Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods
3.1.2. Procedures for the Synthesis of Compounds 3–6
3.1.3. General Procedure for the Synthesis of Compounds 7
3.1.4. Characterization Data for Compounds 7
3.1.5. General Procedure for the Synthesis of Compounds 8
3.1.6. Characterization Data for Compounds 8
3.2. Biology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balewski, Ł.; Szulta, S.; Jalińska, A.; Kornicka, A. A Mini-Review: Recent Advances in Coumarin-Metal Complexes with Biological Properties. Front. Chem. 2021, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Srikrishna, D.; Godugu, C.; Dubey, P.K. A Review on Pharmacological Properties of Coumarins. Mini-Rev. Med. Chem. 2018, 18, 113–141. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: A Promising Scaffold for Anticancer Agents. Anticancer Agents Med. Chem. 2015, 15, 1032–1048. [Google Scholar] [CrossRef]
- Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015, 101, 476–495. [Google Scholar] [CrossRef]
- Song, X.; Fan, J.; Liu, L.; Liu, X.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. 2020, 353, 2000025. [Google Scholar] [CrossRef]
- Awale, S.; Okada, T.; Dibwe, D.F.; Maruyama, T.; Takahara, S.; Okada, T.; Endo, S.; Toyooka, N. Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells’ tolerance to nutrition starvation. Bioorg. Med. Chem. Lett. 2019, 29, 1779–1784. [Google Scholar] [CrossRef]
- Reddy, N.S.; Gumireddy, K.; Mallireddigari, M.R.; Cosenza, S.C.; Venkatapuram, P.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Novel coumarin-3-(N-aryl)carboxamides arrest breast cancer cell growth by inhibiting ErbB-2 and ERK1. Bioorg. Med. Chem. 2005, 13, 3141–3147. [Google Scholar] [CrossRef]
- Yu, X.; Teng, P.; Zhang, Y.-L.; Xu, Z.-J.; Zhang, M.-Z.; Zhang, W.-H. Design, synthesis and antifungal activity evaluation of coumarin-3-carboxamide derivatives. Fitoterapia 2018, 127, 387–395. [Google Scholar] [CrossRef]
- Ji, H.; Tan, Y.; Gan, N.; Zhang, J.; Li, S.; Zheng, X.; Wang, Z.; Yi, W. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors. Bioorg. Med. Chem. 2021, 29, 115870. [Google Scholar] [CrossRef]
- Phutdhawong, W.; Chuenchid, A.; Taechowisan, T.; Sirirak, J.; Phutdhawong, W.S. Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives. Molecules 2021, 26, 1653. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Huang, K.; Ni, X.; Chen, R.; Xu, B.; Wang, C. Design, Synthesis, Biological Activity and Molecular Docking Study of Coumarin Derivatives Bearing 2-Methylbiphenyl Moiety. Chem. Res. Chin. Univ. 2019, 35, 410–417. [Google Scholar] [CrossRef]
- Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tawa, G.; Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today 2012, 17, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. “Scaffold-Hopping” by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angew. Chemie Int. Ed. 1999, 38, 2894–2896. [Google Scholar] [CrossRef]
- Lazzara, P.R.; Moore, T.W. Scaffold-hopping as a strategy to address metabolic liabilities of aromatic compounds. RSC Med. Chem. 2020, 11, 18–29. [Google Scholar] [CrossRef]
- Tung, Y.-S.; Coumar, M.S.; Wu, Y.-S.; Shiao, H.-Y.; Chang, J.-Y.; Liou, J.-P.; Shukla, P.; Chang, C.-W.; Chang, C.-Y.; Kuo, C.-C.; et al. Scaffold-Hopping Strategy: Synthesis and Biological Evaluation of 5,6-Fused Bicyclic Heteroaromatics To Identify Orally Bioavailable Anticancer Agents. J. Med. Chem. 2011, 54, 3076–3080. [Google Scholar] [CrossRef]
- Priyadarshani, G.; Nayak, A.; Amrutkar, S.M.; Das, S.; Guchhait, S.K.; Kundu, C.N.; Banerjee, U.C. Scaffold-Hopping of Aurones: 2-Arylideneimidazo[1,2-a]pyridinones as Topoisomerase IIα-Inhibiting Anticancer Agents. ACS Med. Chem. Lett. 2016, 7, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshani, G.; Amrutkar, S.; Nayak, A.; Banerjee, U.C.; Kundu, C.N.; Guchhait, S.K. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα. Eur. J. Med. Chem. 2016, 122, 43–54. [Google Scholar] [CrossRef]
- Kulkarni, M.; Kulkarni, G.; Lin, C.-H.; Sun, C.-M. Recent Advances in Coumarins and 1-Azacoumarins as Versatile Biodynamic Agents. Curr. Med. Chem. 2006, 13, 2795–2818. [Google Scholar] [CrossRef]
- Abu Almaaty, A.H.; Elgrahy, N.A.; Fayad, E.; Abu Ali, O.A.; Mahdy, A.R.E.; Barakat, L.A.A.; El Behery, M. Design, Synthesis and Anticancer Evaluation of Substituted Cinnamic Acid Bearing 2-Quinolone Hybrid Derivatives. Molecules 2021, 26, 4724. [Google Scholar] [CrossRef]
- Gaber, A.; Alsanie, W.F.; Alhomrani, M.; Alamri, A.S.; El-Deen, I.M.; Refat, M.S. Synthesis and Characterization of Some New Coumarin Derivatives as Probable Breast Anticancer MCF-7 Drugs. Crystals 2021, 11, 565. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Lawal, B.; Huang, L.-J.; Kuo, S.-C.; Sumitra, M.R.; Mokgautsi, N.; Lin, H.-Y.; Huang, H.-S. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules 2023, 28, 555. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Darro, F.; Béhard, A.; Lesur, B.; Collignon, F.; Decaestecker, C.; Frydman, A.; Guillaumet, G.; Kiss, R. 3-Aryl-2-Quinolone Derivatives: Synthesis and Characterization of In Vitro and In Vivo Antitumor Effects with Emphasis on a New Therapeutical Target Connected with Cell Migration. J. Med. Chem. 2002, 45, 2543–2555. [Google Scholar] [CrossRef] [PubMed]
- Angibaud, P.R.; Venet, M.G.; Filliers, W.; Broeckx, R.; Ligny, Y.A.; Muller, P.; Poncelet, V.S.; End, D.W. Synthesis Routes Towards the Farnesyl Protein Transferase Inhibitor ZARNESTRATM. Eur. J. Org. Chem. 2004, 2004, 479–486. [Google Scholar] [CrossRef]
- Féau, C.; Klein, E.; Kerth, P.; Lebeau, L. Preparation and Optical Properties of Novel 3-Alkoxycarbonyl Aza- and Diazacoumarins. Synth. Commun. 2010, 40, 3033–3045. [Google Scholar] [CrossRef]
- Casas, J.S.; Castellano, E.E.; Couce, M.D.; Sánchez, A.; Sordo, J.; Taboada, C. From pyridoxalrhodanine to a novel 7-azacoumarin complex of dimethylthallium(III) in a one-pot synthesis. Inorg. Chem. Commun. 2012, 19, 55–57. [Google Scholar] [CrossRef]
- Casas, J.S.; Castellano, E.E.; Couce, M.D.; Crespo, O.; Ellena, J.; Laguna, A.; Sánchez, A.; Sordo, J.; Taboada, C. Novel Gold(I) 7-Azacoumarin Complex: Synthesis, Structure, Optical Properties, and Cytotoxic Effects. Inorg. Chem. 2007, 46, 6236–6238. [Google Scholar] [CrossRef]
- Fringuelli, F.; Brufola, G.; Piermatti, O.; Pizzo, F. Efficient One-Pot Synthesis of 7-Azacoumarins by Knoevenagel Reaction Using Water as Reaction Medium. Heterocycles 1997, 45, 1715. [Google Scholar] [CrossRef]
- Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022, 13, 200238. [Google Scholar] [CrossRef]
- Fowler, J.R.; Maani, E.V.; Dunton, C.J.; Jack, B.W. Cervical Cancer. Lancet 2023, 361, 2217–2225. [Google Scholar]
- Cloyd, J.M.; George, E.; Visser, B.C. Duodenal adenocarcinoma: Advances in diagnosis and surgical management. World J. Gastrointest. Surg. 2016, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Kibardina, L.K.; Trifonov, A.V.; Dobrynin, A.B.; Pudovik, M.A.; Burilov, A.R.; Voloshina, A.D.; Strelnik, A.G.; Gazizov, A.S. Anticancer activity of novel 3-azaxanthenes. Mendeleev Commun. 2021, 31, 664–666. [Google Scholar] [CrossRef]
- Massolo, E.; Pirola, M.; Benaglia, M. Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. Eur. J. Org. Chem. 2020, 2020, 4641–4651. [Google Scholar] [CrossRef]
- De Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. [Google Scholar] [CrossRef]
- Ojeda-Porras, A.; Gamba-Sánchez, D. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. J. Org. Chem. 2016, 81, 11548–11555. [Google Scholar] [CrossRef] [PubMed]
- Seavill, P.W.; Wilden, J.D. The preparation and applications of amides using electrosynthesis. Green Chem. 2020, 22, 7737–7759. [Google Scholar] [CrossRef]
- Lu, B.; Xiao, W.-J.; Chen, J.-R. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022, 27, 517. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahid, E.; Rolland, S.; Teng, X.; Conradt, B.; Hardwick, J.M.; White, K. Mitochondrial involvement in cell death of non-mammalian eukaryotes. Biochim. Biophys. Acta-Mol. Cell Res. 2011, 1813, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial Oxidative Stress: Implications for Cell Death. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 143–183. [Google Scholar] [CrossRef]
Entry | 2 | Conditions | Product | Yield, % a |
---|---|---|---|---|
1 | H2O, rt, 12 h | 69 (3a) | ||
2 | 86 (3b) | |||
3 | H2O, catalyst, rt, 12 h catalyst: citric acid, piperidine | <10 | ||
4 | EtOH or H2O, 60 °C, 4 h | 89 | ||
5 | EtOH, piperidine (2% mol), AcOH (2% mol), reflux, 2 h | 79 | ||
6 | EtOH/H2O (3/1), KOH (40% mol), rt, 24 h | 82 |
Compounds | IC50 (µM) | ||
---|---|---|---|
Cancer Cell Lines | Normal Cell Lines | ||
M-HeLa | HuTu 80 | Chang Liver | |
3a | 75.5 ± 6.0 | 57.6 ± 4.6 | 58.0 ± 4.7 |
3b | 70.6 ± 5.7 | 60.5 ± 5.3 | 70.0 ± 5.6 |
7a | >100 | 59.4 ± 4.8 | 56.6 ± 4.5 |
7b | 84.4 ± 5.5 | 55.3 ± 3.9 | 46.0 ± 3.2 |
7c | 67.4 ± 4.6 | 43.0 ± 3.5 | 89.4 ± 6.3 |
7d | 84.0 ± 5.9 | 62.0 ± 4.3 | 88.0 ± 6.2 |
7e | 54.3 ± 3.6 | 72.0 ± 5.2 | 55.3 ± 3.7 |
7f | 32.0 ± 2.2 | 17.4 ± 1.3 | 48.4 ± 3.3 |
7g | 14.1 ± 1.2 | 11.2 ± 0.9 | 13.9 ± 0.3 |
7h | 14.8 ± 1.3 | 2.9 ± 0.2, SI = 10 b | 29.8 ± 2.0 |
7i | 77.8 ± 5.4 | 31.0 ± 1.9 | 116.0 ± 8.1 |
7j | 73.4 ± 5.2 | 32.0 ± 2.1 | 73.0 ± 5.5 |
7k | 47.0 ± 3.1 | 18.1 ± 1.4 | 61.3 ± 4.2 |
7l | 62.4 ± 4.4 | 52.1 ± 3.4 | 126.0 ± 8.8 |
7m | 61.1 ± 4.2 | 49.7 ± 3.5 | 62.4 ± 4.9 |
7n | 93.1 ± 6.6 | 61.2 ± 4.2 | 64.1 ± 4.8 |
7o | 22.5 ± 1.8 | 3.1 ± 0.2, SI = 3.8 b | 11.8 ± 0.9 |
7p | 63.0 ± 4.4 | 81.5 ± 5.7 | 37.0 ± 2.6 |
7q | 84.3 ± 5.9 | 95.4 ± 6.5 | >100 |
7r | 64.5 ± 4.5 | 5.5 ± 0.4, SI = 14 b | 78.0 ± 5.9 |
7s | 80.0 ± 5.7 | 13.8 ± 1.1, SI = 9 b | 125.0 ± 11 |
8b | 70.4 ± 5.7 | 78.2 ± 6.3 | 81.0 ± 6.5 |
8d | >100 | 88.4 ± 7.0 | 64.1 ± 5.1 |
8e | 99.5 ± 7.1 | 59.0 ± 4.1 | 78.4 ± 6.3 |
5-fluorouracil | 62.0 ± 4.7 | 65.2 ± 5.4 | 86.3 ± 6.5 |
Doxorubicin | 3.0 ± 0.2 | 3.0 ± 0.2 | 3.0 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifonov, A.V.; Gazizov, A.S.; Tapalova, A.S.; Kibardina, L.K.; Appazov, N.O.; Voloshina, A.D.; Sapunova, A.S.; Luybina, A.P.; Abyzbekova, G.M.; Dobrynin, A.B.; et al. Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides. Int. J. Mol. Sci. 2023, 24, 9927. https://doi.org/10.3390/ijms24129927
Trifonov AV, Gazizov AS, Tapalova AS, Kibardina LK, Appazov NO, Voloshina AD, Sapunova AS, Luybina AP, Abyzbekova GM, Dobrynin AB, et al. Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides. International Journal of Molecular Sciences. 2023; 24(12):9927. https://doi.org/10.3390/ijms24129927
Chicago/Turabian StyleTrifonov, Alexey V., Almir S. Gazizov, Anipa S. Tapalova, Lyudmila K. Kibardina, Nurbol O. Appazov, Alexandra D. Voloshina, Anastasiia S. Sapunova, Anna P. Luybina, Gulmira M. Abyzbekova, Alexey B. Dobrynin, and et al. 2023. "Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides" International Journal of Molecular Sciences 24, no. 12: 9927. https://doi.org/10.3390/ijms24129927
APA StyleTrifonov, A. V., Gazizov, A. S., Tapalova, A. S., Kibardina, L. K., Appazov, N. O., Voloshina, A. D., Sapunova, A. S., Luybina, A. P., Abyzbekova, G. M., Dobrynin, A. B., Litvinov, I. A., Tauekel, A. K., Yespenbetova, S. O., Burilov, A. R., & Pudovik, M. A. (2023). Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides. International Journal of Molecular Sciences, 24(12), 9927. https://doi.org/10.3390/ijms24129927