The Recruitment and Activation of Plasminogen by Bacteria—The Involvement in Chronic Infection Development
Abstract
:1. An Introductory Overview of the Discussed Issues
2. Plasminogen Functionality and Involvement in Physiological Processes
3. The Engagement of Plasminogen and Plasmin in Infections—Benefits and Drawbacks of Fibrinolytic System Activation by Pathogens
4. Virulence Factors and Microbial Mechanisms Involved in the Hijacking of Fibrinolytic System by Pathogenic Bacteria
5. Enolase as the Best Studied Bacterial Plasminogen-Binding Protein—Structural Basis of the Interactions
6. Modulation of the Fibrinolytic System by Bacteria in Periodontal Disease—Double-edged Sword in Chronic Infection
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesarman-Maus, G.; Hajjar, K.A. Molecular mechanisms of fibrinolysis. Br. J. Haematol. 2005, 129, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Keragala, C.B.; Medcalf, R.L. Plasminogen: An enigmatic zymogen. Blood 2021, 137, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Anglés-Cano, E. Overview on fibrinolysis: Plasminogen activation pathways on fibrin and cell surfaces. Chem. Phys. Lipids 1994, 67, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Dejouvencel, T.; Doeuvre, L.; Lacroix, R.; Plawinski, L.; Dignat-George, F.; Lijnen, H.R.; Anglés-Cano, E. Fibrinolytic cross-talk: A new mechanism for plasmin formation. Blood 2010, 115, 2048–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harpel, P.C. Alpha2-plasmin inhibitor and alpha2-macroglobulin-plasmin complexes in plasma. Quantitation by an enzyme-linked differential antibody immunosorbent assay. J. Clin. Investig. 1981, 68, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Wallace, E.; Perkins, S.; Sim, R.; Willis, A.; Feighery, C.; Jackson, J. Degradation of C1-inhibitor by plasmin: Implications for the control of inflammatory processes. Mol. Med. 1997, 3, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Taylor, P.R.; Reid, D.M.; Willment, J.A.; Williams, D.L.; Martinez-Pomares, L.; Wong, S.Y.C.; Gordon, S. Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 2002, 196, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.; Opal, S.M.; Vincent, J.L. Coagulation in sepsis. Intensive Care Med. 2004, 30, 1032–1040. [Google Scholar] [CrossRef]
- Hajjar, K.A. Cellular receptors in the regulation of plasmin generation. Thromb. Haemost. 1995, 74, 294–301. [Google Scholar] [CrossRef]
- Mosnier, L.O.; Bouma, B.N. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2445–2453. [Google Scholar] [CrossRef]
- Amara, U.; Flierl, M.A.; Rittirsch, D.; Klos, A.; Chen, H.; Acker, B.; Brückner, U.B.; Nilsson, B.; Gebhard, F.; Lambris, J.D.; et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 2010, 185, 5628–5636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthel, D.; Schindler, S.; Zipfel, P.F. Plasminogen is a complement inhibitor. J. Biol. Chem. 2012, 287, 18831–18842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrovets, T.; Lunov, O.; Simmet, T. Plasmin as a proinflammatory cell activator. J. Leukoc. Biol. 2012, 92, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Laumonnier, Y.; Syrovets, T.; Simmet, T. Plasmin triggers cytokine induction in human monocyte-derived macrophages. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.M.; Kadowaki, M.H.; Glagov, S.; Zarins, C.K. Role of fibrinopeptide B in early atherosclerotic lesion formation. Am. J. Surg. 1990, 160, 156–159. [Google Scholar] [CrossRef]
- Jennewein, C.; Tran, N.; Paulus, P.; Ellinghaus, P.; Eble, J.A.; Zacharowski, K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol. Med. 2011, 17, 568–573. [Google Scholar] [CrossRef]
- Robson, S.C.; Shephard, E.G.; Kirsch, R.E. Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1 beta, IL-6 and plasminogen activator inhibitors from monocytes in vitro. Br. J. Haematol. 1994, 86, 322–326. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Morishita, Y.; Takahashi, I.; Ogura, M.; Takamatsu, J.; Saito, H. FDP D-dimer induces the secretion of interleukin-1, urokinase-type plasminogen activator, and plasminogen activator in-hibitor-2 in a human promonocytic leukemia cell line. Blood 1991, 77, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Rocha, E.; Páramo, J.; Montes, R.; Panizo, C. Acute generalized, widespread bleeding. Diagnosis and management. Haematologica 1998, 83, 1024–1037. [Google Scholar]
- Foley, J.H.; Conway, E.M. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef]
- Lähteenmäki, K.; Kuusela, P.; Korhonen, T.K. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 2001, 25, 531–552. [Google Scholar] [CrossRef]
- Rapala-Kozik, M.; Bras, G.; Chruscicka, B.; Karkowska-Kuleta, J.; Sroka, A.; Herwald, H.; Nguyen, K.A.; Eick, S.; Potempa, J.; Kozik, A. Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect. Immun. 2011, 79, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Loof, T.G.; Deicke, C.; Medina, E. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front. Cell. Infect. Microbiol. 2014, 4, 128. [Google Scholar] [CrossRef] [Green Version]
- Oehmcke-Hecht, S.; Köhler, J. Interaction of the human contact system with pathogens-an update. Front. Immunol. 2018, 9, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lottenberg, R.; Minning-Wenz, D.; Boyle, M.D.P. Capturing host plasmin(ogen): A common mechanism for invasive pathogens? Trends Microbiol. 1994, 2, 20–24. [Google Scholar] [CrossRef]
- Rotstein, O.D. Role of fibrin deposition in the pathogenesis of intraabdominal infection. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 1064–1068. [Google Scholar] [CrossRef]
- Shannon, O.; Rydengård, V.; Schmidtchen, A.; Mörgelin, M.; Alm, P.; Sørensen, O.E.; Björck, L. Histidine-rich glycoprotein promotes bacterial entrapment in clots and decreases mortality in a mouse model of sepsis. Blood 2010, 116, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oehmcke, S.; Westman, J.; Malmström, J.; Mörgelin, M.; Olin, A.I.; Kreikemeyer, B.; Herwald, H. A novel role for pro-coagulant microvesicles in the early host defense against streptococcus pyogenes. PLoS Pathog. 2013, 9, e1003529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macrae, F.L.; Duval, C.; Papareddy, P.; Baker, S.R.; Yuldasheva, N.; Kearney, K.J.; McPherson, H.R.; Asquith, N.; Konings, J.; Casini, A.; et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J. Clin. Investig. 2018, 128, 3356–3368. [Google Scholar] [CrossRef] [Green Version]
- Negrón, O.; Hur, W.S.; Prasad, J.; Paul, D.S.; Rowe, S.E.; Degen, J.L.; Abrahams, S.R.; Antoniak, S.; Conlon, B.P.; Bergmeier, W.; et al. Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. PLoS Pathog. 2022, 18, e1010227. [Google Scholar] [CrossRef] [PubMed]
- Waldetoft, K.W.; Mohanty, T.; Karlsson, C.; Mörgelin, M.; Frick, I.M.; Malmström, J.; Björck, L. Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion. Infect. Immun. 2016, 84, 2813–2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrón, O.; Flick, M.J. Does fibrinogen serve the host or the microbe in Staphylococcus infection? Curr. Opin. Hematol. 2019, 26, 343–348. [Google Scholar] [CrossRef]
- Persson, K.; Russell, W.; Mörgelin, M.; Herwald, H. The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J. Biol. Chem. 2003, 278, 31884–31890. [Google Scholar] [CrossRef] [Green Version]
- Thomer, L.; Schneewind, O.; Missiakas, D. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J. Biol. Chem. 2013, 288, 28283–28292. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.P.; Flick, M.J. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin. Thromb. Hemost. 2016, 42, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.G.; McAdow, M.; Kim, H.K.; Bae, T.; Missiakas, D.M.; Schneewind, O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010, 6, 19–20. [Google Scholar] [CrossRef] [Green Version]
- Hryniewicz, W.; Lipinski, B.; Jeljaszewicz, J. Nature of the interaction between M protein of Streptococcus pyogenes and fibrinogen. J. Infect. Dis. 1972, 125, 626–630. [Google Scholar] [CrossRef]
- Wang, H.; Lottenberg, R.; Boyle, M.D.P. Analysis of the interaction of group A streptococci with fibrinogen, streptokinase and plasminogen. Microb. Pathog. 1995, 18, 153–166. [Google Scholar] [CrossRef]
- MacHeboeuf, P.; Buffalo, C.; Fu, C.Y.; Zinkernagel, A.S.; Cole, J.N.; Johnson, J.E.; Nizet, V.; Ghosh, P. Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature 2011, 472, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, H.M.; Hammers, D.E.; Liang, Z.; Nguyen, G.L.; Benz, M.E.; Moran, T.E.; Higashi, D.L.; Park, C.J.; Ayinuola, Y.A.; Donahue, D.L.; et al. Group A Streptococcus- Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front. Cardiovasc. Med. 2021, 8, 556. [Google Scholar] [CrossRef] [PubMed]
- Whitnack, E.; Beachey, E.H. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med. 1985, 162, 1983–1997. [Google Scholar] [CrossRef]
- Sun, H.; Ringdahl, U.; Momeister, J.W.; Fay, W.P.; Engleberg, N.C.; Yang, A.Y.; Rozek, L.S.; Wang, X.; Sjöbring, U.; Ginsburg, D. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004, 305, 1283–1286. [Google Scholar] [CrossRef]
- Arenas, J.; Szabo, Z.; van der Wal, J.; Maas, C.; Riaz, T.; Tønjum, T.; Tommassen, J. Serum proteases prevent bacterial biofilm formation: Role of kallikrein and plasmin. Virulence 2021, 12, 2902–2917. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Peetermans, M.; Liesenborghs, L.; Na, M.; Björnsdottir, H.; Zhu, X.; Jacobsson, G.; Johansson, B.R.; Geoghegan, J.A.; Foster, T.J.; et al. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation. J. Infect. Dis. 2016, 213, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Lähteenmäki, K.; Virkola, R.; Sarén, A.; Emödy, L.; Korhonen, T.K. Expression of plasminogen activator pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect. Immun. 1998, 66, 5755–5762. [Google Scholar] [CrossRef] [Green Version]
- Rooijakkers, S.H.M.; Van Wamel, W.J.B.; Ruyken, M.; Van Kessel, K.P.M.; Van Strijp, J.A.G. Anti-opsonic properties of staphylokinase. Microbes Infect. 2005, 7, 476–484. [Google Scholar] [CrossRef]
- Nitzsche, R.; Köhler, J.; Kreikemeyer, B.; Oehmcke-Hecht, S. Streptococcus pyogenes Escapes Killing from Extracellular Histones through Plasminogen Binding and Activation by Streptokinase. J. Innate Immun. 2016, 8, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Hollands, A.; Gonzalez, D.; Leire, E.; Donald, C.; Gallo, R.L.; Sanderson-Smith, M.; Dorrestein, P.C.; Nizet, V. A bacterial pathogen co-opts host plasmin to resist killing by cathelicidin antimicrobial peptides. J. Biol. Chem. 2012, 287, 40891–40897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.L.; Sellati, T.J.; Testa, J.E.; Kew, R.R.; Furie, M.B.; Benach, J.L. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect. Immun. 1995, 63, 2478–2484. [Google Scholar] [CrossRef] [Green Version]
- Pancholi, V.; Fontan, P.; Jin, H. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb. Pathog. 2003, 35, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Yavlovich, A.; Katzenell, A.; Tarshis, M.; Higazi, A.A.R.; Rottem, S. Mycoplasma fermentans binds to and invades HeLa cells: Involvement of plasminogen and urokinase. Infect. Immun. 2004, 72, 5004–5011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson-Smith, M.L.; Dinkla, K.; Cole, J.N.; Cork, A.J.; Maamary, P.G.; McArthur, J.D.; Chhatwal, G.S.; Walker, M.J. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J. 2008, 22, 2715–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemens, N.; Patenge, N.; Otto, J.; Fiedler, T.; Kreikemeyer, B. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J. Biol. Chem. 2011, 286, 21612–21622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentini, G.; Midiri, A.; Firon, A.; Galbo, R.; Mancuso, G.; Biondo, C.; Mazzon, E.; Passantino, A.; Romeo, L.; Trieu-Cuot, P.; et al. The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci. Rep. 2018, 8, 14322. [Google Scholar] [CrossRef] [Green Version]
- Sumitomo, T.; Nakata, M.; Higashino, M.; Yamaguchi, M.; Kawabata, S. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Sci. Rep. 2016, 7, 20069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, B.; Tilly, K.; Rosa, P.A. A family of genes located on four separate 32-kilobase circular plasmids in Borrelia burgdorferi B31. J. Bacteriol. 1996, 178, 3508–3516. [Google Scholar] [CrossRef] [Green Version]
- Brissette, C.A.; Haupt, K.; Barthel, D.; Cooley, A.E.; Bowman, A.; Skerka, C.; Wallich, R.; Zipfel, P.F.; Kraiczy, P.; Stevenson, B. Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen. Infect. Immun. 2009, 77, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, B.; Brissette, C.A. Erp and Rev Adhesins of the Lyme Disease Spirochete’s Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect. Immun. 2023, 91, e00250-22. [Google Scholar] [CrossRef]
- Nomura, M. Plasminogen activation by lactic acid bacteria. Biosci. Biotechnol. Biochem. 2012, 76, 1459–1462. [Google Scholar] [CrossRef] [Green Version]
- Vastano, V.; Capri, U.; Candela, M.; Siciliano, R.A.; Russo, L.; Renda, M.; Sacco, M. Identification of binding sites of Lactobacillus plantarum enolase involved in the interaction with human plasminogen. Microbiol. Res. 2013, 168, 65–72. [Google Scholar] [CrossRef]
- Hurmalainen, V.; Edelman, S.; Antikainen, J.; Baumann, M.; Lähteenmäki, K.; Korhonen, T.K. Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 2007, 153, 1112–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, B.S.; Ghadimi-Darsajini, A.; Nekouian, R.; Iragian, G.R. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J. Cancer Res. Ther. 2017, 13, 246–251. [Google Scholar] [CrossRef]
- Monroy, V.; Amador, A.; Ruiz, B.; Espinoza-Cueto, P.; Xolalpa, W.; Mancilla, R.; Espitia, C. Binding and activation of human plasminogen by Mycobacterium tuberculosis. Infect. Immun. 2000, 68, 4327–4330. [Google Scholar] [CrossRef] [Green Version]
- Travis, J.; Potempa, J. Bacterial proteinases as targets for the development of second-generation antibiotics. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1477, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Khil, J.; Im, M.; Heath, A.; Ringdahl, U.; Mundada, L.; Engleberg, N.C.; Fay, W.P. Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J. Infect. Dis. 2003, 188, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leytus, S.P.; Bowles, L.K.; Konisky, J.; Mangel, W.F. Activation of plasminogen to plasmin by a protease associated with the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 1981, 78, 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Yamamoto, T. Pathogenic mechanisms induced by microbial proteases in microbial infections. Biol. Chem. Hoppe. Seyler. 1996, 377, 217–226. [Google Scholar] [CrossRef]
- Grenier, D. Degradation of host protease inhibitors and activation of plasminogen by proteolytic enzymes from Porphyromonas gingivalis and Treponema denticola. Microbiology 1996, 142 Pt 4, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, T.K. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica. J. Thromb. Haemost. 2015, 13 (Suppl. 1), S115–S120. [Google Scholar] [CrossRef]
- Kukkonen, M.; Lähteenmäki, K.; Suomalainen, M.; Kalkkinen, N.; Emödy, L.; Lång, H.; Korhonen, T.K. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol. Microbiol. 2001, 40, 1097–1111. [Google Scholar] [CrossRef]
- Eddy, J.L.; Schroeder, J.A.; Zimbler, D.L.; Bellows, L.E.; Lathem, W.W. Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague. Infect. Immun. 2015, 83, 4837–4847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddy, J.L.; Schroeder, J.A.; Zimbler, D.L.; Caulfield, A.J.; Lathem, W.W. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence. J. Thromb. Haemost. 2016, 14, 1833–1843. [Google Scholar] [CrossRef]
- Palace, S.G.; Vitseva, O.; Proulx, M.K.; Freedman, J.E.; Goguen, J.D.; Koupenova, M. Yersinia pestis escapes entrapment in thrombi by targeting platelet function. J. Thromb. Haemost. 2020, 18, 3236–3248. [Google Scholar] [CrossRef] [PubMed]
- Haiko, J.; Laakkonen, L.; Juuti, K.; Kalkkinen, N.; Korhonen, T.K. The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J. Bacteriol. 2010, 192, 4553–4561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Järvinen, H.M.; Laakkonen, L.; Haiko, J.; Johansson, T.; Juuti, K.; Suomalainen, M.; Buchrieser, C.; Kalkkinen, N.; Korhonen, T.K. Human single-chain urokinase is activated by the omptins PgtE of Salmonella enterica and Pla of Yersinia pestis despite mutations of active site residues. Mol. Microbiol. 2013, 89, 507–517. [Google Scholar] [CrossRef]
- Young, K.C.; Shi, G.Y.; Wu, D.H.; Chang, L.C.; Chang, B.I.; Ou, C.P.; Wu, H.L. Plasminogen activation by streptokinase via a unique mechanism. J. Biol. Chem. 1998, 273, 3110–3116. [Google Scholar] [CrossRef] [Green Version]
- Collen, D. Staphylokinase: A potent, uniquely fibrin-selective thrombolytic agent. Nat. Med. 1998, 4, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Mölkänen, T.; Tyynelä, J.; Helin, J.; Kalkkinen, N.; Kuusela, P. Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase. FEBS Lett. 2002, 517, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Pietrocola, G.; Nobile, G.; Gianotti, V.; Zapotoczna, M.; Foster, T.J.; Geoghegan, J.A.; Speziale, P. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus. J. Biol. Chem. 2016, 291, 18148–18162. [Google Scholar] [CrossRef] [Green Version]
- Speziale, P.; Pietrocola, G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front. Microbiol. 2020, 11, 2054. [Google Scholar] [CrossRef]
- Antikainen, J.; Kuparinen, V.; Lähteenmäki, K.; Korhonen, T.K. Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol. Med. Microbiol. 2007, 51, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candela, M.; Biagi, E.; Centanni, M.; Turroni, S.; Vici, M.; Musiani, F.; Vitali, B.; Bergmann, S.; Hammerschmidt, S.; Brigidi, P. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 2009, 155, 3294–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yu, Y.; Li, Y.; Li, S.; Wang, L.; Wei, Y.; Wu, Y.; Pillay, B.; Olaniran, A.O.; Chiliza, T.E.; et al. A multifunctional enolase mediates cytoadhesion and interaction with host plasminogen and fibronectin in Mycoplasma hyorhinis. Vet. Res. 2022, 53, 26. [Google Scholar] [CrossRef]
- Pancholi, V.; Fischetti, V.A. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J. Biol. Chem. 1998, 273, 14503–14515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, S.; Rohde, M.; Hammerschmidt, S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun. 2004, 72, 2416–2419. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Song, Y.P.; Boel, G.; Kochar, J.; Pancholi, V. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J. Mol. Biol. 2005, 350, 27–41. [Google Scholar] [CrossRef]
- Pancholi, V.; Fischetti, V.A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 1992, 176, 415–426. [Google Scholar] [CrossRef]
- Matta, S.K.; Agarwal, S.; Bhatnagar, R. Surface localized and extracellular Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. Biochim. Biophys. Acta 2010, 1804, 2111–2120. [Google Scholar] [CrossRef]
- Glenting, J.; Beck, H.C.; Vrang, A.; Riemann, H.; Ravn, P.; Hansen, A.M.; Antonsson, M.; Ahrné, S.; Israelsen, H.; Madsen, S. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol. Res. 2013, 168, 245–253. [Google Scholar] [CrossRef]
- Aguilera, L.; Ferreira, E.; Giménez, R.; Fernández, F.J.; Taulés, M.; Aguilar, J.; Vega, M.C.; Badia, J.; Baldomà, L. Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type III secretion system in enteropathogenic Escherichia coli. Int. J. Biochem. Cell Biol. 2012, 44, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Sjöström, I.; Gröndahl, H.; Falk, G.; Kronvall, G.; Ullberg, M. Purification and characterisation of a plasminogen-binding protein from Haemophilus influenzae. Sequence determination reveals identity with aspartase. Biochim. Biophys. Acta 1997, 1324, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Serek, P.; Lewandowski, Ł.; Dudek, B.; Pietkiewicz, J.; Jermakow, K.; Kapczyńska, K.; Krzyżewska, E.; Bednarz-Misa, I. Klebsiella pneumoniae enolase-like membrane protein interacts with human plasminogen. Int. J. Med. Microbiol. 2021, 311, 151518. [Google Scholar] [CrossRef]
- Furuya, H.; Ikeda, R. Interaction of triosephosphate isomerase from Staphylococcus aureus with plasminogen. Microbiol. Immunol. 2011, 55, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, S.; Domon, H.; Hiyoshi, T.; Isono, T.; Tamura, H.; Sasagawa, K.; Takizawa, F.; Terao, Y. Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS Open Bio. 2022, 12, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Berge, A.; Sjöbring, U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol. Chem. 1993, 268, 25417–25424. [Google Scholar] [CrossRef]
- Ringdahl, U.; Sjöbring, U. Analysis of plasminogen-binding M proteins of Streptococcus pyogenes. Methods 2000, 21, 143–150. [Google Scholar] [CrossRef]
- Ayinuola, Y.A.; Donahue, D.L.; Charles, J.; Liang, Z.; Castellino, F.J.; Ploplis, V.A. Generation and characterization of a plasminogen-binding group A streptococcal M-protein/streptokinase-sensitive mouse line. J. Thromb. Haemost. 2023, 21, 1630–1635. [Google Scholar] [CrossRef]
- Antão, E.-M.; Wieler, L.H.; Ewers, C. Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog. 2009, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöbring, U.; Pohl, G.; Olsén, A. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol. Microbiol. 1994, 14, 443–452. [Google Scholar] [CrossRef]
- Lähteenmäki, K.; Westerlund, B.; Kuusela, P.; Korhonen, T.K. Immobilization of plasminogen on Escherichia coli flagella. FEMS Microbiol. Lett. 1993, 106, 309–314. [Google Scholar] [CrossRef]
- Hu, L.T.; Perides, G.; Noring, R.; Klempner, M.S. Binding of human plasminogen to Borrelia burgdorferi. Infect. Immun. 1995, 63, 3491–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montemurro, P.; Barbuti, G.; Dundon, W.G.; Del Giudice, G.; Rappuoli, R.; Colucci, M.; De Rinaldis, P.; Montecucco, C.; Semeraro, N.; Papini, E. Helicobacter pylori neutrophil-activating protein stimulates tissue factor and plasminogen activator inhibitor-2 production by human blood mononuclear cells. J. Infect. Dis. 2001, 183, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, S.; Yasui, Y.; Sasagawa, K.; Domon, H.; Terao, Y. Pneumococcal proteins ClpC and UvrC as novel host plasminogen binding factors. Microbiol. Immunol. 2023, 67, 99–104. [Google Scholar] [CrossRef]
- Candela, M.; Centanni, M.; Fiori, J.; Biagi, E.; Turroni, S.; Orrico, C.; Bergmann, S.; Hammerschmidt, S.; Brigidi, P. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 2010, 156, 1609–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, T.; Gaultney, R.A.; Floden, A.M.; Brissette, C.A. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain. Front. Microbiol. 2015, 6, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmadi, V.; Biswas, M.; Mohsin, M.; Bano, R. Biochemical and biophysical analysis of the interaction of a recombinant form of Staphylococcus aureus enolase with plasminogen. Future Microbiol. 2022, 17, 1455–1473. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, V. Multifunctional alpha-enolase: Its role in diseases. Cell. Mol. Life Sci. 2001, 58, 902–920. [Google Scholar] [CrossRef]
- Derbise, A.; Song, Y.P.; Parikh, S.; Fischetti, V.A.; Pancholi, V. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect. Immun. 2004, 72, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Cork, A.J.; Jergic, S.; Hammerschmidt, S.; Kobe, B.; Pancholi, V.; Benesch, J.L.P.; Robinson, C.V.; Dixon, N.E.; Aquilina, J.A.; Walker, M.J. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J. Biol. Chem. 2009, 284, 17129–17137. [Google Scholar] [CrossRef] [Green Version]
- Ayinuola, Y.A.; Tjia-Fleck, S.; Readnour, B.M.; Liang, Z.; Ayinuola, O.; Paul, L.N.; Lee, S.W.; Fischetti, V.A.; Ploplis, V.A.; Castellino, F.J. Relationships Between Plasminogen-Binding M-Protein and Surface Enolase for Human Plasminogen Acquisition and Activation in Streptococcus pyogenes. Front. Microbiol. 2022, 13, 905670. [Google Scholar] [CrossRef]
- Bergmann, S.; Rohde, M.; Chhatwal, G.S.; Hammerschmidt, S. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 2001, 40, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Esgleas, M.; Li, Y.; Hancock, M.A.; Harel, J.; Dubreuil, J.D.; Gottschalk, M. Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 2008, 154, 2668–2679. [Google Scholar] [CrossRef] [Green Version]
- Candela, M.; Bergmann, S.; Vici, M.; Vitali, B.; Turroni, S.; Eikmanns, B.J.; Hammerschmidt, S.; Brigidi, P. Binding of human plasminogen to Bifidobacterium. J. Bacteriol. 2007, 189, 5929–5936. [Google Scholar] [CrossRef] [Green Version]
- Rahi, A.; Matta, S.K.; Dhiman, A.; Garhyan, J.; Gopalani, M.; Chandra, S.; Bhatnagar, R. Enolase of Mycobacterium tuberculosis is a surface exposed plasminogen binding protein. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3355–3364. [Google Scholar] [CrossRef]
- Sha, J.; Erova, T.E.; Alyea, R.A.; Wang, S.; Olano, J.P.; Pancholi, V.; Chopra, A.K. Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. J. Bacteriol. 2009, 191, 3095–3107. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, S.; Wild, D.; Diekmann, O.; Frank, R.; Bracht, D.; Chhatwal, G.S.; Hammerschmidt, S. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiol. 2003, 49, 411–423. [Google Scholar] [CrossRef]
- Ehinger, S.; Schubert, W.D.; Bergmann, S.; Hammerschmidt, S.; Heinz, D.W. Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: Crystal structure and evaluation of plasmin(ogen)-binding sites. J. Mol. Biol. 2004, 343, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Aguilar, Y.; Gonzalez-Vazquez, M.C.; Hernandez-Ceron, D.E.; Lozano-Zarain, P.; Martinez-Laguna, Y.; Gonzalez-Bonilla, C.R.; Rocha-Gracia, R.D.C.; Carabarin-Lima, A. Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays. Pathogens 2021, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Rahi, A.; Dhiman, A.; Singh, D.; Lynn, A.M.; Rehan, M.; Bhatnagar, R. Exploring the interaction between Mycobacterium tuberculosis enolase and human plasminogen using computational methods and experimental techniques. J. Cell. Biochem. 2018, 119, 2408–2417. [Google Scholar] [CrossRef]
- Xie, Q.; Xing, H.; Wen, X.; Liu, B.; Wei, Y.; Yu, Y.; Xie, X.; Song, D.; Shao, G.; Xiong, Q.; et al. Identification of the multiple roles of enolase as an plasminogen receptor and adhesin in Mycoplasma hyopneumoniae. Microb. Pathog. 2023, 174, 105934. [Google Scholar] [CrossRef]
- Chen, R.; Yu, Y.; Feng, Z.; Gan, R.; Xie, X.; Zhang, Z.; Xie, Q.; Wang, W.; Ran, T.; Zhang, W.; et al. Featured Species-Specific Loops Are Found in the Crystal Structure of Mhp Eno, a Cell Surface Adhesin From Mycoplasma hyopneumoniae. Front. Cell. Infect. Microbiol. 2019, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Tjia-Fleck, S.; Readnour, B.M.; Ayinuola, Y.A.; Castellino, F.J. High-Resolution Single-Particle Cryo-EM Hydrated Structure of Streptococcus pyogenes Enolase Offers Insights into Its Function as a Plasminogen Receptor. Biochemistry 2023, 62, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Rohde, M.; Preissner, K.T.; Hammerschmidt, S. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb. Haemost. 2005, 94, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Tordai, H.; Bányai, L.; Patthy, L. The PAN module: The N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett. 1999, 461, 63–67. [Google Scholar] [CrossRef]
- Castellino, F.J.; McCance, S.G. The kringle domains of human plasminogen. Ciba Found. Symp. 1997, 212, 46–65. [Google Scholar] [CrossRef]
- Tulinsky, A.; Park, C.H.; Mao, B.; Llináas, M. Lysine/fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin. Proteins 1988, 3, 85–96. [Google Scholar] [CrossRef]
- Sanderson-Smith, M.L.; De Oliveira, D.M.P.; Ranson, M.; McArthur, J.D. Bacterial plasminogen receptors: Mediators of a multifaceted relationship. J. Biomed. Biotechnol. 2012, 2012, 272148. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.F.; Houng, A.; Reed, G.L. Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms. Biochemistry 2000, 39, 4740–4745. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.H.; Wang, P.; Zhang, J.; Gurewich, V.; Zhang, P.; Liu, J.N. The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2002, 1596, 182–192. [Google Scholar] [CrossRef]
- Brown, J.M.; Watanabe, K.; Cohen, R.L.; Chambers, D.A. Molecular characterization of plasminogen activators in human gingival crevicular fluid. Arch. Oral Biol. 1995, 40, 839–845. [Google Scholar] [CrossRef]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 2015, 615486. [Google Scholar] [CrossRef] [Green Version]
- Wyganowska-Swiatkowska, M.; Surdacka, A.; Skrzypczak-Jankun, E.; Jankun, J. The plasminogen activation system in periodontal tissue (Review). Int. J. Mol. Med. 2014, 33, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Page, R.; Schroeder, H. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab. Investig. 1976, 34, 235–249. [Google Scholar]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Nilsson, T.; Carlsson, J.; Sundqvist, G. Inactivation of key factors of the plasma proteinase cascade systems by Bacteroides gingivalis. Infect. Immun. 1985, 50, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potempa, J.; Banbula, A.; Travis, J. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol. 2000 2000, 24, 153–192. [Google Scholar] [CrossRef] [PubMed]
- Potempa, J.; Sroka, A.; Imamura, T.; Travis, J. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: Structure, function and assembly of multidomain protein complexes. Curr. Protein Pept. Sci. 2003, 4, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Marttila, E.; Järvensivu, A.; Sorsa, T.; Grenier, D.; Richardson, M.; Kari, K.; Tervahartiala, T.; Rautemaa, R. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis. J Oral Microbiol. 2014, 6, 24349. [Google Scholar] [CrossRef] [PubMed]
- Tegels, B.K.; Oliver, L.D.; Miller, D.P.; Marconi, R.T. Plasminogen binding and degradation by Treponema denticola: Identification of the plasminogen binding interface on the FhbB protein. Mol. Oral Microbiol. 2018, 33, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Fleetwood, A.J.; O’Brien-Simpson, N.M.; Veith, P.D.; Lam, R.S.; Achuthan, A.; Cook, A.D.; Singleton, W.; Lund, I.K.; Reynolds, E.C.; Hamilton, J.A. Porphyromonas gingivalis-derived RgpA-Kgp Complex Activates the Macrophage Urokinase Plasminogen Activator System: Implications for Periodontitis. J. Biol. Chem. 2015, 290, 16031–16042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.T.; Tada, H.; Nishioka, T.; Nemoto, E.; Imamura, T.; Potempa, J.; Li, C.Y.; Matsushita, K.; Sugawara, S. Porphyromonas gingivalis Gingipains-Mediated Degradation of Plasminogen Activator Inhibitor-1 Leads to Delayed Wound Healing Responses in Human Endothelial Cells. J. Innate Immun. 2022, 14, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Karkowska-Kuleta, J.; Surowiec, M.; Gogol, M.; Koziel, J.; Potempa, B.; Potempa, J.; Kozik, A.; Rapala-Kozik, M. Peptidylarginine deiminase of Porphyromonas gingivalis modulates the interactions between Candida albicans biofilm and human plasminogen and high-molecular-mass kininogen. Int. J. Mol. Sci. 2020, 21, 2495. [Google Scholar] [CrossRef] [Green Version]
- Darenfed, H.; Grenier, D.; Mayrand, D. Acquisition of plasmin activity by Fusobacterium nucleatum subsp. nucleatum and potential contribution to tissue destruction during periodontitis. Infect. Immun. 1999, 67, 6439–6444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenno, J.C.; Tamura, M.; Hannam, P.M.; Wong, G.W.K.; Chan, R.A.; McBride, B.C. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect. Immun. 2000, 68, 1884–1892. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.L.; Nascimento, A.L.T.O. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit. Rev. Microbiol. 2016, 42, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Sochaj-Gregorczyk, A.; Ksiazek, M.; Waligorska, I.; Straczek, A.; Benedyk, M.; Mizgalska, D.; Thøgersen, I.B.; Enghild, J.J.; Potempa, J. Plasmin inhibition by bacterial serpin: Implications in gum disease. FASEB J. 2020, 34, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Banbula, A.; Pereira, P.J.B.; Travis, J.; Potempa, J. Activation of human prothrombin by arginine-specific cysteine proteinases (Gingipains R) from Porphyromonas gingivalis. J. Biol. Chem. 2001, 276, 18984–18991. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.M.; Doyle, A.D.; Greenwell-Wild, T.; Dutzan, N.; Tran, C.L.; Abusleme, L.; Juang, L.J.; Leung, J.; Chun, E.M.; Lum, A.G.; et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 2021, 374, eabl5450. [Google Scholar] [CrossRef]
- Sulniute, R.; Lindh, T.; Wilczynska, M.; Li, J.; Ny, T. Plasmin is essential in preventing periodontitis in mice. Am. J. Pathol. 2011, 179, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Heissig, B.; Salama, Y.; Takahashi, S.; Osada, T.; Hattori, K. The multifaceted role of plasminogen in inflammation. Cell. Signal. 2020, 75, 109761. [Google Scholar] [CrossRef]
- Rosenwald, M.; Koppe, U.; Keppeler, H.; Sauer, G.; Hennel, R.; Ernst, A.; Blume, K.E.; Peter, C.; Herrmann, M.; Belka, C.; et al. Serum-derived plasminogen is activated by apoptotic cells and promotes their phagocytic clearance. J. Immunol. 2012, 189, 5722–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.A.; Ribeiro, A.L.C.; Costa, B.R.C.; Vago, J.P.; Lima, K.M.; Carneiro, F.S.; Ortiz, M.M.O.; Lima, G.L.N.; Carmo, A.A.F.; Rocha, R.M.; et al. Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017, 129, 2896–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vago, J.P.; Sugimoto, M.A.; Lima, K.M.; Negreiros-Lima, G.L.; Baik, N.; Teixeira, M.M.; Perretti, M.; Parmer, R.J.; Miles, L.A.; Sousa, L.P. Plasminogen and the Plasminogen Receptor, Plg-RKT, Regulate Macrophage Phenotypic, and Functional Changes. Front. Immunol. 2019, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
Surface Plasminogen-Binding Protein/Structure | Other Functions | Species of Bacteria | References |
---|---|---|---|
Fibronectin A and B binding proteins | Adhesion to host tissues mainly through their interactions with fibronectin | S. aureus S. pneumoniae | [79,80] |
Enolase | Involved in glycolysis and adhesion to host proteins and cells | S. pyogenes S. pneumoniae S. aureus Lactobacillus crispatus Lactobacillus johnsonii Bifidobacterium longum Bifidobacterium bifidum Bifidobacterium breve Bifidobacterium lactis Mycoplasma hyorhinis Borrelia burgdorferi | [81,82,83,84] |
Glyceraldehyde-3- phosphate dehydrogenase | Involved in glycolysis and adhesion to host proteins and cells | Group A streptococci Bacillus anthracis Lactobacillus plantarum Clostridium perfringens E. coli | [85,86,87,88,89,90] |
Aspartase | Involved in nitrogen, alanine, and aspartate metabolism | Haemophilus influenzae | [91] |
Phosphoglucomutase | Involved in gluconeogenesis | Klebsiella pneumoniae | [92] |
Phosphoenolpyruvate carboxykinase | Involved in gluconeogenesis | Klebsiella pneumoniae | [92] |
Triosephosphate isomerase | Involved in glycolysis | S. aureus S. pneumoniae | [93,94] |
M-protein and M-like protein | Binding IgG and IgA, involved in the adhesion to epidermal keratinocytes, epithelial cell invasion, and microcolony formation | Group A streptococci | [40,95,96,97] |
Fimbriae | Facilitating attachment to host tissues and promoting bacterial motility | E. coli S. enteritidis | [25,98,99] |
Flagella | Facilitating attachment to host tissues and promoting bacterial motility | E. coli | [98,100] |
OspA and OspC | Involved in host colonization | Borrelia burgdorferi | [101] |
Neutrophil-activating protein | Involved in ROS production by neutrophil stimulation, and adhesion to endothelial cells | Helicobacter pylori | [102] |
ClpC | Chaperone activity | S. pneumoniae | [103] |
UvrC | Involved in DNA repair | S. pneumoniae | [103] |
DnaK | Chaperone activity | Bifidobacterium animalis subsp. lactis | [104] |
Lipoprotein | Involved in the integrity of the outer structure of the cell membrane | E. coli | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satala, D.; Bednarek, A.; Kozik, A.; Rapala-Kozik, M.; Karkowska-Kuleta, J. The Recruitment and Activation of Plasminogen by Bacteria—The Involvement in Chronic Infection Development. Int. J. Mol. Sci. 2023, 24, 10436. https://doi.org/10.3390/ijms241310436
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria—The Involvement in Chronic Infection Development. International Journal of Molecular Sciences. 2023; 24(13):10436. https://doi.org/10.3390/ijms241310436
Chicago/Turabian StyleSatala, Dorota, Aneta Bednarek, Andrzej Kozik, Maria Rapala-Kozik, and Justyna Karkowska-Kuleta. 2023. "The Recruitment and Activation of Plasminogen by Bacteria—The Involvement in Chronic Infection Development" International Journal of Molecular Sciences 24, no. 13: 10436. https://doi.org/10.3390/ijms241310436
APA StyleSatala, D., Bednarek, A., Kozik, A., Rapala-Kozik, M., & Karkowska-Kuleta, J. (2023). The Recruitment and Activation of Plasminogen by Bacteria—The Involvement in Chronic Infection Development. International Journal of Molecular Sciences, 24(13), 10436. https://doi.org/10.3390/ijms241310436