Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat
Abstract
:1. Introduction
2. Results
2.1. Analysis of Phenotypic Data
2.2. Analysis of Genotypic Data
2.3. Prediction Accuracy for Seedling Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch
2.4. Impact of Marker Density
3. Discussion
3.1. Prediction Accuracy for Tan Spot
3.2. Prediction Accuracy for Spot Blotch
3.3. Prediction Accuracy for Septoria Nodorum Blotch
3.4. Models with Genomic Information
3.5. Single-Trait vs. Multi-Trait Models
3.6. Marker Density
4. Materials and Methods
4.1. Plant Material
4.2. Inoculation and Evaluation of Disease Severity
4.3. Genotyping
4.4. Analysis of Phenotypic Data
4.5. Genomic Prediction Models and Cross-Validation Scheme
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poland, J.; Rutkoski, J. Advances and Challenges in Genomic Selection for Disease Resistance. Annu. Rev. Phytopathol. 2016, 54, 79–98. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Gahtyari, N.C.; Roy, C.; Dababat, A.A.; Brar, G.S.; Singh, P.K. Globally Important Non-Rust Diseases of Wheat. In Wheat Improvement; Reynolds, M.P., Braun, J.H., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 143–158. ISBN 978-3-030-90672. [Google Scholar]
- Solomon, P.S.; Lowe, R.G.T.; Tan, K.C.; Waters, O.D.C.; Oliver, R.P. Stagonospora Nodorum: Cause of Stagonospora Nodorum Blotch of Wheat. Mol. Plant. Pathol. 2006, 7, 147–156. [Google Scholar] [CrossRef]
- Dinglasan, E.; Periyannan, S.; Hickey, L.T. Harnessing Adult-Plant Resistance Genes to Deploy Durable Disease Resistance in Crops. Essays Biochem. 2022, 66, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic Selection in the Era of next Generation Sequencing for Complex Traits in Plant Breeding. Front. Genet. 2016, 7, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant. Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Montesinos-López, A.; Runcie, D.E.; Ibba, M.I.; Pérez-Rodríguez, P.; Montesinos-López, O.A.; Crespo, L.A.; Bentley, A.R.; Crossa, J. Multi-Trait Genomic-Enabled Prediction Enhances Accuracy in Multi-Year Wheat Breeding Trials. G3 2021, 11, jkab270. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, K.; Zhao, Y.; Wang, X.; Zhou, K.; Yu, G.; Li, C.; Li, P.; Yang, Z.; Xu, C.; et al. Genomic Selection: A Breakthrough Technology in Rice Breeding. Crop J. 2021, 9, 669–677. [Google Scholar] [CrossRef]
- Mujeeb-Kazi, A.; Rosas, V.; Roldan, S. Conservation of the Genetic Variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa Auct. Non L.) in Synthetic Hexaploid Wheats (T. turgidum L. s.Lat. × T. tauschii; 2n = 6x = 42, AABBDD) and Its Potential Utilization for Wheat Improvement. Genet. Resour. Crop Evol. 1996, 43, 129–134. [Google Scholar] [CrossRef]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Poland, J.; Baenziger, P.S. Unlocking the Novel Genetic Diversity and Population Structure of Synthetic Hexaploid Wheat. BMC Genom. 2018, 19, 591. [Google Scholar] [CrossRef] [Green Version]
- Dreisigacker, S.; Kishii, M.; Lage, J.; Warburton, M. Use of Synthetic Hexaploid Wheat to Increase Diversity for CIMMYT Bread Wheat Improvement. Aust. J. Agric. Res. 2008, 59, 413–420. [Google Scholar] [CrossRef]
- Das, M.K.; Bai, G.; Mujeeb-Kazi, A.; Rajaram, S. Genetic Diversity among Synthetic Hexaploid Wheat Accessions (Triticum aestivum) with Resistance to Several Fungal Diseases. Genet. Resour. Crop Evol. 2016, 63, 1285–1296. [Google Scholar] [CrossRef]
- Li, A.; Liu, D.; Yang, W.; Kishii, M.; Mao, L. Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow. Engineering 2018, 4, 552–558. [Google Scholar] [CrossRef]
- Lozano-Ramirez, N.; Dreisigacker, S.; Sansaloni, C.P.; He, X.; Sandoval-Islas, J.S.; Pérez-Rodríguez, P.; Carballo, C.A.; Nava, D.C.; Kishii, M.; Singh, P.K. Genome-Wide Association Study for Spot Blotch Resistance in Synthetic Hexaploid Wheat. Genes 2022, 13, 1387. [Google Scholar] [CrossRef]
- Dunckel, S.; Crossa, J.; Wu, S.; Bonnett, D.; Poland, J. Genomic Selection for Increased Yield in Synthetic-Derived Wheat. Crop Sci. 2017, 57, 713–725. [Google Scholar] [CrossRef]
- Jafarzadeh, J.; Bonnett, D.; Jannink, J.L.; Akdemir, D.; Dreisigacker, S.; Sorrells, M.E. Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield. PLoS ONE 2016, 11, e0162860. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, Z.; Ali, M.; Mirza, J.I.; Fayyaz, M.; Majeed, K.; Naeem, M.K.; Aziz, A.; Trethowan, R.; Ogbonnaya, F.C.; Poland, J.; et al. Genome-Wide Association and Genomic Prediction for Stripe Rust Resistance in Synthetic-Derived Wheats. Front. Plant Sci. 2022, 13, 788593. [Google Scholar] [CrossRef] [PubMed]
- Phuke, R.M.; He, X.; Juliana, P.; Bishnoi, S.K.; Singh, G.P.; Kabir, M.R.; Roy, K.K.; Joshi, A.K.; Singh, R.P.; Singh, P.K. Association Mapping of Seedling Resistance to Tan Spot (Pyrenophora tritici-repentis Race 1) in CIMMYT and South Asian Wheat Germplasm. Front. Plant Sci. 2020, 11, 1309. [Google Scholar] [CrossRef]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Rutkoski, J.E.; Poland, J.A.; Bergstrom, G.C.; Sorrells, M.E. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat. Plant Genome 2017, 10, plantgenome2016.08.0082. [Google Scholar] [CrossRef] [Green Version]
- Semagn, K.; Iqbal, M.; Jarquin, D.; Crossa, J.; Howard, R.; Ciechanowska, I.; Henriquez, M.A.; Randhawa, H.; Aboukhaddour, R.; McCallum, B.D.; et al. Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat. Genes 2022, 13, 565. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; de los Campos, G.; Pérez, P.; Gianola, D.; Burgueño, J.; Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.; et al. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics 2010, 186, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Morais, O.P., Jr.; Breseghello, F.; Duarte, J.B.; Coelho, A.S.G.; Borba, T.C.O.; Aguiar, J.T.; Neves, P.C.F.; Morais, O.P. Assessing Prediction Models for Different Traits in a Rice Population Derived from a Recurrent Selection Program. Crop Sci. 2018, 58, 2347–2359. [Google Scholar] [CrossRef]
- Velazco, J.G.; Malosetti, M.; Hunt, C.H.; Mace, E.S.; Jordan, D.R.; van Eeuwijk, F.A. Combining Pedigree and Genomic Information to Improve Prediction Quality: An Example in Sorghum. Theor. Appl. Genet. 2019, 132, 2055–2067. [Google Scholar] [CrossRef] [Green Version]
- Juliana, P.; He, X.; Poland, J.; Roy, K.K.; Malaker, P.K.; Mishra, V.K.; Chand, R.; Shrestha, S.; Kumar, U.; Roy, C.; et al. Genomic Selection for Spot Blotch in Bread Wheat Breeding Panels, Full-Sibs and Half-Sibs and Index-Based Selection for Spot Blotch, Heading and Plant Height. Theor. Appl. Genet. 2022, 135, 1965–1983. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Calus, M.P.L.; Pong-Wong, R.; de los Campos, G.; Hickey, J.M. Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking. Genetics 2013, 193, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, M.; Gutierrez, L.; Cammarota, L.; Cardozo, F.; Germán, S.; Gómez-Guerrero, B.; Pardo, M.F.; Lanaro, V.; Sayas, M.; Castro, A.J. Multi-Trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and Malting Quality Traits in Barley (Hordeum vulgare L.). G3 2020, 10, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Norman, A.; Taylor, J.; Edwards, J.; Kochel, H. Optimising Genomic Selection in Wheat: Effect of Marker Density, Population Size and Population Structure on Prediction Accuracy. G3 2018, 8, 2889–2899. [Google Scholar] [CrossRef] [Green Version]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding Schemes for the Implementation of Genomic Selection in Wheat (Triticum Spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef]
- Lozano-Ramírez, N.; Dreisigacker, S.; Sansaloni, C.P.; He, X.; Sandoval, I.S.; Pérez-Rodríguez, P.; Carballo, C.A.; Nava-Díaz, C.; Kishii, M.; Singh, P.K. Genome-Wide Association Study for Resistance to Tan Spot in Synthetic Hexaploid Wheat. Plants 2022, 11, 433. [Google Scholar] [CrossRef]
- Lamari, L.; Bernier, C.C. Evaluation of Wheat Lines and Cultivars to Tan Spot [Pyrenophora tritici-repentis] Based on Lesion Type. Can. J. Plant Pathol. 1989, 11, 49–56. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Sehgal, D.; Reyes-Jaimez, A.E.; Luna-Garrido, B.; Muñoz-Zavala, S.; Núñez-Ríos, C.; Mollins, J.; Mall, S. Small-scale DNA extraction in 96-well plates. In CIMMYT Wheat Molecular Genetics: Laboratory Protocols and Applications to Wheat Breeding; CIMMYT: Distrito Federal, México, 2016; pp. 3–4. ISBN 978-607-8263-57-8. [Google Scholar]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A Software to Analyze Data from Multi-Environment Plant Breeding Trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, R Package Version 2.2.9. 2023. Available online: https://CRAN.R-project.org/package=psych (accessed on 29 September 2022).
- Jarquín, D.; Kocak, K.; Posadas, L.; Hyma, K.; Jedlicka, J.; Graef, G.; Lorenz, A. Genotyping by Sequencing for Genomic Prediction in a Soybean Breeding Population. BMC Genom. 2014, 15, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Rodríguez, P.; de los Campos, G. Multitrait Bayesian Shrinkage and Variable Selection Models with the BGLR-R Package. Genetics 2022, 222, iyac112. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.; de los Campos, G. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, I. Visualizations with Statistical Details: The “ggstatsplot” Approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
Disease | Mean ± SD | Median | Minimum | Maximum | SEM | H2 | Genomic Heritability |
---|---|---|---|---|---|---|---|
Tan spot | 1.63 ± 0.50 | 1.54 | 0.92 | 3.47 | 0.02 | 0.88 | 0.62 |
Spot blotch | 1.64 ± 0.53 | 1.49 | 0.99 | 4.08 | 0.02 | 0.84 | 0.54 |
Septoria nodorum blotch | 1.61 ± 0.57 | 1.42 | 0.91 | 3.67 | 0.02 | 0.89 | 0.68 |
Single-Trait Models | Multi-Trait Models | ||||
---|---|---|---|---|---|
Disease | Model | Accuracy | MSE | Accuracy | MSE |
Tan spot | A-BLUP | 0.41 | 0.208 | 0.39 | 0.224 |
G-BLUP | 0.67 | 0.135 | 0.65 | 0.151 | |
A+G BLUP | 0.67 | 0.136 | 0.66 | 0.150 | |
Spot blotch | A-BLUP | 0.31 | 0.258 | 0.27 | 0.260 |
G-BLUP | 0.41 | 0.235 | 0.42 | 0.231 | |
A+G BLUP | 0.44 | 0.228 | 0.45 | 0.225 | |
Septoria nodorum blotch | A-BLUP | 0.40 | 0.290 | 0.41 | 0.278 |
G-BLUP | 0.53 | 0.242 | 0.55 | 0.228 | |
A+G BLUP | 0.53 | 0.241 | 0.55 | 0.227 |
Pathogen | Isolate | Origin | Culture Medium | Concentration (Conidia mL−1) |
---|---|---|---|---|
P. tritici-repentis | CIMFU 531-Ptr1 (race 1) | Yanhuitlan, Oaxaca, Mexico | V8-PDA | 4 × 103 |
B. sorokiniana | CIMFU 483 (BSG40M2) | Agua Fría, Puebla, Mexico | 30% V8-PDA | 7.5 × 103 |
S. nodorum | CIMFU-463 Sn4 | Tlanepantla, State of Mexico, Mexico | V8-glucose | 1 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Barrios, G.; Crossa, J.; Cruz-Izquierdo, S.; Aguilar-Rincón, V.H.; Sandoval-Islas, J.S.; Corona-Torres, T.; Lozano-Ramírez, N.; Dreisigacker, S.; He, X.; Singh, P.K.; et al. Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat. Int. J. Mol. Sci. 2023, 24, 10506. https://doi.org/10.3390/ijms241310506
García-Barrios G, Crossa J, Cruz-Izquierdo S, Aguilar-Rincón VH, Sandoval-Islas JS, Corona-Torres T, Lozano-Ramírez N, Dreisigacker S, He X, Singh PK, et al. Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences. 2023; 24(13):10506. https://doi.org/10.3390/ijms241310506
Chicago/Turabian StyleGarcía-Barrios, Guillermo, José Crossa, Serafín Cruz-Izquierdo, Víctor Heber Aguilar-Rincón, J. Sergio Sandoval-Islas, Tarsicio Corona-Torres, Nerida Lozano-Ramírez, Susanne Dreisigacker, Xinyao He, Pawan Kumar Singh, and et al. 2023. "Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat" International Journal of Molecular Sciences 24, no. 13: 10506. https://doi.org/10.3390/ijms241310506
APA StyleGarcía-Barrios, G., Crossa, J., Cruz-Izquierdo, S., Aguilar-Rincón, V. H., Sandoval-Islas, J. S., Corona-Torres, T., Lozano-Ramírez, N., Dreisigacker, S., He, X., Singh, P. K., & Pacheco-Gil, R. A. (2023). Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 24(13), 10506. https://doi.org/10.3390/ijms241310506