Therapeutic Potential of Orally Administered Rubiscolin-6
Abstract
:1. Introduction
2. Therapeutic Potential of Rubiscolins
2.1. Orally Administered Rubiscolins
2.1.1. Antinociceptive Effect
2.1.2. Memory-Enhancing Effect
2.1.3. Anxiolytic Effect
2.1.4. Orexigenic and Anorexigenic Effects
2.2. In Vivo Oligopeptide Transportation
3. Discussion
3.1. Therapeutic Potential of Orally Administered Rubiscolin-6
3.2. Effects of Non-Orally Administered Rubiscolin-6
3.3. Safety of Rubiscolin-6
3.4. Hypothesis for the Pharmacokinetics of Rubiscolins
3.5. Analogs or Derivatives of Rubiscolin-6
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lagassé, H.A.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Kimchi-Sarfaty, C. Recent advances in (therapeutic protein) drug development. F1000Res 2017, 6, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S. Peptidomimetics and their applications for opioid peptide drug discovery. Biomolecules 2022, 12, 1241. [Google Scholar] [CrossRef]
- Aldrich, J.V.; McLaughlin, J.P. Peptide kappa opioid receptor ligands and their potential for drug development. Handb. Exp. Pharmacol. 2022, 271, 197–220. [Google Scholar]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal. Transduct. Target Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Janecka, A.; Perlikowska, R.; Gach, K.; Wyrebska, A.; Fichna, J. Development of opioid peptide analogs for pain relief. Curr. Pharm. Des. 2010, 16, 1126–1135. [Google Scholar] [CrossRef]
- Verma, S.; Goand, U.K.; Husain, A.; Katekar, R.A.; Garg, R.; Gayen, J.R. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev. Res. 2021, 82, 927–944. [Google Scholar] [CrossRef]
- Yang, S.; Yunden, J.; Sonoda, S.; Doyama, N.; Lipkowski, A.W.; Kawamura, Y.; Yoshikawa, M. Rubiscolin, a delta selective opioid peptide derived from plant RuBisCO. FEBS Lett. 2001, 509, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Kawamura, Y.; Yoshikawa, M. Effect of rubiscolin, a delta opioid peptide derived from RuBisCO, on memory consolidation. Peptides 2003, 24, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Sonoda, S.; Chen, L.; Yoshikawa, M. Structure-activity relationship of rubiscolins as delta opioid peptides. Peptides 2003, 24, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Takahashi, M.; Yang, S. Delta opioid peptides derived from plant proteins. Curr. Pharm. Des. 2003, 9, 1325–1330. [Google Scholar] [CrossRef]
- Hirata, H.; Sonoda, S.; Agui, S.; Yoshida, M.; Ohinata, K.; Yoshikawa, M. Rubiscolin-6, a delta opioid peptide derived from spinach RuBisCO, has anxiolytic effect via activating sigma1 and dopamine D1 receptors. Peptides 2007, 28, 1998–2003. [Google Scholar] [CrossRef]
- Kaneko, K.; Lazarus, M.; Miyamoto, C.; Oishi, Y.; Nagata, N.; Yang, S.; Yoshikawa, M.; Aritake, K.; Furuyashiki, T.; Narumiya, S.; et al. Orally administered rubiscolin-6, a δ opioid peptide derived from RuBisCO, stimulates food intake via leptomeningeal lipocallin-type prostaglandin D synthase in mice. Mol. Nutr. Food Res. 2012, 56, 1315–1323. [Google Scholar] [CrossRef]
- Kaneko, K.; Mizushige, T.; Miyazaki, Y.; Lazarus, M.; Urade, Y.; Yoshikawa, M.; Kanamoto, R.; Ohinata, K. δ-Opioid receptor activation stimulates normal diet intake but conversely suppresses high-fat diet intake in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R265–R272. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Kaneko, K.; Iguchi, S.; Mizushige, T.; Kanamoto, R.; Yoshikawa, M.; Shimizu, T.; Ohinata, K. Orally administered δ opioid agonist peptide rubiscolin-6 stimulates food intake in aged mice with ghrelin resistance. Mol. Nutr. Food Res. 2014, 58, 2046–2052. [Google Scholar] [CrossRef]
- Meqbil, Y.J.; van Rijn, R.M. Opportunities and challenges for in silico drug discovery at delta opioid receptors. Pharmaceuticals 2022, 15, 873. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Befort, K.; Nozaki, C.; Gavériaux-Ruff, C.; Kieffer, B.L. The delta Opioid receptor: An evolving target for the treatment of brain disorders. Trends Pharmacol. Sci. 2011, 32, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid Pharmacology. Pain Phys. 2008, 11, S133–S153. [Google Scholar] [CrossRef]
- Karasawa, Y.; Miyano, K.; Fujii, H.; Mizuguchi, T.; Kuroda, Y.; Nonaka, M.; Komatsu, A.; Ohshima, K.; Yamaguchi, M.; Yamaguchi, K.; et al. In vitro analyses of spinach-derived opioid peptides, rubiscolins: Receptor selectivity and intracellular activities through G protein- and β-arrestin-mediated pathways. Molecules 2021, 26, 6079. [Google Scholar] [CrossRef]
- Skolnick, P. The opioid epidemic: Crisis and solutions. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Stefanucci, A.; Dimmito, M.P.; Tenore, G.; Pieretti, S.; Minosi, P.; Zengin, G.; Sturaro, C.; Calò, G.; Novellino, E.; Cichelli, A.; et al. Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J. Funct. Foods 2020, 73, 104154. [Google Scholar] [CrossRef]
- Chothe, P.; Singh, N.; Ganapathy, V. Evidence for two different broad-specificity oligopeptide transporters in intestinal cell line Caco-2 and colonic cell line CCD841. Am. J. Physiol. Cell Physiol. 2011, 300, C1260–C1269. [Google Scholar] [CrossRef] [PubMed]
- Leibach, F.H.; Ganapathy, V. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 1996, 16, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Chothe, P.P.; Thakkar, S.V.; Gnana-Prakasam, J.P.; Ananth, S.; Hinton, D.R.; Kannan, R.; Smith, S.B.; Martin, P.M.; Ganapathy, V. Identification of a novel sodium-coupled oligopeptide transporter (SOPT2) in mouse and human retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ananth, S.; Thakkar, S.V.; Gnana-Prakasam, J.P.; Martin, P.M.; Ganapathy, P.S.; Smith, S.B.; Ganapathy, V. Transport of the synthetic opioid peptide DADLE ([D-Ala2,D-Leu5]-enkephalin) in neuronal cells. J. Pharm. Sci. 2012, 101, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Witt, K.A.; Davis, T.P. CNS drug delivery: Opioid peptides and the blood-brain barrier. AAPS J. 2006, 8, E76–E88. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J. Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. 1990, 259, E1–E10. [Google Scholar] [CrossRef]
- Maresh, G.A.; Kastin, A.J.; Brown, T.T.; Zadina, J.E.; Banks, W.A. Peptide transport system-1 (PTS-1) for Tyr-MIF-1 and Met-enkephalin differs from the receptors for either. Brain Res. 1999, 839, 336–340. [Google Scholar] [CrossRef]
- Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009, 9, S3. [Google Scholar] [CrossRef] [Green Version]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Phys. 2008, 11, S105–S120. [Google Scholar] [CrossRef]
- Zuo, Z. The role of opioid receptor internalization and beta-arrestins in the development of opioid tolerance. Anesth. Analg. 2005, 101, 728–734. [Google Scholar] [CrossRef]
- Mercadante, S.; Bruera, E. Opioid switching in cancer pain: From the beginning to nowadays. Crit. Rev. Oncol. Hematol. 2016, 99, 241–248. [Google Scholar] [CrossRef]
- Porter-Stransky, K.A.; Weinshenker, D. Arresting the development of addiction: The role of β-arrestin 2 in drug abuse. J. Pharmacol. Exp. Ther. 2017, 361, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Vanderah, T.W. Delta and kappa opioid receptors as suitable drug targets for pain. Clin. J. Pain 2010, 26, S10–S15. [Google Scholar] [CrossRef]
- Bouhassira, D.; Lantéri-Minet, M.; Attal, N.; Laurent, B.; Touboul, C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008, 136, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Attal, N.; Lanteri-Minet, M.; Laurent, B.; Fermanian, J.; Bouhassira, D. The specific disease burden of neuropathic pain: Results of a French nationwide survey. Pain 2011, 152, 2836–2843. [Google Scholar] [CrossRef]
- Vicario, N.; Parenti, R.; Arico’, G.; Turnaturi, R.; Scoto, G.M.; Chiechio, S.; Parenti, C. Repeated activation of delta opiod receptors counteracts nerve injury-induced TNF-α up-regulation in the sciatic nerve of rats with neuropathic pain: A possible correlation with delta opiod receptors-mediated antiallodinic effect. Mol. Pain 2016, 12, 1744806916667949. [Google Scholar] [CrossRef] [Green Version]
- Reiss, D.; Maurin, H.; Audouard, E.; Martínez-Navarro, M.; Xue, Y.; Herault, Y.; Maldonado, R.; Cabañero, D.; Gaveriaux-Ruff, C. Delta opioid receptor in astrocytes contributes to neuropathic cold pain and analgesic tolerance in female mice. Front. Cell Neurosci. 2021, 15, 745178. [Google Scholar] [CrossRef]
- Cahill, C.M.; Holdridge, S.V.; Liu, S.S.; Xue, L.; Magnussen, C.; Ong, E.; Grenier, P.; Sutherland, A.; Olmstead, M.C. Delta opioid receptor activation modulates affective pain and modality-specific pain hypersensitivity associated with chronic neuropathic pain. J. Neurosci. Res. 2022, 100, 129–148. [Google Scholar] [CrossRef]
- Ukai, M.; Watanabe, Y.; Kameyama, T. Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice. Eur. J. Pharmacol. 2001, 421, 115–119. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Kameyama, T. Roles of kappa-opioid receptor agonists in learning and memory impairment in animal models. Methods Find Exp. Clin. Pharmacol. 1998, 20, 595–599. [Google Scholar] [CrossRef]
- Pavone, F.; Populin, R.; Castellano, C.; Kreil, G.; Melchiorri, P. Deltorphin, a naturally occurring peptide with high selectivity for delta opioid receptors, improves memory consolidation in two inbred strains of mice. Peptides 1990, 11, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Ukai, M.; Takada, A.; Sasaki, Y.; Kameyama, T. Stimulation of delta1- and delta2-opioid receptors produces amnesia in mice. Eur. J. Pharmacol. 1997, 338, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Fukunaga, H.; Kaneto, H.; Fukudome, S.; Yoshikawa, M. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, in mice. Jpn. J. Pharmacol. 2000, 84, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization 2022. Comprehensive Mental Health Action Plan 2013–2030. Available online: https://www.who.int/health-topics/depression#tab=tab1 (accessed on 24 January 2023).
- Roache, J.D. Addiction potential of benzodiazepines and non-benzodiazepine anxiolytics. Adv. Alcohol Subst. Abuse 1990, 9, 103–128. [Google Scholar] [CrossRef] [PubMed]
- Filliol, D.; Ghozland, S.; Chluba, J.; Martin, M.; Matthes, H.W.; Simonin, F.; Befort, K.; Gavériaux-Ruff, C.; Dierich, A.; LeMeur, M.; et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat. Genet. 2000, 25, 195–200. [Google Scholar] [CrossRef]
- Yoo, J.H.; Lee, S.Y.; Loh, H.H.; Ho, I.K.; Jang, C.G. Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in micro-opioid receptor knockout mice. Synapse 2004, 54, 72–82. [Google Scholar] [CrossRef]
- Mitsumoto, Y.; Sato, R.; Tagawa, N.; Kato, I. Rubiscolin-6, a δ-opioid peptide from spinach RuBisCO, exerts antidepressant-like effect in restraint-stressed mice. J. Nutr. Sci. Vitaminol. 2019, 65, 202–204. [Google Scholar] [CrossRef] [Green Version]
- Richards, E.M.; Mathews, D.C.; Luckenbaugh, D.A.; Ionescu, D.F.; Machado-Vieira, R.; Niciu, M.J.; Duncan, W.C.; Nolan, N.M.; Franco-Chaves, J.A.; Hudzik, T.; et al. A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology 2016, 233, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Reyes, B.A.S.; Kravets, J.L.; Connelly, K.L.; Unterwald, E.M.; Van Bockstaele, E.J. Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: Role in anxiety. Brain Struct. Funct. 2017, 222, 1007–1026. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, A.; Suzuki, S.; Soda, A.; Ohashi, M.; Yamada, M.; Oka, J.I.; Nagase, H.; Yamada, M. The delta opioid receptor agonist KNT-127 in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice. Behav. Brain Res. 2018, 336, 77–84. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.S.; Crombez, G.; Linton, S.J. The fear-avoidance model of pain. Pain 2016, 157, 1588–1589. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Goto, M.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Cancer cachexia: Its mechanism and clinical significance. Int. J. Mol. Sci. 2021, 22, 8491. [Google Scholar] [CrossRef]
- Smith, C.; Woessner, M.N.; Sim, M.; Levinger, I. Sarcopenia definition: Does it really matter? Implications for resistance training. Ageing Res. Rev. 2022, 78, 101617. [Google Scholar] [CrossRef]
- Kojima, G.; Liljas, A.E.M.; Iliffe, S. Frailty syndrome: Implications and challenges for health care policy. Risk Manag. Healthc. Policy 2019, 12, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Marcos, P.; Coveñas, R. Regulation of homeostasis by neuropeptide Y: Involvement in food intake. Curr. Med. Chem. 2022, 29, 4026–4049. [Google Scholar] [CrossRef]
- Van Loenen, M.R.; Geenen, B.; Arnoldussen, I.A.C.; Kiliaan, A.J. Ghrelin as a prominent endocrine factor in stress-induced obesity. Nutr. Neurosci. 2022, 25, 1413–1424. [Google Scholar] [CrossRef]
- Goforth, P.B.; Myers, M.G. Roles for orexin/hypocretin in the control of energy balance and metabolism. Curr. Top Behav. Neurosci. 2017, 33, 137–156. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Milo, R. The global mass and average rate of rubisco. Proc. Natl. Acad. Sci. USA 2019, 116, 4738–4743. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016, A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Gribble, F.M.; O’rahilly, S. Obesity therapeutics: The end of the beginning. Cell Metab. 2021, 33, 705–706. [Google Scholar] [CrossRef]
- Chajra, H.; Amstutz, B.; Schweikert, K.; Auriol, D.; Redziniak, G.; Lefèvre, F. Opioid receptor delta as a global modulator of skin differentiation and barrier function repair. Int. J. Cosmet. Sci. 2015, 37, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Kairupan, T.S.; Cheng, T.S.; Asakawa, A.; Amitani, H.; Yagi, T.; Ataka, K.; Rokot, N.T.; Kapantow, N.H.; Kato, I.; Inui, A. Rubiscolin-6 activates opioid receptors to enhance glucose uptake in skeletal muscle. J. Food Drug Anal. 2019, 27, 266–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, T.; Sansuk, K.; van Rijn, R.M. β-Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake. Br. J. Pharmacol. 2016, 173, 332–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitoh, A.; Nagase, H. Delta opioid receptor (DOR) ligands and pharmacology: Development of indolo- and quinolinomorphinan derivatives based on the message-address concept. Handb. Exp. Pharmacol. 2018, 247, 3–19. [Google Scholar] [CrossRef]
- Perlikowska, R.; Janecka, A. Rubiscolins–Highly potent peptides derived from plant proteins. Mini Rev. Med. Chem. 2018, 18, 104–112. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Venkidasamy, B.; Thirupathi, P.; Chung, I.M.; Subramanian, U. β-casomorphin: A complete health perspective. Food Chem. 2021, 337, 127765. [Google Scholar] [CrossRef]
- Caballero, J.; Saavedra, M.; Fernández, M.; González-Nilo, F.D. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). J. Agric. Food Chem. 2007, 55, 8101–8104. [Google Scholar] [CrossRef]
- Marinaccio, L.; Zengin, G.; Pieretti, S.; Minosi, P.; Szucs, E.; Benyhe, S.; Novellino, E.; Masci, D.; Stefanucci, A.; Mollica, A. Food-inspired peptides from spinach Rubisco endowed with antioxidant, antinociceptive and anti-inflammatory properties. Food Chem. X 2023, 18, 100640. [Google Scholar] [CrossRef]
Effect | ID | Animal | Effective Dose | Findings | |
---|---|---|---|---|---|
1 | Antinociceptive | Yang et al. [7] | Male ddY mice | Rubiscolin-5: 300 mg/kg, rubiscolin-6: 100 mg/kg | Both peptides exhibited an antinociceptive effect and were blocked by a selective δ opioid antagonist, naltrindole. |
2 | Memory-enhancing | Yang et al. [8] | Male ddY mice | Rubiscolin-6: 100 mg/kg | Rubiscolin-6 showed memory-enhancing effects; it was blocked by naltrindole. Notably, rubiscolin-5 failed to elicit this effect, even at 300 mg/kg. |
3 | Anxiolytic | Hirata et al. [11] | Male ddY mice | Rubiscolin-6: 100 mg/kg | Rubiscolin-6 exerted an anxiolytic effect and was blocked by naltrindole. The effect was mediated by σ1 and dopamine D1 receptors. |
4 | Orexigenic | Kaneko et al. [12] | Male ddY or C57BL/6 mice | Rubiscolin-6: 0.3 mg/kg | Rubiscolin-6 stimulated food intake and was blocked by naltrindole. The effect was mediated by cyclooxygenase-2 and lipocalin-type PGDS. |
Miyazaki et al. [14] | Male C57BL/6N mice | Rubiscolin-6: 1 mg/kg | Rubiscolin-6 stimulated food intake even in aged mice with ghrelin resistance and was blocked by naltrindole. | ||
5 | Anorexigenic | Kaneko et al. [13] | Male ddY or C57BL/6 mice | Rubiscolin-6: 0.3 mg/kg | Rubiscolin-6 suppressed food intake in mice on a high-fat diet and was blocked by naltrindole and HS024. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karasawa, Y.; Miyano, K.; Yamaguchi, M.; Nonaka, M.; Yamaguchi, K.; Iseki, M.; Kawagoe, I.; Uezono, Y. Therapeutic Potential of Orally Administered Rubiscolin-6. Int. J. Mol. Sci. 2023, 24, 9959. https://doi.org/10.3390/ijms24129959
Karasawa Y, Miyano K, Yamaguchi M, Nonaka M, Yamaguchi K, Iseki M, Kawagoe I, Uezono Y. Therapeutic Potential of Orally Administered Rubiscolin-6. International Journal of Molecular Sciences. 2023; 24(12):9959. https://doi.org/10.3390/ijms24129959
Chicago/Turabian StyleKarasawa, Yusuke, Kanako Miyano, Masahiro Yamaguchi, Miki Nonaka, Keisuke Yamaguchi, Masako Iseki, Izumi Kawagoe, and Yasuhito Uezono. 2023. "Therapeutic Potential of Orally Administered Rubiscolin-6" International Journal of Molecular Sciences 24, no. 12: 9959. https://doi.org/10.3390/ijms24129959
APA StyleKarasawa, Y., Miyano, K., Yamaguchi, M., Nonaka, M., Yamaguchi, K., Iseki, M., Kawagoe, I., & Uezono, Y. (2023). Therapeutic Potential of Orally Administered Rubiscolin-6. International Journal of Molecular Sciences, 24(12), 9959. https://doi.org/10.3390/ijms24129959