Developmental Biology: Computational and Experimental Approaches
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DEG | Differentially expressed gene |
dsDNA | Double-stranded DNA |
miRNA | microRNA |
piRNA | PIWI-interacting RNA |
RNA-Seq | RNA sequencing |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SNP | Single-nucleotide polymorphism |
TBP | TATA-binding protein |
TSC | Tumor stem-like cell |
References
- Jaeger, J.; Surkova, S.; Blagov, M.; Janssens, H.; Kosman, D.; Kozlov, K.N.; Manu; Myasnikova, E.; Vanario-Alonso, C.E.; Samsonova, M.; et al. Dynamic control of positional information in the early Drosophila embryo. Nature 2004, 430, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Mironova, V.V.; Omelyanchuk, N.A.; Yosiphon, G.; Fadeev, S.I.; Kolchanov, N.A.; Mjolsness, E.; Likhoshvai, V.A. A plausible mechanism for auxin patterning along the developing root. BMC Syst. Biol. 2010, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omelyanchuk, N.A.; Kovrizhnykh, V.V.; Oshchepkova, E.A.; Pasternak, T.; Palme, K.; Mironova, V.V. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol. 2016, 16 (Suppl. S1), 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaban, I.A.; Gulevich, A.A.; Baranova, E.N. Formation of unique placental seed capsules in the maturation process of the tomato fruit. Int. J. Mol. Sci. 2022, 23, 11101. [Google Scholar] [CrossRef] [PubMed]
- Babochkina, T.I.; Gerlinskaya, L.A.; Anisimova, M.V.; Kontsevaya, G.V.; Feofanova, N.A.; Stanova, A.K.; Moshkin, M.P.; Moshkin, Y.M. Mother-fetus immune cross-talk coordinates of “extrinsic”/“intrinsic” embryo gene expression noise and growth stability. Int. J. Mol. Sci. 2022, 23, 12467. [Google Scholar] [CrossRef] [PubMed]
- Oshchepkov, D.; Chadaeva, I.; Kozhemyakina, R.; Shikhevich, S.; Sharypova, E.; Savinkova, L.; Klimova, N.V.; Tsukanov, A.; Levitsky, V.G.; Markel, A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: Quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022, 23, 12269. [Google Scholar] [CrossRef] [PubMed]
- Rasskazov, D.; Chadaeva, I.; Sharypova, E.; Zolotareva, K.; Khandaev, B.; Ponomarenko, P.; Podkolodnyy, N.; Tverdokhleb, N.; Vishnevsky, O.; Bogomolov, A.; et al. Plant_SNP_TATA_Z-Tester: A Web service that unequivocally estimates the impact of proximal promoter mutations on plant gene expression. Int. J. Mol. Sci. 2022, 23, 8684. [Google Scholar] [CrossRef] [PubMed]
- Petrova, D.D.; Dolgova, E.V.; Proskurina, A.S.; Ritter, G.S.; Ruzanova, V.S.; Efremov, Y.R.; Potter, E.A.; Kirikovich, S.S.; Levites, E.V.; Taranov, O.S.; et al. The new general biological property of stem-like tumor cells (Part II: Surface molecules, which belongs to distinctive groups with particular functions, form a unique pattern characteristic of a certain type of tumor stem-like cells). Int. J. Mol. Sci. 2022, 23, 15800. [Google Scholar] [CrossRef] [PubMed]
- Akimniyazova, A.; Yurikova, O.; Pyrkova, A.; Rakhmetullina, A.; Niyazova, T.; Ryskulova, A.G.; Ivashchenko, A. In silico study of piRNA interactions with the SARS-CoV-2 genome. Int. J. Mol. Sci. 2022, 23, 9919. [Google Scholar] [CrossRef] [PubMed]
- de Jong, T.V.; Guryev, V.; Moshkin, Y.M. Estimates of gene ensemble noise highlight critical pathways and predict disease severity in H1N1, COVID-19 and mortality in sepsis patients. Sci. Rep. 2021, 11, 10793. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, D.K.; Borodin, P.M. The influence of stress on variation and its role in evolution. Biol. Zent. 1982, 100, 705–714. [Google Scholar]
- Osadchuk, L.V.; Jalkanen, L.; Filimonenko, A.A.; Gultiaeva, V.V. The reproductive function of young male silver foxes Vulpes vulpes after long-term selection for domesticated behavior. Zh. Evol. Biokhim. Fiziol. J. Evol. Biochem. Physiol. 1995, 31, 662–667. [Google Scholar]
- Ponomarenko, M.; Rasskazov, D.; Arkova, O.; Ponomarenko, P.; Suslov, V.; Savinkova, L.; Kolchanov, N. How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. Biomed. Res. Int. 2015, 2015, 359835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishnevsky, O.V.; Chadaeva, I.V.; Sharypova, E.B.; Khandaev, B.M.; Zolotareva, K.A.; Kazachek, A.V.; Ponomarenko, P.M.; Podkolodny, N.L.; Rasskazov, D.A.; Bogomolov, A.G.; et al. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: In silico analysis. Vavilovskii Zhurnal Genet. Selektsii Vavilov. J. Genet. Breed. 2022, 26, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Dolgova, E.V.; Alyamkina, E.A.; Efremov, Y.R.; Nikolin, V.P.; Popova, N.A.; Tyrinova, T.V.; Kozel, A.V.; Minkevich, A.M.; Andrushkevich, O.M.; Zavyalov, E.L.; et al. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014, 15, 1378–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgova, E.V.; Petrova, D.D.; Proskurina, A.S.; Ritter, G.S.; Kisaretova, P.E.; Potter, E.A.; Efremov, Y.R.; Bayborodin, S.I.; Karamysheva, T.V.; Romanenko, M.V.; et al. Identification of the xenograft and its ascendant sphere-forming cell line as belonging to EBV-induced lymphoma, and characterization of the status of sphere-forming cells. Cancer Cell Int. 2019, 19, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgova, E.V.; Andrushkevich, O.M.; Kisaretova, P.E.; Proskurina, A.S.; Ritter, G.S.; Dubatolova, T.D.; Romanenko, M.V.; Taranov, O.S.; Efremov, Y.R.; Zavyalov, E.L.; et al. Efficacy of the new therapeutic approach in curing malignant neoplasms on the model of human glioblastoma. Cancer Biol. Med. 2021, 18, 910–930. [Google Scholar] [CrossRef] [PubMed]
- Ruzanova, V.; Proskurina, A.; Efremov, Y.; Kirikovich, S.; Ritter, G.; Levites, E.; Dolgova, E.; Potter, E.; Babaeva, O.; Sidorov, S.; et al. Chronometric administration of cyclophosphamide and a double-stranded DNA-Mix at interstrand crosslinks repair timing, called “Karanahan” therapy, is highly efficient in a weakly immunogenic Lewis carcinoma model. Pathol. Oncol. Res. 2022, 28, 1610180. [Google Scholar] [CrossRef] [PubMed]
- Ritter, G.S.; Dolgova, E.V.; Petrova, D.D.; Efremov, Y.R.; Proskurina, A.S.; Potter, E.A.; Ruzanova, V.S.; Kirikovich, S.S.; Levites, E.V.; Taranov, O.S.; et al. The new general biological property of stem-like tumor cells Part I. Peculiarities of the process of the double-stranded DNA fragments internalization into stem-like tumor cells. Front. Genet. 2022, 13, 954395. [Google Scholar] [CrossRef] [PubMed]
- Akimniyazova, A.; Pyrkova, A.; Uversky, V.; Ivashchenko, A. Predicting associations of miRNAs and candidate gastric cancer genes for nanomedicine. Nanomaterials 2021, 11, 691. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarenko, M. Developmental Biology: Computational and Experimental Approaches. Int. J. Mol. Sci. 2023, 24, 10435. https://doi.org/10.3390/ijms241310435
Ponomarenko M. Developmental Biology: Computational and Experimental Approaches. International Journal of Molecular Sciences. 2023; 24(13):10435. https://doi.org/10.3390/ijms241310435
Chicago/Turabian StylePonomarenko, Mikhail. 2023. "Developmental Biology: Computational and Experimental Approaches" International Journal of Molecular Sciences 24, no. 13: 10435. https://doi.org/10.3390/ijms241310435
APA StylePonomarenko, M. (2023). Developmental Biology: Computational and Experimental Approaches. International Journal of Molecular Sciences, 24(13), 10435. https://doi.org/10.3390/ijms241310435