Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of ThT Fluorescence
2.2. Congo Red Polarized Light Microscope Observation
2.3. Particle Size Analysis
2.4. H0 Analysis
2.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.6. Changes in Molecular Weight Distribution
2.7. Fourier Infrared Spectrum Analysis
2.8. X-ray Diffraction Analysis
2.9. AFM Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Noodles
3.3. Extraction of AFs
3.4. Thioflavin T Fluorescence (ThT)
3.5. Congo Red Staining Observation
3.6. Particle Size Analysis
3.7. Surface Hydrophobicity (H0)
3.8. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3.9. Size Exclusion High-Performance Liquid Chromatography (SE-HPLC)
3.10. Fourier Transform Infrared Spectrum (FTIR)
3.11. X-ray Diffraction (XRD)
3.12. Atomic Force Microscope (AFM)
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jansens, K.J.A.; Rombouts, I.; Grootaert, C.; Brijs, K.; Van Camp, J.; Van Der Meeren, P.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 84–105. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D.S.; Sawaya, M.R. Structural Studies of Amyloid Proteins at the Molecular Level. Annu. Rev. Biochem. 2017, 86, 69–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveday, S.M.; Wang, X.L.; Rao, M.A.; Anema, S.G.; Singh, H. β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocoll. 2012, 27, 242–249. [Google Scholar] [CrossRef]
- Gowda, V.; Biler, M.; Filippov, A.; Mantonico, M.V.; Ornithopoulou, E.; Linares, M.; Antzutkin, O.N.; Lendel, C. Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of beta-lactoglobulin. RSC Adv. 2021, 11, 27868–27879. [Google Scholar] [CrossRef] [PubMed]
- Jangir, N.; Bangrawa, S.; Yadav, T.; Malik, S.; Alamri, A.S.; Galanakis, C.M.; Singh, M.; Yadav, J.K. Isolation and characterization of amyloid-like protein aggregates from soya beans and the effect of low pH and heat treatment on their stability. J. Food Biochem. 2022, 46, e14369. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.Y.; Xu, J.J.; Ouyang, Y.Y.; Mu, D.; Li, X.; Luo, S.; Shen, Y.; Zheng, Z. Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions. LWT Food Sci. Technol. 2021, 149, 111862. [Google Scholar] [CrossRef]
- Monge-Morera, M.; Lambrecht, M.A.; Deleu, L.J.; Godefroidt, T.; Goos, P.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Drying mode and hydrothermal treatment conditions govern the formation of amyloid-like protein fibrils in solutions of dried hen egg white. Food Hydrocoll. 2021, 112, 106276. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Zhang, X.X.; Geng, H.; Xue, W.; Chen, Z. Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils. Food Hydrocoll. 2021, 111, 106396. [Google Scholar] [CrossRef]
- Schleeger, M.; Vandenakker, C.C.; Deckert-Gaudig, T.; Deckert, V.; Velikov, K.P.; Koenderink, G.; Bonn, M. Amyloids: From molecular structure to mechanical properties. Polymer 2013, 54, 2473–2488. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.X.; Yao, X.L.; Gou, Q.X.; Li, D.; Liu, N.; Yang, D.; Gao, Z.; Midgley, A.; Katsuyoshi, N.; Zhao, M. Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll. 2022, 132, 107827. [Google Scholar] [CrossRef]
- Cao, Y.P.; Mezzenga, R. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv. Colloid Interface Sci. 2019, 269, 334–356. [Google Scholar] [CrossRef]
- Zhou, J.T.; Li, T.; Peydayesh, M.; Usuelli, M.; Lutz-Bueno, V.; Teng, J.; Wang, L.; Mezzenga, R. Oat Plant Amyloids for Sustainable Functional Materials. Adv. Sci. 2022, 9, e2104445. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zou, M.; Tian, M.Q.; Gu, Z.; Yang, R. The impact of heating on the unfolding and polymerization process of frozen-stored gluten. Food Hydrocoll. 2018, 85, 195–203. [Google Scholar] [CrossRef]
- Rauscher, S.; Baud, S.; Miao, M.; Keeley, F.W.; Pomes, R. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 2006, 14, 1667–1676. [Google Scholar] [CrossRef] [Green Version]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Yang, R.Q.; Gu, Z.X.; Wang, P. Heat-triggered polymerization of frozen gluten: The micro-morphology and thermal characteristic study. J. Cereal Sci. 2019, 87, 185–193. [Google Scholar] [CrossRef]
- Monge-Morera, M.; Lambrecht, M.A.; Deleu, L.J.; Louros, N.N.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Heating Wheat Gluten Promotes the Formation of Amyloid-like Fibrils. Adv. Mater. 2021, 6, 1823–1833. [Google Scholar] [CrossRef]
- Gulia, N.; Dhaka, V.; Khatkar, B.S. Instant noodles: Processing, quality, and nutritional aspects. Crit. Rev. Food Sci. Nutr. 2014, 54, 1386–1399. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.-Y.; Yeh, A.-I. Effects of Alkali and Acid on Dough Rheological Properties and Characteristics of Extruded Noodles. J. Cereal Sci. 2001, 33, 27–37. [Google Scholar] [CrossRef]
- Rombouts, I.; Jansens, K.J.A.; Lagrain, B.; Delcour, J.A.; Zhu, K.-X. The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. J. Cereal Sci. 2014, 60, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Sun, Q.J.; Han, C.W.; Chen, H.H.; Tang, W.T. Comparative study of the quality characteristics of fresh noodles with regular salt and alkali and the underlying mechanisms. Food Chem. 2018, 246, 335–342. [Google Scholar] [CrossRef]
- Song, Y.J.; Li, T.; Zhang, X.X.; Wang, L. Investigating the effects of ion strength on amyloid fibril formation of rice proteins. Food Biosci. 2023, 51, 102068. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Monge-Morera, M.; Godefroidt, T.; Vluymans, N.; Deleu, L.J.; Goos, P.; Schymkowitz, J.; Rousseau, F.; Delcour, J.A. Hydrothermal Treatments Cause Wheat Gluten-Derived Peptides to Form Amyloid-like Fibrils. J. Agric. Food Chem. 2021, 69, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrecht, M.A.; Deleu, L.J.; Rombouts, I.; Delcour, J.A. Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocoll. 2018, 79, 352–370. [Google Scholar] [CrossRef]
- Lagrain, B.; Thewissen, B.G.; Brijs, K.; Delcour, J.A. Mechanism of gliadin-glutenin cross-linking during hydrothermal treatment. Food Chem. 2008, 107, 753–760. [Google Scholar] [CrossRef]
- Morel, B.; Varela, L.; Azuaga, A.I.; Conejero-Lara, F. Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys. J. 2010, 99, 3801–3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, Y.; Adachi, M.; Muta, H.; So, M. Salt-induced formations of partially folded intermediates and amyloid fibrils suggests a common underlying mechanism. Annu. Rev. Biophys. 2018, 10, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Jansens, K.J.A.; Lagrain, B.; Rombouts, I.; Brijs, K.; Smet, M.; Delcour, J.A. Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. J. Cereal Sci. 2011, 54, 434–441. [Google Scholar] [CrossRef]
- Meng, Y.; Wei, Z.H.; Xue, C.H. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends Food Sci. Technol. 2022, 121, 59–75. [Google Scholar] [CrossRef]
- Hu, Y.; He, C.X.; Woo, M.W.; Xiong, H.; Hu, J.; Zhao, Q. Formation of fibrils derived from whey protein isolate: Structural characteristics and protease resistance. Food Funct. 2019, 10, 8106–8115. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhong, Q.X. Dispersible and thermal stable nanofibrils derived from glycated whey protein. Biomacromolecules 2013, 14, 2146–2153. [Google Scholar] [CrossRef]
- Chen, G.J.; Ehmke, L.; Miller, R.; Faa, P.; Smith, G.; Li, Y. Effect of Sodium Chloride and Sodium Bicarbonate on the Physicochemical Properties of Soft Wheat Flour Doughs and Gluten Polymerization. J. Agric. Food Chem. 2018, 66, 6840–6850. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Q.; Luo, S.Z.; Cai, J.; Sun, Q.; Zhao, Y.; Zhong, X.; Jiang, S.; Zheng, Z. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure. Food Chem. 2016, 197, 168–174. [Google Scholar] [CrossRef]
- Wawer, J.; Szocinski, M.; Olszewski, M.; Piatek, R.; Naczk, M.; Krakowiak, J. Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol. 2019, 121, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Edited by F. E. Cohen. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature 2016, 539, 227–235. [Google Scholar] [CrossRef]
- Fitzpatrick, A.W.; Knowles, T.P.; Waudby, C.A.; Vendruscolo, M.; Dobson, C.M. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput. Biol. 2011, 7, e1002169. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Qu, Z.T.; Liu, M.; Wang, J.; Zhu, M.; Liu, Z.; Li, J.; Zhan, X.; Jia, F. Effect of curdlan on the quality of frozen-cooked noodles during frozen storage. J. Cereal Sci. 2020, 95, 103019. [Google Scholar] [CrossRef]
- Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods 2004, 34, 151–160. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shen, Y.T.; Qi, G.Y.; Li, Y.; Sun, X.S.; Qiu, D.; Li, Y. Formation and physicochemical properties of amyloid fibrils from soy protein. Int. J. Biol. Macromol. 2020, 149, 609–616. [Google Scholar] [CrossRef]
- Wang, X.H.; Liang, Y.; Wang, Q.; Wang, X.; Li, H.; Wang, J. Rheological properties of wheat dough mediated by low-sodium salt. Food Hydrocoll. 2023, 137, 108432. [Google Scholar] [CrossRef]
- Zandomeneghi, G.; Krebs, M.R.; Mccammon, M.G.; Fandrich, M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 2004, 13, 3314–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.W.; Ma, M.; Yang, T.B.; Li, M.; Sun, Q. Heat mediated physicochemical and structural changes of wheat gluten in the presence of salt and alkali. Food Hydrocoll. 2021, 120, 106971. [Google Scholar] [CrossRef]
NaCl Concentration (%) | Fluorescence Intensity | Grain Size (d/nm) | Hydrophobicity (mL/mg) |
---|---|---|---|
0 | 7093 ± 107.16 b | 313.93 ± 8.023 c | 3942.05 ± 84.52 d |
0.4 | 7332 ± 100.43 a | 373.40 ± 13.00 a | 6117.57 ± 198.07 a |
0.8 | 6634 ± 105.33 c | 333.87 ± 17.01 bc | 5585.34 ± 184.12 b |
1.2 | 6288 ± 77.57 d | 342.93 ± 12.72 b | 5191.56 ± 145.00 c |
1.6 | 6158 ± 80.02 d | 329.73 ± 6.568 bc | 3633.17 ± 295.20 de |
2.0 | 5630 ± 62.05 e | 324.40 ± 5.895 bc | 3282.54 ± 182.42 e |
NaCl Concentration (%) | β-Sheet (%) | Unordered (%) | α-Helix (%) | β-Turn (%) |
---|---|---|---|---|
0.0 | 8.4 ± 3.3 bc | 13 ± 0.38 bc | 26 ± 0.40 b | 52 ± 0.18 ab |
0.4 | 11 ± 0.1 a | 12 ± 0.82 c | 37 ± 1.3 a | 40 ± 2.1 c |
0.8 | 10 ± 1.5 ab | 14 ± 0.64 ab | 26 ± 0.24 b | 49 ± 1.9 b |
1.2 | 8.6 ± 1.4 abc | 16 ± 0.39 a | 26 ± 0.81 b | 49 ± 0.23 b |
1.6 | 8.1 ± 0.58 bc | 14 ± 0.17 ab | 26 ± 0.21 b | 52 ± 0.54 ab |
2.0 | 6.9 ± 0.65 c | 13 ± 1.2 bc | 26 ± 0.18 b | 54 ± 0.38 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Song, J.; Wang, J.; Liu, H.; Wu, X.; He, B.; Zhang, X.; Wang, J. Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles. Int. J. Mol. Sci. 2023, 24, 9907. https://doi.org/10.3390/ijms24129907
Liang Y, Song J, Wang J, Liu H, Wu X, He B, Zhang X, Wang J. Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles. International Journal of Molecular Sciences. 2023; 24(12):9907. https://doi.org/10.3390/ijms24129907
Chicago/Turabian StyleLiang, Ying, Jiayang Song, Jiayi Wang, Hao Liu, Xingquan Wu, Baoshan He, Xia Zhang, and Jinshui Wang. 2023. "Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles" International Journal of Molecular Sciences 24, no. 12: 9907. https://doi.org/10.3390/ijms24129907
APA StyleLiang, Y., Song, J., Wang, J., Liu, H., Wu, X., He, B., Zhang, X., & Wang, J. (2023). Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles. International Journal of Molecular Sciences, 24(12), 9907. https://doi.org/10.3390/ijms24129907