Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Hydrogen Production
2.2. Characterization
3. Materials and Methods
3.1. Materials
3.2. Preparation of Photocatalysts
3.2.1. Unmodified Cd0.5Zn0.5S Catalyst (CZS and CZS-H)
3.2.2. Ni-Modified Cd0.5Zn0.5S Catalysts (CZS-xxNi-y and CZS-10Ni-IH)
3.3. Characterization of Photocatalysts
3.4. Photochemical Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuoka, M.; Kitano, M.; Takeuchi, M.; Tsujimaru, K.; Anpo, M.; Thomas, J.M. Photocatalysis for new energy production. Catal. Today 2007, 122, 51–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Heo, Y.-J.; Lee, J.-W.; Lee, J.-H.; Bajgai, J.; Lee, K.-J.; Park, S.-J. Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review. Catalysts 2018, 8, 655. [Google Scholar] [CrossRef] [Green Version]
- Acar, C.; Dincer, I.; Zamfirescu, C. A review on selected heterogeneous photocatalysts for hydrogen production. Int. J. Energy Res. 2014, 38, 1903–1920. [Google Scholar] [CrossRef]
- Kudo, A. Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy 2006, 31, 197–202. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Dan, M.; Yu, S.; Li, Y.; Wei, S.; Xiang, J.; Zhou, Y. Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100339. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, L. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672. [Google Scholar] [CrossRef]
- Zhu, J.; Zäch, M. Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid Interface Sci. 2009, 14, 260–269. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef]
- Guo, L.; Jing, D.; Liu, M.; Chen, Y.; Shen, S.; Shi, J.; Zhang, K. Functionalized nanostructures for enhanced photocatalytic performance under solar light. Beilstein J. Nanotechnol. 2014, 5, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Joe, J.; Yang, H.; Bae, C.; Shin, H. Metal chalcogenides on silicon photocathodes for efficient water splitting: A mini overview. Catalysts 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Lyubina, T.P.; Kozlova, E.A. New photocatalysts based on cadmium and zinc sulfides for hydrogen evolution from aqueous Na2S-Na2SO3 solutions under irradiation with visible light. Kinet. Catal. 2012, 53, 188–196. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Yan, W.; Guo, L. Band structure-controlled solid solution of Cd1–xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 2006, 31, 2018–2024. [Google Scholar] [CrossRef]
- Koca, A. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int. J. Hydrogen Energy 2002, 27, 363–367. [Google Scholar] [CrossRef]
- Chan, C.-C.; Chang, C.-C.; Hsu, C.-H.; Weng, Y.-C.; Chen, K.-Y.; Lin, H.-H.; Huang, W.-C.; Cheng, S.-F. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1–xS solid solutions under visible light irradiation. Int. J. Hydrog. Energy 2014, 39, 1630–1639. [Google Scholar] [CrossRef]
- Li, X.; Xue, F.; Li, N.; Wei, X.; Liu, H.; Zhou, J.; Lyu, B.; Liu, M. One-Pot Hydrothermal Synthesis of MoS2/Zn0.5Cd0.5S Heterojunction for Enhanced Photocatalytic H2 Production. Front. Chem. 2020, 8, 779. [Google Scholar] [CrossRef]
- De, G.C.; Roy, A.M.; Bhattacharya, S.S. Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst. Int. J. Hydrog. Energy 1996, 21, 19–23. [Google Scholar] [CrossRef]
- Stroyuk, A.L.; Raevskaya, A.E.; Korzhak, A.V.; Kotenko, I.E.; Glebov, E.M.; Plyusnin, V.F.; Kuchmii, S.Y. Photocatalytic production of hydrogen in systems based on CdxZn1–xS/Ni0 nanostructures. Theor. Exp. Chem. 2009, 45, 12–22. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. Highly efficient and noble metal-free NiS modified MnxCd1–xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl. Catal. B Environ. 2017, 203, 282–288. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, X.; Wang, P.; Huang, B.; Zhang, Q. Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X = Mo, Cu, Pd) cocatalysts. Appl. Surf. Sci. 2018, 430, 515–522. [Google Scholar] [CrossRef]
- Saraswathi Amma, B.; Manzoor, K.; Ramakrishna, K.; Pattabi, M. Synthesis and optical properties of CdS/ZnS coreshell nanoparticles. Mater. Chem. Phys. 2008, 112, 789–792. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Li, J.; Ma, Y.; Fan, J.; Liu, E. NiSx modified Mn0.5Cd0.5S twinned homojunctions for efficient photocatalytic hydrogen evolution. J. Environ. Chem. Eng. 2022, 10, 107375. [Google Scholar] [CrossRef]
- He, K.; Guo, L. NiS modified CdS pyramids with stacking fault structures: Highly efficient and stable photocatalysts for hydrogen production from water. Int. J. Hydrogen Energy 2017, 42, 23995–24005. [Google Scholar] [CrossRef]
- Mersel, M.A.; Fodor, L.; Pekker, P.; Jakab, M.; Makó, É.; Horváth, O. Effects of preparation conditions on the efficiency of visible-light-driven hydrogen generation based on Cd0.25 Zn0.75S photocatalysts. Catalysts 2021, 11, 1534. [Google Scholar] [CrossRef]
- Li, N.; Zhou, B.; Guo, P.; Zhou, J.; Jing, D. Fabrication of noble-metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. Int. J. Hydrog. Energy 2013, 38, 11268–11277. [Google Scholar] [CrossRef]
- Qin, Z.; Xue, F.; Chen, Y.; Shen, S.; Guo, L. Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Appl. Catal. B Environ. 2017, 217, 551–559. [Google Scholar] [CrossRef]
- Chen, M.; Wu, P.; Zhu, Y.; Yang, S.; Lu, Y.; Lin, Z. Enhanced photocatalytic H2 production activity of CdZnS with stacking faults structure assisted by ethylenediamine and NiS. Int. J. Hydrog. Energy 2018, 43, 10938–10949. [Google Scholar] [CrossRef]
- Liu, M.; Jing, D.; Zhou, Z.; Guo, L. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-B.; Fang, Z.-B.; Yu, K.; Lü, J.; Cao, R. Visible-light-driven photocatalytic H2 evolution over CdZnS nanocrystal solid solutions: Interplay of twin structures, sulfur vacancies and sacrificial agents. J. Mater. Chem. A 2020, 8, 3882–3891. [Google Scholar] [CrossRef]
- Dong, W.; Liu, Y.; Zeng, G.; Zhang, S.; Cai, T.; Yuan, J.; Chen, H.; Gao, J.; Liu, C. Regionalized and vectorial charges transferring of Cd1–xZnxS twin nanocrystal homojunctions for visible-light driven photocatalytic applications. J. Colloid Interface Sci. 2018, 518, 156–164. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, Z.; Hei, T.; Jiang, Y. One-pot synthesis of ZnxCd1–xS nanoparticles with nano-twin structure. J. Photochem. Photobiol. A Chem. 2019, 382, 111919. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Lin, H.; Ruan, Q.; Geng, Y.; Liu, J.; Wang, H.; Yang, Y.; Wang, L.; Chiu Tam, K. Efficient visible-light induced H2 evolution from T-CdxZn1–xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Appl. Catal. B Environ. 2020, 267, 118702. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Ma, H.; Li, G.; Chen, L.; Sun, Y.; Chen, Z.; Fang, P.; Fu, Q.; Pan, C. Synthesis of flower-liked twin crystal ternary Ni/NiS/Zn0.2Cd0.8S catalyst for highly efficient hydrogen production. Chem. Eng. J. 2021, 406, 126878. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Chen, J.; Li, N.; Zheng, J.; Zhao, J.; Zhu, Z. Enhanced photocatalytic H2-production activity of CdxZn1–xS nanocrystals by surface loading MS (M = Ni, Co, Cu) species. Appl. Surf. Sci. 2012, 259, 118–123. [Google Scholar] [CrossRef]
- Gan, S.; Deng, M.; Hou, D.; Huang, L.; Qiao, X.; Li, D. An amorphous NiS x film as a robust cocatalyst for boosting photocatalytic hydrogen generation over ultrafine ZnCdS nanoparticles. Mater. Adv. 2021, 2, 3881–3891. [Google Scholar] [CrossRef]
- Guan, S.; Fu, X.; Zhang, Y.; Peng, Z. β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 2018, 9, 1574–1585. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Sun, H.; Zhang, H.; Tu, W. One-pot hydrothermal synthesis of CdS/NiS photocatalysts for high H2 evolution from water under visible light. Int. J. Hydrog. Energy 2017, 42, 11199–11205. [Google Scholar] [CrossRef]
- Lingampalli, S.R.; Roy, A.; Ikram, M.; Rao, C.N.R. Visible-light induced hydrogen generation with ZnO/NiO/Cd1−xZnxS (x = 0.0, 0.2) heterostructures. Chem. Phys. Lett. 2014, 610–611, 316–320. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, Y.; Ren, H.; Liu, W.; Li, C.; Liu, X.; Niu, L. Insight into enhanced photocatalytic H2 production by Ni(OH)2-decorated ZnxCd1–xS nanocomposite photocatalysts. J. Alloys Compd. 2018, 735, 2551–2557. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Jin, Z. Growth of Zn0.5Cd0.5S/α-Ni(OH)2 heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production. New J. Chem. 2019, 43, 6411–6421. [Google Scholar] [CrossRef]
- Markovskaya, D.V.; Kozlova, E.A.; Gerasimov, E.Y.; Bukhtiyarov, A.V.; Kozlov, D.V. New photocatalysts based on Cd0.3Zn0.7S and Ni(OH)2 for hydrogen production from ethanol aqueous solutions under visible light. Appl. Catal. A Gen. 2018, 563, 170–176. [Google Scholar] [CrossRef]
- Lv, B.; Feng, X.; Xi, X.; Feng, X.; Yuan, Z.; Yang, Y.; Zhang, F. Noble-metal-free Cd0.3Zn0.7S-Ni(OH)2 for high efficiency visible light photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 601, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, Q.; Cheng, C.; Xing, F.S.; Chen, C.; Huang, C. In situ photodeposition of metalloid Ni2P co-catalyst on Mn0.5Cd0.5S for enhanced photocatalytic H2 evolution with visible light. Int. J. Hydrog. Energy 2021, 46, 5197–5206. [Google Scholar] [CrossRef]
- Ma, D.; Shi, J.W.; Sun, L.; Sun, Y.; Mao, S.; Pu, Z.; He, C.; Zhang, Y.; He, D.; Wang, H.; et al. Knack behind the high performance CdS/ZnS-NiS nanocomposites: Optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chem. Eng. J. 2022, 431, 133446. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, S.Z.; Qi, L.; Yu, J. Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 2013, 15, 12088. [Google Scholar] [CrossRef] [Green Version]
- Mullin, J.W. Recrystallization. In Crystallization; Elsevier: Amsterdam, The Netherlands, 2001; pp. 289–314. ISBN 9780750648332. [Google Scholar]
- Liu, M.; Wang, L.; Lu, G.; Yao, X.; Guo, L. Twins in Cd1–xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372–1378. [Google Scholar] [CrossRef]
- Fodor, L.; Solymosi, B.; Horváth, O. Investigation of Hydrogen Production from Alkaline Sulfide Solution with Nanosized CdS/ZnS-PdS Photocatalyst of Various Compositions. J. Nanosci. Nanotechnol. 2018, 19, 509–515. [Google Scholar] [CrossRef]
- Sakizadeh, J.; Cline, J.P.; Wolfe, E.; Thorpe, R.; Snyder, M.A.; Kiely, C.J.; McIntosh, S. Green synthesis of CdS/NixSy nanoparticles as a route towards sustainable and scalable photocatalysts. Green Chem. 2023, 25, 566–578. [Google Scholar] [CrossRef]
- Mersel, M.-A.; Fodor, L.; Pekker, P.; Makó, É.; Horváth, O. Effects of Preparation Conditions on the Efficiency of Visible-Light-Driven Hydrogen Generation Based on Ni(II)-Modified Cd0.25Zn0.75S Photocatalysts. Molecules 2022, 27, 4296. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Chen, X.; Zhang, C.; Mao, G.; Wang, H. A visible light-driven photoelectrochemical sensor for mercury (II) with “turn-on” signal output through in-situ formation of double type-II heterostructure using CdS nanowires and ZnS quantum dots. Chem. Eng. J. 2022, 441, 136073. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, W.M.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-ElmerCorporation: Eden Prairie, MI, USA, 1992; ISBN 0-9627026-2-5. [Google Scholar]
- Gaarenstroom, S.W.; Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 1977, 67, 3500–3506. [Google Scholar] [CrossRef]
- Li, Y.; Gao, D.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: An investigation of the influence of electrolyte NaCl. Int. J. Hydrog. Energy 2011, 36, 4291–4297. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Weidler, N.; Schuch, J.; Knaus, F.; Stenner, P.; Hoch, S.; Maljusch, A.; Schäfer, R.; Kaiser, B.; Jaegermann, W. X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Ox. J. Phys. Chem. C 2017, 121, 6455–6463. [Google Scholar] [CrossRef]
- Ma, N.; Xu, J.; Bian, Z.; Yang, Y.; Zhang, L.; Wang, H. BiVO4 plate with Fe and Ni oxyhydroxide cocatalysts for the photodegradation of sulfadimethoxine antibiotics under visible-light irradiation. Chem. Eng. J. 2020, 389, 123426. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthik, P.E.; Kundu, S. Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: A highly efficient OER electrocatalyst. Catal. Sci. Technol. 2017, 7, 882–893. [Google Scholar] [CrossRef]
- Linkous, C.A.; Muradov, N.Z.; Ramser, S.N. Consideration of reactor design for solar hydrogen production from hydrogen sulfide using semiconductor particulates. Int. J. Hydrog. Energy 1995, 20, 701–709. [Google Scholar] [CrossRef]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers. J. Opt. Soc. Am. 1954, 44, 330. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi. 1966, 15, 627–637. [Google Scholar] [CrossRef]
Label | Ni% 1 | Method | Hydrothermal Treatment |
---|---|---|---|
CZS | 0 | – | – |
CZS-H | 0 | – | 170 °C, 3 h |
CZS-10Ni-S | 1.0% | surface modification | – |
CZS-10Ni-B | 1.0% | bulk modification | – |
CZS-0125Ni-I | 0.125% | impregnation | – |
CZS-025Ni-I | 0.25% | impregnation | – |
CZS-05Ni-I | 0.5% | impregnation | – |
CZS-10Ni-I | 1.0% | impregnation | – |
CZS-10Ni-IH | 1.0% | impregnation | 170 °C, 3 h |
CZS-20Ni-I | 2.0% | impregnation | – |
x/NiX% 1 | Preparation Method 2 | RHP (mmol H2/g/h) | AQY% | cNa2S, cNa2SO3 (mol/dm3) | Reference |
---|---|---|---|---|---|
0.5/0.025% NiS | S + Ph | 1.4 3 | 33.9% | 0.35, 0.25 | [25] |
0.5/0.25% NiS | S + Ph | 38.2 | not given | 0.35, 0.25 | [27] |
0.4/0.1% NiS | S + Ph | 1.2 | not given | 0.1, 0.1 | [34] |
1/5% NiS | S | 1.13 | 6.1% | 0.35, 0.25 | [45] |
1/5% NiS | B | 49.2 | 74.6 | 50% lactic acid | [23] |
1/5% NiS | B | 37.2 | not given | 0.35, 0.25 | [23] |
1/5% NiS | S | 24 | not given | 0.35, 0.25 | [23] |
1/2.7% NixSy | enzymatic | 10.5 | not given | 0.1, 0.1 | [49] |
0.25/0.1% NiS | S | 110 | 14.9 | 0.117, 0.16 | [50] |
0.5/1% Ni(OH)2 | I | 170 | 15.8 | 0.29, 0.38 | this work |
CZS | CZS-10Ni-I | CZS | CZS-10Ni-I | CZS-10Ni-I after Illumination | |
---|---|---|---|---|---|
Element | from SEM/EDS | from XPS | |||
Zn | 22.8 ± 0.8% | 25.4 ± 0.7% | 33.7 ± 1.9% | 33.1 ± 0.6% | 31.2 ± 2.0% |
Cd | 23.0 ± 0.6% | 23.8 ± 0.5% | 19.9 ± 0.8% | 20.6 ± 0.4% | 22.4 ± 0.4% |
S | 54.2 ± 2.3% | 50.6 ± 2.1% | 46.4 ± 1.5% | 46.0 ± 0.9% | 46.1 ± 0.5% |
Ni | – | 0.22 ± 0.09% | – | 0.32 ± 0.04% | 0.32 ± 0.04 |
Zn/Cd 1 | 0.99 ± 0.05 | 1.07 ± 0.04 | 1.69 ± 0.10 | 1.60 ± 0.06 | 1.40 ± 0.12 |
1000 × Ni/(Zn + Cd) 1 | – | 4.5 ± 1.8 | – | 6.0 ± 0.8 | 5.9 ± 0.8 |
S/(Zn + Cd) 1 | 1.19 ± 0.05 | 1.03 ± 0.04 | 0.864 ± 0.030 | 0.856 ± 0.017 | 0.860 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Páll, B.; Mersel, M.-A.; Pekker, P.; Makó, É.; Vágvölgyi, V.; Németh, M.; Pap, J.S.; Fodor, L.; Horváth, O. Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method. Int. J. Mol. Sci. 2023, 24, 9802. https://doi.org/10.3390/ijms24129802
Páll B, Mersel M-A, Pekker P, Makó É, Vágvölgyi V, Németh M, Pap JS, Fodor L, Horváth O. Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method. International Journal of Molecular Sciences. 2023; 24(12):9802. https://doi.org/10.3390/ijms24129802
Chicago/Turabian StylePáll, Bence, Maali-Amel Mersel, Péter Pekker, Éva Makó, Veronika Vágvölgyi, Miklós Németh, József Sándor Pap, Lajos Fodor, and Ottó Horváth. 2023. "Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method" International Journal of Molecular Sciences 24, no. 12: 9802. https://doi.org/10.3390/ijms24129802
APA StylePáll, B., Mersel, M. -A., Pekker, P., Makó, É., Vágvölgyi, V., Németh, M., Pap, J. S., Fodor, L., & Horváth, O. (2023). Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method. International Journal of Molecular Sciences, 24(12), 9802. https://doi.org/10.3390/ijms24129802