Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients
Abstract
:1. Introduction
2. Results
2.1. Demographic, Clinical, and Biological Data of Patients with Type 2 DM and Healthy Control Subjects
2.2. MtDNA Changes Correlate with Podocyte Injuries and PT Dysfunction in Early-Stage DKD in Type 2 DM Patients
2.3. MtDNA Levels in Serum and Urine Are Associated with a Specific Inflammatory Response in Normoalbuminuric DKD in Type 2 DM Patients
3. Discussion
3.1. MtDNA Changes Impact Both Podocytes and Proximal Tubules in Normoalbuminuric DKD in Type 2 DM Patients
3.2. Alterations in mtDNA Profile and the Associated Inflammatory Processes Occur Early on during the Course of Type 2 DM
4. Materials and Methods
4.1. Patients’ Selection
4.2. Laboratory Assessments
4.3. MtDNA Assessment
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Vallon, V. The proximal tubule in the pathophysiology of diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1009–R1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.E. Proximal tubulopathy: Prime mover and key therapeutic target in diabetic kidney disease. Diabetes 2017, 66, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Bramlage, P.; Lanzinger, S.; van Mark, G.; Hess, E.; Fahrner, S.; Heyer, C.H.J.; Friebe, M.; Seufert, J.; Danne, T.; Holl, R.W. Patient and disease characteristics of type-2 diabetes patients with or without chronic kidney disease: An analysis of the German DPV and DIVE databases. Cardiovasc. Diabetol. 2019, 18, 33–42. [Google Scholar] [CrossRef]
- Penno, G.; Russo, E.; Garofolo, M.; Daniele, G.; Lucchesi, D.; Giusti, L.; Sancho Bornez, V.; Bianchi, C.; Dardano, A.; Miccoli, R.; et al. Evidence for two distinct phenotypes of chronic kidney disease in individuals with type 1 diabetes mellitus. Diabetologia 2017, 60, 1102–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, H.; Boucher, R.E.; Leehey, D.; Fried, L.; Wei, G.; Greene, T.; Rosas, S.E.; Cooper, R.; Cao, G.; Beddhu, S. Increasing Mortality in Adults with Diabetes and Low Estimated Glomerular Filtration Rate in the Absence of Albuminuria. Diabetes Care 2018, 41, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Satirapoj, B.; Aramsaowapak, K.; Tangwonglert, T.; Supasyndh, O. Novel Tubular Biomarkers Predict Renal Progression in Type 2 Diabetes Mellitus: A Prospective Cohort Study. J. Diabetes. Res. 2016, 2016, 3102962. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, S.; Guo, J. Lipotoxic Proximal Tubular Injury: A Primary Event in Diabetic Kidney Disease. Front. Med. 2021, 8, 751529. [Google Scholar] [CrossRef]
- Petrica, L.; Petrica, M.; Vlad, A.; Jianu, D.C.; Gluhovschi, G.; Ianculescu, C.; Firescu, C.; Dumitrascu, V.; Giju, S.; Gluhovschi, C.; et al. Proximal tubule dysfunction is dissociated from endothelial dysfunction in normoalbuminuric patients with type 2 diabetes mellitus: A cross-sectional study. Nephron. Clin. Pract. 2011, 118, c155–c164. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.J.; Li, B.L.; Wang, S.B.; Chen, M.L.; Deng, R.T.; Ye, C.Q.; Liu, L.; Fang, A.J.; Xiong, S.L.; Wen, S.; et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes. Res. Clin. Pract. 2012, 95, 105–109. [Google Scholar] [CrossRef]
- Phanish, M.K.; Chapman, A.N.; Yates, S.; Price, R.; Hendry, B.M.; Roderick, P.J.; Dockrell, M.E.C. Evaluation of Urinary Biomarkers of Proximal Tubular Injury, Inflammation, and Fibrosis in Patients with Albuminuric and Nonalbuminuric Diabetic Kidney Disease. Kidney Int. Rep. 2021, 6, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [Google Scholar] [CrossRef]
- Petrica, L.; Milas, O.; Vlad, M.; Vlad, A.; Gadalean, F.; Dumitrascu, V.; Velciov, S.; Gluhovschi, C.; Bob, F.; Ursoniu, S.; et al. Interleukins and miRNAs intervene in the early stages of diabetic kidney disease in Type 2 diabetes mellitus patients. Biomark. Med. 2019, 13, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Milas, O.; Gadalean, F.; Vlad, A.; Dumitrascu, V.; Velciov, S.; Gluhovschi, C.; Bob, F.; Popescu, R.; Ursoniu, S.; Jianu, D.C.; et al. Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients. J. Diabetes Complicat. 2020, 34, 1074–1079. [Google Scholar] [CrossRef]
- Klimontov, V.V.; Korbut, A.I.; Orlov, N.B.; Dashkin, M.V.; Konenkov, V.I. Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-Albuminuric Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 3006. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Interleukin-18 and diabetic nephropathy: A review. J. Cell. Physiol. 2019, 234, 5674–5682. [Google Scholar] [CrossRef]
- Al-Rubeaan, K.; Nawaz, S.S.; Youssef, A.M.; Al Ghonaim, M.; Siddiqui, K. IL-18, VCAM-1 and P-selectin as early biomarkers in normoalbuminuric Type 2 diabetes patients. Biomark. Med. 2019, 13, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Sangoi, M.B.; de Carvalho, J.A.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Londero, S.W.; Duarte, T.; Scolari, R.; Duarte, M.M.; Premaor, M.O.; et al. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin. Chim. Acta 2016, 460, 178–183. [Google Scholar] [CrossRef]
- Forbes, J.M.; Thorburn, D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 2018, 14, 291–312. [Google Scholar] [CrossRef]
- Wei, P.Z.; Szeto, C.C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta 2019, 496, 108–116. [Google Scholar] [CrossRef]
- Hallan, S.; Sharma, K. The role of mitochondria in diabetic kidney disease. Curr. Diab. Rep. 2016, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Czajka, A.; Ajaz, S.; Gnudi, L.; Kiran Pasade, C.; Jones, P.; Reid, F.; Malik, A.N. Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine 2015, 2, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, M.T.; Nguyen, T.V.; Penfold, S.A.; Higgins, G.C.; Thallas-Bonke, V.; Tan, S.M.; Van Bergen, N.J.; Sourris, K.C.; Harcourt, B.E.; Thorburn, D.R.; et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin. Sci. 2016, 130, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Rosca, M.G.; Mustata, T.G.; Kinter, M.T.; Ozdemir, A.M.; Kern, T.S.; Szweda, L.I.; Brownlee, M.; Monnier, V.M.; Weiss, M.F. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal Physiol. 2005, 289, F420–F430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.P.; Shadel, G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017, 17, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.M.; Stallons, L.J.; Kneff, J.E.; Alge, J.L.; Harmon, J.L.; Rahn, J.J.; Arthur, J.M.; Beeson, C.C.; Chan, S.L.; Schnellmann, R.G. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney Int. 2015, 88, 1336–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Ren, J.; Wu, J.; Li, G.; Wu, X.; Liu, S.; Wang, G.; Gu, G.; Ren, H.; Hong, Z.; et al. Urinary mitochondrial DNA levels identify acute kidney injury in surgical critical illness patients. Shock 2017, 48, 11–17. [Google Scholar] [CrossRef]
- Wei, P.Z.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Luk, C.C.; Lai, K.B.; Li, P.K.; Szeto, C.C. Urinary mitochondrial DNA level in non-diabetic chronic kidney diseases. Clin. Chim. Acta 2018, 484, 36–39. [Google Scholar] [CrossRef]
- Wei, P.Z.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Luk, C.C.; Lai, K.; Li, P.K.; Szeto, C.C. Urinary mitochondrial DNA level as a biomarker of tissue injury in non-diabetic chronic kidney diseases. BMC Nephrol. 2018, 19, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Shao, X.; Jia, S.; Qu, L.; Weng, C.; Shen, X.; Wang, Y.; Huang, H.; Wang, Y.; Feng, S.; et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease. Cell Physiol. Biochem. 2019, 52, 156–171. [Google Scholar] [PubMed]
- Wei, P.Z.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Luk, C.C.; Li, P.K.; Szeto, C.C. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol. Dial. Transplant 2018, 33, 784–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoz, C.; Matus, Y.S.; Orejudo, M.; Carpio, J.D.; Droguett, A.; Egido, J.; Mezzano, S.; Ruiz-Ortega, M. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 2019, 95, 1418–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Li, Y.J.; Chen, X.; Kwan, T.; Chadban, S.J.; Wu, H. Interleukin 17A promotes diabetic kidney injury. Sci. Rep. 2019, 9, 2264–2270. [Google Scholar] [CrossRef] [Green Version]
- Perlman, A.S.; Chevalier, J.M.; Wilkinson, P.; Liu, H.; Parker, T.; Levine, D.M.; Sloan, B.J.; Gong, A.; Sherman, R.; Farrell, F.X. Serum Inflammatory and Immune Mediators Are Elevated in Early-Stage Diabetic Nephropathy. Ann. Clin. Lab. Sci. 2015, 45, 256–263. [Google Scholar]
- Miyauchi, K.; Takiyama, Y.; Honjyo, J.; Tateno, M.; Haneda, M. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res. Clin. Pract. 2009, 83, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Moriwaki, Y.; Yamamoto, T.; Shibutani, Y.; Aoki, E.; Tsutsumi, Z.; Takahashi, S.; Okamura, H.; Koga, M.; Fukuchi, M.; Hada, T. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Metabolism 2003, 52, 605–608. [Google Scholar] [CrossRef]
- Nakamura, A.; Shikata, K.; Hiramatsu, M.; Nakatou, T.; Kitamura, T.; Wada, J.; Itoshima, T.; Makino, H. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 2005, 28, 2890–2895. [Google Scholar] [CrossRef] [Green Version]
- Araki, S.; Haneda, M.; Koya, D.; Sugimoto, T.; Ishiki, K.; Chin-Kanasaki, M.; Uzu, T.; Kashiwagi, A. Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: An observational follow-up study. Diabetologia 2007, 50, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhao, Y.; Zhang, Y.; Jin, H.; Shou, S. The role of IL-10 in kidney disease. Int. Immunopharmacol. 2022, 108, 108917. [Google Scholar] [CrossRef] [PubMed]
- Naing, C.; Htet, N.H.; Basavaraj, A.K.; Nalliah, S. An association between IL-10 promoter polymorphisms and diabetic nephropathy: A meta-analysis of case-control studies. J. Diabetes Metab. Disord. 2018, 17, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, X.; Liu, L.C.; Kim, A.Y.; Curley, S.P.; Chen, X.; Dworkin, L.D.; Cooper, C.J.; Gupta, R. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes. J. Investig. Med. 2022, 70, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.N.; Leuthner, T.C.; Luz, A.L. Mitochondrial fusion, fission and mitochondrial toxicity. Toxicology 2017, 391, 42–53. [Google Scholar] [CrossRef]
- Malik, A.N.; Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013, 13, 481–492. [Google Scholar] [CrossRef]
- Kim, D.H.; Chun, S.Y.; Lee, E.; Kim, B.; Yoon, B.; Gil, H.; Han, M.H.; Ha, Y.S.; Lee, J.N.; Kwon, T.G.; et al. IL-10 Deficiency Aggravates Renal Inflammation, Fibrosis and Functional Failure in High-Fat Dieted Obese Mice. Tissue Eng. Regen. Med. 2021, 18, 399–410. [Google Scholar] [CrossRef]
- Qi, H.; Casalena, G.; Shi, S.; Yu, L.; Ebefors, K.; Sun, Y.; Zhang, W.; D’Agati, V.; Schlondorff, D.; Haraldsson, B.; et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 2017, 66, 763–778. [Google Scholar] [CrossRef] [Green Version]
- KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 1–150.
- Busnelli, A.; Lattuada, D.; Rossetti, R.; Paffoni, A.; Persani, L.; Fedele, L.; Somigliana, E. Mitochondrial DNA copy number in peripheral blood: A potential non-invasive biomarker for female subfertility. J. Assist. Reprod. Genet. 2018, 35, 1987–1994. [Google Scholar] [CrossRef]
Parameter | Healthy Controls (N = 30) | Normal to Mildly Increased Albuminuria (A1) (N = 52) | Moderately Increased Albuminuria (A2) (N = 48) | Severely Increased Albuminuria (A3) (N = 50) |
---|---|---|---|---|
Age (years) | 67.47 (64; 69) | 68.33 (65; 72) | 69.23 (65; 74) | 69.8 (67; 73) |
BMI | 25.17 (23; 27) #,* | 29.26 (26.5; 31.5) ⌂ | 31.47 (28; 34) | 30.8 (27; 32) |
SBP (mmHg) | 117.17 (110; 120) #,* | 138.37 (120; 150) | 141.42 (130; 152.5) | 147.8 (140; 165) |
DBP (mmHg) | 69 (65; 70) #,* | 79.15 (70; 90) | 80.2 (70; 90) | 81.5 (70; 90) |
DM duration (years) | - | 15.22 (10; 16.5) | 17.73 (12; 23) ♦ | 21.04 (16; 26) |
Hb (g/dL) | 13.68 (13.1; 14) * | 13.5 (12.75; 14.5) ♣ | 12.4 (11.46; 13.1) | 12.39 (11.4; 13.4) |
Serum creatinine (mg/dL) | 0.8 (0.74; 0.85) #,* | 0.93 (0.86; 1) ▲ | 0.98 (0.9; 1.02) ■ | 1.33 (1.15; 1.5) |
Cystatin C (mg/L) | 0.9 (0.8; 1) * | 0.95 (0.82; 1.1) | 1 (0.88; 1.13) ■ | 1.25 (1.12; 1.38) |
eGFR (ml/min/1.73 m2) | 84.12 (80.64; 87.85) #,* | 76.2 (71.52; 81.21) ♣ | 70.53 (66.88; 73.94) ■ | 50.42 (42.83; 56.56) |
hsCRP (mg/L) | 4.05 (2; 5) †,* | 6.6 (3.11; 7.3) | 10.85 (3; 12) | 8.83 (5; 10.2) |
Cholesterol (mg/dL) | 135.3 (115; 150) ¶,* | 165.8 (134; 187) | 169.4 (134; 211) ‡ | 200.68 (154; 230) |
Triglycerides (mg/dL) | 108.43 (88; 102) #,* | 139.95 (102; 171.5) | 182.21 (115.5; 215) ● | 231.4 (160; 296) |
HbA1c (%) | 5.01 (4.9; 5.1) #,* | 7.21 (6.5; 7.65) ♣ | 8.38 (7.2; 9.6) | 8.45 (7.8; 9) |
UACR (mg/g) | 14.67 (10.19; 17.25) #,* | 21.03 (15.10; 27.47) ♣ | 104.5 (60; 139.04) ■ | 1044.16 (464.89; 1365.47) |
uIL-17A/creat (pg/g) | 2.68 (1.94; 2.95) #,* | 7.64 (6.18; 9.01) ♣ | 13.89 (11.48; 16) ■ | 27.32 (22; 31.32) |
sIL-17A (pg/mL) | 4.89 (3.46; 5.54) #,* | 10.83 (9.17; 12.3) ♣ | 18.81 (17.48; 20.61) ■ | 37.8 (32.43; 42.3) |
uIL-18/creat (pg/g) | 31.94 (18.27; 48.97) ∆,* | 45.53 (28.06; 60.44) ♣ | 89.44 (69.11; 109.1) ■ | 131.5 (94.18; 162.38) |
sIL-18 (pg/mL) | 83.5 (64.46; 102.17) #,* | 119.78 (94.17; 145.1) ♣ | 153.27 (120.42; 186.46) ■ | 222.03 (154.37; 261.93) |
uIL-10/creat (pg/g) | 15.1 (12.89; 16.38) #,* | 8.97 (6.98; 11.23) ♣ | 5.85 (4.72; 6.27) ⁑ | 4.86 (3.71; 5.81) |
sIL-10 (pg/mL) | 19.75 (17.45; 20.94) #,* | 14.07 (12.2; 16.11) ♣ | 11.45 (10.64; 11.98) ■ | 9.54 (8.06; 11.28) |
smtDNA | 15.71 (12.87; 17.78) #,* | 10.73 (8.21; 12.38) ♣ | 6.92 (5.35; 7.2) ■ | 3.63 (1.82; 4.52) |
umtDNA | 3.12 (1.08; 4.56) ↂ,* | 5.16 (2.79; 7.07) ♣ | 8.27 (6.57; 10.26) ■ | 12.59 (10.69; 14.1) |
Synaptopodin/creat (mg/g) | 10.1 (7.44; 11.21) #,* | 18.18 (15.38; 21.46) ♣ | 26.55 (24.74; 28.11) ■ | 79.33 (34.75; 133.56) |
Podocalyxin/creat (mg/g) | 38.7 (30.98; 49.55) #,* | 65.3 (58.43; 70.72) ♣ | 128.62 (114.42; 152.58) ■ | 520.98 (393.3; 620.54) |
KIM-1/creat (pg/g) | 39.3 (27.7; 46.7) #,* | 78.37 (66.8; 93.6) ♣ | 134.02(127.93; 147.68) ■ | 668.5 (595.32; 815.9) |
NAG/creat (ng/g) | 2.02 (1.65; 2.22) #,* | 4.74 (2.23; 5.96) ♣ | 12.66 (9.87; 16.09) ■ | 18.52 (16.38; 18.83) |
Parameter | Variable | R² | Coef β | p |
---|---|---|---|---|
Urinary mtDNA | UACR | 0.255 | 0.0036 | <0.001 |
eGFR | 0.474 | −0.210 | <0.001 | |
Synaptopodin/creat | 0.307 | 0.064 | <0.001 | |
Podocalyxin/creat | 0.546 | 0.015 | <0.001 | |
KIM-1/creat | 0.499 | 0.011 | <0.001 | |
NAG/creat | 0.466 | 0.392 | <0.001 | |
Serum mtDNA | UACR | 0.228 | −0.004 | <0.001 |
eGFR | 0.460 | 0.232 | <0.001 | |
Synaptopodin/creat | 0.252 | −0.067 | <0.001 | |
Podocalyxin/creat | 0.422 | −0.0156 | <0.001 | |
KIM-1/creat | 0.388 | −0.011 | <0.001 | |
NAG/creat | 0.419 | −0.4287 | <0.001 |
Parameter | Variable | R² | Coef β | p |
---|---|---|---|---|
Urinary mtDNA | uIL-17A/creat | 0.490 | 0.301 | <0.001 |
uIL-18/creat | 0.409 | 0.055 | <0.001 | |
uIL-10/creat | 0.375 | −0.662 | <0.001 | |
Serum mtDNA | sIL-17A | 0.552 | −0.285 | <0.001 |
sIL-18 | 0.340 | −0.041 | <0.001 | |
sIL-10 | 0.530 | 0.931 | <0.001 |
Parameter | Variable | Coef β | p | 95% CI | Prob > F | R² |
---|---|---|---|---|---|---|
Serum mtDNA | UACR | −0.016 | <0.001 | −0.326 to −0.660 | 0.00001 | 0.626 |
KIM-1 | −0.215 | 0.068 | −0.278 to −0.048 | |||
sIL-17A | −0.170 | <0.001 | −0.225 to −0.123 | |||
sIL-10 | 0.507 | <0.001 | 0.337 to 0.677 | |||
Urinary mtDNA | uIL-18/creat | 0.013 | 0.021 | 0.002 to 0.024 | 0.00001 | 0.631 |
uIL-10/creat | −0.182 | 0.073 | −0.325 to −0.036 | |||
Podocalyxin/creat | 0.008 | 0.027 | 0.005 to 0.117 | |||
NAG/creat | 0.097 | <0.001 | 0.010 to 0.183 | |||
UACR | 0.029 | 0.023 | 0.016 to 0.178 | |||
eGFR | −0.430 | <0.001 | −0.367 to −0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrica, L.; Vlad, A.; Gadalean, F.; Muntean, D.M.; Vlad, D.; Dumitrascu, V.; Bob, F.; Milas, O.; Suteanu-Simulescu, A.; Glavan, M.; et al. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2023, 24, 9803. https://doi.org/10.3390/ijms24129803
Petrica L, Vlad A, Gadalean F, Muntean DM, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, et al. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. International Journal of Molecular Sciences. 2023; 24(12):9803. https://doi.org/10.3390/ijms24129803
Chicago/Turabian StylePetrica, Ligia, Adrian Vlad, Florica Gadalean, Danina Mirela Muntean, Daliborca Vlad, Victor Dumitrascu, Flaviu Bob, Oana Milas, Anca Suteanu-Simulescu, Mihaela Glavan, and et al. 2023. "Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients" International Journal of Molecular Sciences 24, no. 12: 9803. https://doi.org/10.3390/ijms24129803
APA StylePetrica, L., Vlad, A., Gadalean, F., Muntean, D. M., Vlad, D., Dumitrascu, V., Bob, F., Milas, O., Suteanu-Simulescu, A., Glavan, M., Jianu, D. C., Ursoniu, S., Balint, L., Mogos-Stefan, M., Ienciu, S., Cretu, O. M., & Popescu, R. (2023). Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. International Journal of Molecular Sciences, 24(12), 9803. https://doi.org/10.3390/ijms24129803