online: https://proksee.ca/ (accessed on 2 March 2023).
- Kraushaar, B.; Hammerl, J.A.; Kienöl, M.; Heinig, M.L.; Sperling, N.; Dinh Thanh, M.; Reetz, J.; Jäckel, C.; Fetsch, A.; Hertwig, S. Acquisition of virulence factors in livestock-associated MRSA: Lysogenic conversion of CC398 strains by virulence gene-containing phages. Sci. Rep. 2017, 7, 2004. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.V.; Winstanley, C.; Fothergill, J.L.; James, C.E. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. 2016, 363, fnw015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colavecchio, A.; Cadieux, B.; Lo, A.; Goodridge, L.D. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae family—A Review. Front. Microbiol. 2017, 8, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Das, A.; Raja, P.; Marathe, S.A. The CRISPR-Cas system differentially regulates surface-attached and pellicle biofilm in Salmonella enterica serovar Typhimurium. Microbiol. Spectr. 2022, 10, e00202-22. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.Z.; Shabbir, M.A.B.; Yaqub, T.; Sattar, A.; Maan, M.K.; Mahmood, S.; Mehmood, T.; Aslam, H.B. CRISPR-Cas system: An adaptive immune system’s association with antibiotic resistance in Salmonella enterica serovar Enteritidis. BioMed Res. Int. 2022, 2022, 9080396. [Google Scholar] [CrossRef]
- Tanmoy, A.M.; Saha, C.; Sajib, M.S.I.; Saha, S.; Komurian-Pradel, F.; van Belkum, A.; Louwen, R.; Saha, S.K.; Endtz, H.P. CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes 2020, 11, 1365. [Google Scholar] [CrossRef]
- Medina-Aparicio, L.; Rebollar-Flores, J.E.; Beltrán-Luviano, A.A.; Vázquez, A.; Gutiérrez-Ríos, R.M.; Olvera, L.; Calva, E.; Hernández-Lucas, I. CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi. Microbiology 2017, 163, 253–265. [Google Scholar] [CrossRef]
- Lobocka, M.; Hejnowicz, M.S.; Gagala, U.; Weber-Dabrowska, B.; Wegrzyn, G.; Dadlez, M. The First Step to Bacteriophage Therapy: How to Choose the Correct Phage. In Phage Therapy: Current Research and Applications; Borysowski, J., Miedzybrodzki, R., Gorski, A., Eds.; Caister Academic Press: Norfalk, UK, 2018; pp. 23–67. [Google Scholar]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Chan, B.K.; Abedon, S.T. Phage therapy pharmacology phage cocktails. Adv. Appl. Microbiol. 2012, 78, 1–23. [Google Scholar]
- Hyman, P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.; Ward, S.; Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front. Microbiol. 2016, 7, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hu, Y.; Mizan, M.F.R.; Yan, T.; Nime, I.; Zhou, Y.; Li, J. Characterization of Salmonella Phage LPST153 That Effectively Targets Most Prevalent Salmonella Serovars. Microorganisms 2020, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Abdelsattar, A.S.; Eita, M.A.; Hammouda, Z.K.; Gouda, S.M.; Hakim, T.A.; Yakoup, A.Y.; Safwat, A.; El-Shibiny, A. The Lytic Activity of Bacteriophage ZCSE9 against Salmonella enterica and Its Synergistic Effects with Kanamycin. Viruses 2023, 15, 912. [Google Scholar] [CrossRef] [PubMed]
- Mateus, C.; Costa, C.; Silva, Y.; Cunha, A.; Almeida, A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 2014, 424, 167–173. [Google Scholar] [CrossRef]
- Abedon, S.T.; Herschler, T.D.; Stopar, D. Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 2001, 67, 4233–4241. [Google Scholar] [CrossRef] [Green Version]
- Balcao, V.M.; Moreli, F.C.; Silva, E.C.; Belline, B.G.; Martins, L.F.; Rossi, F.P.N.; Pereira, C.; Vila, M.M.D.C.; da Silva, A.M. Isolation and Molecular Characterization of a Novel Lytic Bacteriophage That Inactivates MDR Klebsiella pneumoniae Strains. Pharmaceutics 2022, 14, 1421. [Google Scholar] [CrossRef]
- Lin, J.T.; Kirst, S.; Cuci, S.; Klem, A.; She, Y.-M.; Kropinski, A.M.; Anany, H. Isolation, Characterization, and Genome Analysis of a Novel Bacteriophage, Escherichia Phage VB_EcoM-4HA13, Representing a New Phage Genus in the Novel Phage Family Chaseviridae. Viruses 2022, 14, 2356. [Google Scholar] [CrossRef]
- Mahmoud, M.; Askora, A.; Barakat, A.B.; Rabie, O.E.-F.; Hassan, S.E. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int. J. Food Microbiol. 2018, 266, 8–13. [Google Scholar] [CrossRef]
- Zheng, X.-F.; Yang, Z.; Zhangl, H.; Jinl, W.-X.; Xul, C.-W.; Gaol, L.; Raol, S.-Q.; Jiao, X. Isolation of virulent phages infecting dominant mesophilic aerobic bacteria in cucumber pickle fermentation. Food Microbiol. 2020, 86, 103330. [Google Scholar] [CrossRef]
- Oh, H.; Seo, D.J.; Jeon, S.B.; Park, H.; Jeong, S.; Chun, H.S.; Oh, M.; Choi, C. Isolation and characterization of Bacillus cereus bacteriophages from foods and soil. Food Environ. Virol. 2017, 9, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Dakheel, K.H.; Rahim, R.A.; Neela, V.K.; Al-Obaidi, J.R.; Hun, T.G.; Isa, M.N.M.; Yusoff, K. Genomic analyses of two novel biofilm-degrading methicillin-resistant Staphylococcus aureus phages. BMC Microbiol. 2019, 19, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Mihara, T.; Nishimura, Y.; Shimizu, Y.; Nishiyama, H.; Yoshikawa, G.; Uehara, H.; Hingamp, P.; Goto, S.; Ogata, H. Linking Virus Genomes with Host Taxonomy. Viruses 2016, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef]
- Bailly-Bechet, M.; Vergassola, M.; Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 2007, 17, 1486–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongari, R.; Rajaure, M.; Cahill, J.; Rasche, E.; Mijalis, E.; Berry, J.; Young, R. Phage spanins: Diversity, topological dynamics and gene convergence. BMC Bioinform. 2018, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Cahill, J.; Young, R. Phage lysis: Multiple genes for multiple barriers. Adv. Virus Res. 2019, 103, 33–70. [Google Scholar]
- Sharma, M.; Jaiswal, N.; Kumar, D.; Poluri, K.M. Enhanced dynamics of conformationally heterogeneous T7 bacteriophage lysozyme native state attenuates its stability and activity. Biochem. J. 2019, 476, 613–628. [Google Scholar] [CrossRef]
- Lu, M.; Liu, H.; Lu, H.; Liu, R.; Liu, X. Characterization and Genome Analysis of a Novel Salmonella Phage vB_SenS_SE1. Curr. Microbiol. 2020, 77, 1308–1315. [Google Scholar] [CrossRef]
- Jamal, M.; Bukhari, S.M.A.U.S.; Andleeb, S.; Ali, M.; Raza, S.; Nawaz, M.A.; Hussain, T.; Rahman, S.U.; Shah, S.S.A. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 2019, 59, 123–133. [Google Scholar] [CrossRef]
- Gigante, A.M.; Hampton, C.M.; Dillard, R.S.; Gil, F.; Catalão, M.J.; Moniz-Pereira, J.; Wright, E.R.; Pimentel, M. The Ms6 mycolyl-arabinogalactan esterase LysB is essential for an efficient mycobacteriophage-induced lysis. Viruses 2017, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Bujak, K.; Decewicz, P.; Kamiński, J.; Radlińska, M. Identification, characterization, and genomic analysis of novel Serratia temperate phages from a gold mine. Int. J. Mol. Sci. 2020, 21, 6709. [Google Scholar] [CrossRef]
- Necel, A.; Bloch, S.; Nejman-Faleńczyk, B.; Grabski, M.; Topka, G.; Dydecka, A.; Kosznik-Kwaśnicka, K.; Grabowski, Ł.; Jurczak-Kurek, A.; Wołkowicz, T.; et al. Characterization of a bacteriophage, vB_Eco4M-7, that effectively infects many Escherichia coli O157 strains. Sci. Rep. 2020, 10, 3743. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Rodriguez, R.L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [Green Version]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tey, B.T.; Ooi, S.T.; Yong, K.C.; Tan Ng, M.Y.; Ling, T.C.; Tan, W.S. Production of fusion m13 phage bearing the disulphide constrained peptide sequence (C-WSFFSNI-C) that interacts with hepatitis B core antigen. Afr. J. Biotechnol. 2009, 8, 268–273. [Google Scholar]
- Inbaraj, S.; Agrawal, R.K.; Thomas, P.; Chaudhuri, P.; Verma, A.; Chaturvedi, V.K. Isolation and Characterization of vB_SenS_Ib_psk2 Bacteriophage against Drug Resistant Salmonella enterica Serovar Kentucky. 2022. Available online: https://www.researchsquare.com/article/rs-1900211/v1 (accessed on 7 April 2023).
- Sattar, S.; Ullah, I.; Khanum, S.; Bailie, M.; Shamsi, B.; Ahmed, I.; Shah, S.T.A.; Javed, S.; Ghafoor, A.; Pervaiz, A.; et al. Phenotypic characterization and genome analysis of a novel Salmonella typhimurium phage having unique tail fiber genes. Sci. Rep. 2022, 12, 5732. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Q.; Zhang, C.; Yang, J.; Lu, Z.; Lu, F.; Bie, X. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res. 2017, 236, 14–23. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.H.; Rahman, M.; Kim, J. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J. Microbiol. 2018, 56, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Yan, T.; Willias, S.P.; Mia, M.Z.; Bei, W.; Connerton, I.F.; Fischetti, V.A.; et al. Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods. Microorganisms 2020, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Zhang, P.; Zhang, H.; Zhou, Y.; Zhang, L.; Wang, R. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses 2015, 7, 4836–4853. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Vernikos, G.S.; Parkhill, J. Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics 2006, 22, 2196–2203. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-db: A manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 2022, 88, e00991-22. [Google Scholar] [CrossRef] [PubMed]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Bolduc, B.; Zayed, A.A.; Varsani, A.; Dominguez-Huerta, G.; Delmont, T.O.; Pratama, A.A.; Gazitúa, M.C.; Vik, D.; Sullivan, M.B.; et al. VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021, 9, 37. [Google Scholar] [CrossRef]
- Starikova, E.V.; Tikhonova, P.O.; Prianichnikov, N.A.; Rands, C.M.; Zdobnov, E.M.; Ilina, E.N.; Govorun, V.M. Phigaro: High-throughput prophage sequence annotation. Bioinformatics 2020, 36, 3882–3884. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, K.; Nilsson, A.S. Isolation of phage for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Das, C.R. Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci. 2017, 190, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wójcicki, M.; Świder, O.; Gientka, I.; Błażejak, S.; Średnicka, P.; Shymialevich, D.; Cieślak, H.; Wardaszka, A.; Emanowicz, P.; Sokołowska, B.; et al. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-to-Eat Plant-Based Food. Viruses 2023, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, G.; Hammerl, J.A.; Jamshidi, A.; Ghazvini, K.; Rohde, M.; Szabo, I.; Kehrenberg, C.; Plötz, M.; Kittler, S. The Lytic Siphophage vB_StyS-LmqsSP1 Reduces the Number of Salmonella enterica Serovar Typhimurium Isolates on Chicken Skin. Appl. Environ. Microbiol. 2021, 87, e01424-21. [Google Scholar] [CrossRef]
- Son, H.M.; Duc, H.M.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Application of bacteriophage sinsimultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 10259–10271. [Google Scholar] [CrossRef]
- Bagińska, N.; Harhala, M.A.; Cieślik, M.; Orwat, F.; Weber-Dąbrowska, B.; Dąbrowska, K.; Górski, A.; Jończyk-Matysiak, E. Biological Properties of 12 Newly Isolated Acinetobacter baumannii-Specific Bacteriophages. Viruses 2023, 15, 231. [Google Scholar] [CrossRef]
- Ackermann, H.W. 5500 Phages examined in the electron microscope. Arch. Virol. 2007, 151, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.W. Basic phage electron microscopy. In Bacteriophages. Methods and Protocols. Vol. 1: Isolation, Characterization and Interactions; Clokie, A.R.J., Kropinski, A.M., Eds.; Humana Press: New York, NY, USA, 2009; pp. 113–126. [Google Scholar]
- Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Heredia, J.B.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan–based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 2018, 38, e12571. [Google Scholar] [CrossRef]
- Zhao, J.; He, L.; Pan, L.; Liu, Y.; Yao, H.; Bao, G. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli. World Rabbit Sci. 2017, 25, 273–279. [Google Scholar] [CrossRef] [Green Version]
- McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A. PHANOTATE: A novel approach to gene identification in phage genomes. Bioinformatics 2019, 35, 4537–4542. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, Q.; Li, M.; Xu, J.; Wang, C.; Zhang, J.; Xiao, M.; Bin, Y.; Xia, J. PhaGAA: An integrated web server platform for phage genome annotation and analysis. Bioinformatics 2023, 39, btad120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Tynecki, P.; Guziński, A.; Kazimierczak, J.; Jadczuk, M.; Dastych, J.; Onisko, A. PhageAI-Bacteriophage Life Cycle Recognition with Machine Learning and Natural Language Processing. bioRXiv 2020, 198606. [Google Scholar]
- Sváb, D.; Falgenhauer, L.; Rohde, M.; Szabó, J.; Chakraborty, T.; Tóth, I. Identification and characterization of T5-like bacteriophages representing two novel subgroups from food products. Front. Microbiol. 2018, 9, 222. [Google Scholar] [CrossRef] [PubMed]
Salmonella Strain Number | Full Taxonomic Name | Year of Isolation | Antibiotic Resistance Pattern |
---|---|---|---|
KKP 1762 | Salmonella enterica subsp. enterica serovar 6,8:l,-:1,7 S. I (6,8:l,-:1,7) | 2010 | AMC-CPT-CT-CRO-MXF-AK-CN-TOB |
KKP 3080 | Salmonella enterica subsp. enterica serovar Typhimurium S. Typhimurium | 2019 | AMC-FEP-CTX-CPT-CT-CRO-MXF-OFX-AK-CN-TOB |
Bacterial Host Strain | GenBank Accession Number | Salmonella Phage Strain | |
---|---|---|---|
KKP 3829 | KKP 3830 | ||
Salmonella Strains (n = 54) | |||
S. Berta strain KKP 996 | ON627842 | + | + |
S. enterica R strain KKP 997 | MW046052 | ++ | + |
S. I (6,8:1,v:-) strain KKP 998 | ON764274 | + | – |
S. Oranienburg strain KKP 999 | ON627845 | + | – |
S. I (4,12:i:-) strain KKP 1000 | ON312999 | + | + |
S. Kunduchi strain KKP 1001 | MW332255 | + | + |
S. Muenster strain KKP 1002 | ON340716 | + | – |
S. Hadar strain KKP 1003 | ON756138 | + | – |
S. enterica R strain KKP 1004 | ON627844 | + | + |
S. Senftenberg strain KKP 1005 | ON627847 | + | – |
S. Derby strain KKP 1006 | ON764251 | – | – |
S. Mbandaka strain KKP 1007 | ON627846 | + | – |
S. I (6,8:1,v:-) strain KKP 1008 | ON340717 | + | – |
S. Amsterdam strain KKP 1009 | ON764277 | + | + |
S. Potsdam strain KKP 1010 | ON764279 | + | – |
S. Infantis strain KKP 1039 | ON764252 | + | – |
S. enterica R strain KKP 1040 | ON764280 | + | – |
S. Agona strain KKP 1041 | ON764253 | + | + |
S. Infantis strain KKP 1042 | ON798424 | + | – |
S. Kentucky strain KKP 1043 | ON764281 | + | – |
S. Muenchen strain KKP 1044 | ON764287 | + | – |
S. Livingstone strain KKP 1045 | ON764254 | + | – |
S. enterica R strain KKP 1113 | ON775567 | – | – |
S. Mbandaka strain KKP 1169 | ON764259 | – | – |
S. Abony strain KKP 1193 | ON764258 | + | + |
S. Manchester strain KKP 1213 | ON764805 | + | – |
S. Manchester strain KKP 1217 | ON764807 | + | – |
S. Manchester strain KKP 1514 | ON756136 | + | – |
S. Senftenberg strain KKP 1597 | ON461374 | – | – |
S. enterica ND strain KKP 1608 | ON312943 | + | – |
S. I (6,8:1,v:-) strain KKP 1610 | ON313000 | + | – |
S. enterica ND strain KKP 1611 | ON764857 | + | – |
S. Manchester strain KKP 1612 | ON764858 | + | – |
S. Cannstatt strain KKP 1613 | ON766359 | + | – |
S. Newport strain KKP 1614 | ON312941 | + | – |
S. Typhimurium strain KKP 1636 | ON773156 | + | + |
S. Infantis strain KKP 1761 | ON798425 | + | – |
S. I (6,8:1,-:1,7) strain KKP 1762 | ON340720 | ++ H | – |
S. Senftenberg strain KKP 1763 | ON773159 | + | – |
S. enterica R strain KKP 1775 | ON832663 | + | + |
S. Typhimurium strain KKP 1776 | ON461376 | + | + |
S. Enteritidis strain KKP 3078 | MW034593 | + | + |
S. Typhimurium strain KKP 3079 | MW033548 | + | + |
S. Typhimurium strain KKP 3080 | MW033536 | + | ++ H |
S. Typhimurium strain KKP 3081 | MW033602 | + | + |
S. Enteritidis strain KKP 3814 | ON732733 | + | + |
S. Enteritidis strain KKP 3815 | ON732742 | + | + |
S. Enteritidis strain KKP 3816 | ON756119 | + | + |
S. Enteritidis strain KKP 3817 | ON756120 | + | + |
S. Enteritidis strain KKP 3818 | ON756135 | + | + |
S. Typhimurium strain KKP 3819 | ON732745 | + | + |
S. I (4,12:i:-) strain KKP 3820 | ON732744 | + | + |
S. Abortusequi strain KKP 3821 | ON732827 | + | + |
S. Sandiego strain KKP 3882 | OP745459 | + | + |
Other Nonpathogenic Enterobacterales Strains (n = 21) | |||
Citrobacter freundii strain KKP 3655 | MZ827001 | – | – |
Enterobacter cloacae strain KKP 3082 | MZ827006 | + | – |
Enterobacter cloacae strain KKP 3656 | OM304355 | – | – |
Enterobacter cloacae strain KKP 3684 | OM281790 | ++ | – |
Enterobacter cloacae strain KKP 3686 | OM281778 | ++ | – |
Enterobacter ludwigii strain KKP 3083 | MZ827002 | – | – |
Pantoea agglomerans strain KKP 3651 | OP978292 | – | – |
Raoultella terrigena strain KKP 3689 | OK085529 | – | – |
Serratia fonticola strain KKP 3084 | MZ827668 | – | – |
Serratia fonticola strain KKP 3685 | OM281802 | – | – |
Serratia fonticola strain KKP 3692 | OM281803 | – | – |
Serratia liquefaciens strain KKP 3654 | OP978313 | – | – |
Serratia marcescens strain KKP 3687 | OK103977 | – | – |
Escherichia coli strain KKP 3688 | OM281784 | + | – |
Escherichia coli strain KKP 3691 | OM281773 | ++ | – |
Escherichia coli strain KKP 3707 | OM281777 | + | – |
Escherichia coli strain KKP 3800 | OM250392 | – | – |
Escherichia coli strain KKP 3801 | OM250391 | – | – |
Escherichia coli strain KKP 3802 | OM250393 | – | – |
Escherichia coli strain KKP 3824 | ON303636 | – | – |
Escherichia coli strain KKP 3825 | ON303626 | – | – |
Other Pathogenic Gram-negative Strains (n = 2) | |||
Pseudomonas aeruginosa strain KKP 994 | OQ302514 | – | – |
Pseudomonas aeruginosa strain KKP 1593 | OK189606 | – | – |
Other Pathogenic Gram-positive Strains (n = 4) | |||
Listeria monocytogenes strain KKP 1845 | OK663000 | – | – |
Listeria monocytogenes strain KKP 3270 | MT990525 | – | – |
Staphylococcus aureus strain KKP 995 | OQ302557 | – | – |
Staphylococcus aureus strain KKP 1082 | OQ302555 | – | – |
Salmonella Phage Strain | Latent Period (min) | Rise Period/Burst Time (min) | Burst Size x ± SD (PFU Cell−1) |
---|---|---|---|
KKP 3829 | 20 | 65 | 22 ± 0 |
KKP 3830 | 20 | 55 | 11 ± 1 |
Salmonella Phage Strain | Adsorption at 5 min x ± SD (%) | Adsorption at 20 min x ± SD (%) | Adsorption Rate Constant (k) (mL min−1) |
---|---|---|---|
KKP 3829 | 30.0 ± 18.2 | 74.9 ± 1.3 | 2.69 × 109 |
KKP 3830 | 21.1 ± 1.1 | 69.7 ± 1.7 | 1.15 × 109 |
MOI | ΔOD | μ (h−1) | p-Value (Control Culture vs. the Phage-Treated Cultures) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 h | 8 h | 16 h | 24 h | 32 h | 40 h | 48 h | |||
Salmonella enterica subsp. enterica serovar 6,8:l,-:1,7 strain KKP 1762 | |||||||||
Control Culture | 0.887 | 0.116 | |||||||
1000 | N/G | N/G | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
100 | N/G | N/G | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
10 | N/G | N/G | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
1.0 | N/G | N/G | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.1 | 0.093 | 0.012 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.01 | 0.415 | 0.033 | ns | 0.0024 (**) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.001 | 0.866 | 0.046 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.0001 | 0.829 | 0.045 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
Salmonella enterica subsp. enterica serovar Typhimurium strain KKP 3080 | |||||||||
Control Culture | 0.887 | 0.098 | |||||||
1000 | 0.675 | 0.083 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
100 | 0.699 | 0.083 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
10 | 0.706 | 0.083 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
1.0 | 0.697 | 0.089 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.1 | 0.717 | 0.089 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.01 | 0.686 | 0.091 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.001 | 0.676 | 0.091 | ns | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
0.0001 | 0.764 | 0.097 | ns | ns | 0.0150 (*) | 0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
Salmonella Phage Strain | Total Dimension (nm) | Capsid Length (nm) | Capsid Width (nm) | Tail Length (nm) | Tail Width (nm) |
---|---|---|---|---|---|
KKP 3829 | 80.3 | 30.8 | 17.6 | 49.5 | 9.1 |
KKP 3830 | 224.9 | 70.4 | 63.6 | 154.5 | 12.3 |
Time (h) | p-Value (Control Sample vs. the Phage-Treated Samples) | ||||
---|---|---|---|---|---|
Salmonella Phage KKP 3822 | Salmonella Phage KKP 3829 | Salmonella Phage KKP 3830 | Salmonella Phage KKP 3831 | Phage Cocktail | |
Salmonella enterica subsp. enterica serovar 6,8:l,-:1,7 strain KKP 1762 | |||||
0 | ns | ns | ns | ns | ns |
24 | ns | 0.0130 (*) | ns | ns | 0.0004 (***) |
48 | 0.0063 (**) | 0.0036 (**) | ns | ns | <0.0001 (****) |
72 | <0.0001 (****) | <0.0001 (****) | ns | <0.0001 (****) | <0.0001 (****) |
120 | <0.0001 (****) | <0.0001 (****) | ns | <0.0001 (****) | <0.0001 (****) |
168 | <0.0001 (****) | <0.0001 (****) | ns | <0.0001 (****) | <0.0001 (****) |
Salmonella enterica subsp. enterica serovar Typhimurium strain KKP 3080 | |||||
0 | ns | ns | ns | ns | ns |
24 | 0.0063 (**) | 0.0197 (*) | ns | 0.0042 (**) | 0.0029 (**) |
48 | <0.0001 (****) | <0.0001 (****) | 0.0002 (***) | <0.0001 (****) | <0.0001 (****) |
72 | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
120 | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) | <0.0001 (****) |
168 | 0.0002 (***) | <0.0001 (****) | 0.0001 (***) | <0.0001 (****) | <0.0001 (****) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcicki, M.; Świder, O.; Średnicka, P.; Shymialevich, D.; Ilczuk, T.; Koperski, Ł.; Cieślak, H.; Sokołowska, B.; Juszczuk-Kubiak, E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. Int. J. Mol. Sci. 2023, 24, 10134. https://doi.org/10.3390/ijms241210134
Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, Koperski Ł, Cieślak H, Sokołowska B, Juszczuk-Kubiak E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. International Journal of Molecular Sciences. 2023; 24(12):10134. https://doi.org/10.3390/ijms241210134
Chicago/Turabian StyleWójcicki, Michał, Olga Świder, Paulina Średnicka, Dziyana Shymialevich, Tomasz Ilczuk, Łukasz Koperski, Hanna Cieślak, Barbara Sokołowska, and Edyta Juszczuk-Kubiak. 2023. "Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food" International Journal of Molecular Sciences 24, no. 12: 10134. https://doi.org/10.3390/ijms241210134
APA StyleWójcicki, M., Świder, O., Średnicka, P., Shymialevich, D., Ilczuk, T., Koperski, Ł., Cieślak, H., Sokołowska, B., & Juszczuk-Kubiak, E. (2023). Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. International Journal of Molecular Sciences, 24(12), 10134. https://doi.org/10.3390/ijms241210134