Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize
Abstract
:1. Introduction
2. Results
2.1. The ZmPum Family in Maize
2.2. Protein Architectures of ZmPum
2.3. Chromosomal Location and Gene Duplication of ZmPum
2.4. Gene Structure and Cis-Elements of ZmPum
2.5. Tissue-Specific Expression Patterns of ZmPum
2.6. ZmPum Regulates Kernel Development
3. Discussion
4. Materials and Methods
4.1. Identification of ZmPum and Phylogenetic Analysis
4.2. Conserved Motif, Domain, and Structures Analysis
4.3. Gene Structure and Duplication Analysis
4.4. Cis-Acting Elements and Expression Analysis of ZmPum
4.5. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.H.; Wu, X.; Zhu, Y. RNA-Binding Protein PUM2 Regulates Mesenchymal Stem Cell Fate via Repression of JAK2 and RUNX2 MRNAs. J. Cell. Physiol. 2020, 235, 3874–3885. [Google Scholar] [CrossRef]
- Yang, H.; Deng, Z.; Pan, X.; Shen, H.-B.; Choi, K.S.; Wang, L.; Wang, S.; Wu, J. RNA-Binding Protein Recognition Based on Multi-View Deep Feature and Multi-Label Learning. Brief. Bioinform. 2021, 22, bbaa174. [Google Scholar] [CrossRef]
- Goldstrohm, A.C.; Hall, T.M.T.; McKenney, K.M. Post-Transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends Genet. 2018, 34, 972–990. [Google Scholar] [CrossRef]
- Qiu, C.; Dutcher, R.C.; Porter, D.F.; Arava, Y.; Wickens, M.; Hall, T.M.T. Distinct RNA-Binding Modules in a Single PUF Protein Cooperate to Determine RNA Specificity. Nucleic Acids Res. 2019, 47, 8770–8784. [Google Scholar] [CrossRef]
- Yan, Y.; Ham, B.K.; Chong, Y.H.; Yeh, S.D.; Lucas, W.J. A Plant SMALL RNA-BINDING PROTEIN 1 Family Mediates Cell-to-Cell Trafficking of RNAi Signals. Mol. Plant 2020, 13, 321–335. [Google Scholar] [CrossRef]
- Nishanth, M.J.; Simon, B. Functions, Mechanisms and Regulation of Pumilio/Puf Family RNA Binding Proteins: A Comprehensive Review. Mol. Biol. Rep. 2020, 47, 785–807. [Google Scholar] [CrossRef]
- Galgano, A.; Forrer, M.; Jaskiewicz, L.; Kanitz, A.; Zavolan, M.; Gerber, A.P. Comparative Analysis of MRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the MiRNA Regulatory System. PLoS ONE 2008, 3, e3164. [Google Scholar] [CrossRef]
- Wang, M.; Ogé, L.; Perez-Garcia, M.D.; Hamama, L.; Sakr, S. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Int. J. Mol. Sci. 2018, 19, 410. [Google Scholar] [CrossRef]
- Joshna, C.R.; Saha, P.; Atugala, D.; Chua, G.; Muench, D.G. Plant PUF RNA-Binding Proteins: A Wealth of Diversity for Post-Transcriptional Gene Regulation. Plant Sci. 2020, 297, 110505. [Google Scholar] [CrossRef]
- Spassov, D.S.; Jurecic, R. The PUF Family of RNA-Binding Proteins: Does Evolutionarily Conserved Structure Equal Conserved Function? IUBMB Life 2003, 55, 359–366. [Google Scholar] [CrossRef]
- Wang, X.; Mclachlan, J.; Zamore, P.D.; Tanaka Hall, T.M. Modular Recognition of RNA by a Human Pumilio-Homology Domain. Cell 2002, 110, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Wharton, R.P.; Sonoda, J.; Lee, T.; Patterson, M.; Murata, Y.; Carolina, N. The Pumilio RNA-Binding Domain Is Also a Translational Regulator. Mol. Cell 1998, 1, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Najdrová, V.; Stairs, C.W.; Vinopalová, M.; Voleman, L.; Doležal, P. The Evolution of the Puf Superfamily of Proteins across the Tree of Eukaryotes. BMC Biol. 2020, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gallegos, M.; Puoti, A.; Durkin, E.; Fields, S.; Kimble, J.; Wickens, M.P. A Conserved RNA-Binding Protein That Regulates Sexual Fates in the C. Elegans Hermaphrodite Germ Line. Nature 1997, 390, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.A.; Pyle, S.E.; Wharton, R.P.; Aggarwal, A.K. Structure of Pumilio Reveals Similarity between RNA and Peptide Binding Motifs. Cell 2001, 105, 281–289. [Google Scholar] [CrossRef]
- Wang, X.; Zamore, P.D.; Tanaka Hall, T.M. Crystal Structure of a Pumilio Homology Domain. Mol. Cell 2001, 7, 855–865. [Google Scholar] [CrossRef]
- Tam, P.P.C.; Barrette-Ng, I.H.; Simon, D.M.; Tam, M.W.C.; Ang, A.L.; Muench, D.G. The Puf Family of RNA-Binding Proteins in Plants: Phylogeny, Structural Modeling, Activity and Subcellular Localization. BMC Plant Biol. 2010, 10, 44. [Google Scholar] [CrossRef]
- Zamore, P.D.; Williamson, J.R.; Lehmann, R. The Pumilio Protein Binds RNA through a Conserved Domain That Defines a New Class of RNA-Binding Proteins. RNA 1997, 3, 1421–1433. [Google Scholar] [CrossRef]
- Gerber, A.P.; Herschlag, D.; Brown, P.O. Extensive Association of Functionally and Cytotopically Related MRNAs with Puf Family RNA-Binding Proteins in Yeast. PLoS Biol. 2004, 2, e79. [Google Scholar] [CrossRef]
- Lee, S.; Kopp, F.; Chang, T.C.; Sataluri, A.; Chen, B.; Sivakumar, S.; Yu, H.; Xie, Y.; Mendell, J.T. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell 2016, 164, 69–80. [Google Scholar] [CrossRef]
- Goldstrohm, A.C.; Hook, B.A.; Seay, D.J.; Wickens, M. PUF Proteins Bind Pop2p to Regulate Messenger RNAs. Nat. Struct. Mol. Biol. 2006, 13, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Olivas, W.M. Roles of Puf Proteins in MRNA Degradation and Translation. Wiley Interdiscip. Rev. RNA 2011, 2, 471–492. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.T.; Higgin, J.J.; Tanaka Hall, T.M. Basis of Altered RNA-Binding Specificity by PUF Proteins Revealed by Crystal Structures of Yeast Puf4p. Nat. Struct. Mol. Biol. 2008, 15, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.U. The Role of Pumilio Rna Binding Protein in Plants. Biomolecules 2021, 11, 1851. [Google Scholar] [CrossRef] [PubMed]
- Francischini, C.W.; Quaggio, R.B. Molecular Characterization of Arabidopsis Thaliana PUF Proteins-Binding Specificity and Target Candidates. FEBS J. 2009, 276, 5456–5470. [Google Scholar] [CrossRef]
- Un Huh, S.; Paek, K.-H. Role of Arabidopsis Pumilio RNA Binding Protein 5 in Virus Infection. Plant Signal. Behav. 2013, 8, e23975. [Google Scholar] [CrossRef]
- Huh, S.U.; Paek, K.H. APUM5, Encoding a Pumilio RNA Binding Protein, Negatively Regulates Abiotic Stress Responsive Gene Expression. BMC Plant Biol. 2014, 14, 75. [Google Scholar] [CrossRef]
- Nyikó, T.; Auber, A.; Bucher, E. Functional and Molecular Characterization of the Conserved Arabidopsis PUMILIO Protein, APUM9. Plant Mol. Biol. 2019, 100, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Nakabayashi, K.; Ding, J.; He, F.; Bentsink, L.; Soppe, W.J.J. REDUCED DORMANCY5 Encodes a Protein Phosphatase 2C That Is Required for Seed Dormancy in Arabidopsis. Plant Cell 2014, 26, 4362–4375. [Google Scholar] [CrossRef]
- Abbasi, N.; Kim, H.B.; Park, N., II; Kim, H.S.; Kim, Y.K.; Park, Y., II; Choi, S.B. APUM23, a Nucleolar Puf Domain Protein, Is Involved in Pre-Ribosomal RNA Processing and Normal Growth Patterning in Arabidopsis. Plant J. 2010, 64, 960–976. [Google Scholar] [CrossRef]
- Huang, T.; Kerstetter, R.A.; Irish, V.F. APUM23, a PUF Family Protein, Functions in Leaf Development and Organ Polarity in Arabidopsis. J. Exp. Bot. 2014, 65, 1181–1191. [Google Scholar] [CrossRef]
- Huang, K.C.; Lin, W.C.; Cheng, W.H. Salt Hypersensitive Mutant 9, a Nucleolar APUM23 Protein, Is Essential for Salt Sensitivity in Association with the ABA Signaling Pathway in Arabidopsis. BMC Plant Biol. 2018, 18, 40. [Google Scholar] [CrossRef]
- Huang, R.; Liu, M.; Gong, G.; Wu, P.; Patra, B.; Yuan, L.; Qin, H.; Wang, X.; Wang, G.; Liao, H.; et al. The Pumilio RNA-Binding Protein APUM24 Regulates Seed Maturation by Fine-Tuning the BPM-WRI1 Module in Arabidopsis. J. Integr. Plant Biol. 2021, 63, 1240–1259. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, T.; Abbasi, N.; Kim, H.S.; Kim, H.B.; Park, N., II; Park, G.T.; Oh, S.A.; Park, S.K.; Muench, D.G.; Choi, Y.; et al. An Arabidopsis Divergent Pumilio Protein, APUM24, Is Essential for Embryogenesis and Required for Faithful Pre-RNA Processing. Plant J. 2017, 92, 1092–1105. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize Is a Critically Important Source of Food, Feed, Energy and Forage in the USA. Field Crop. Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- García-Lara, S.; Serna-Saldivar, S.O. Corn History and Culture. Corn Chem. Technol. 2018, 1–18. [Google Scholar] [CrossRef]
- Fu, Y.; Li, S.; Xu, L.; Ji, C.; Xiao, Q.; Shi, D.; Wang, G.; Wang, W.; Wang, J.; Wang, J.; et al. RNA Sequencing of Cleanly Isolated Early Endosperms Reveals Coenocyte-to-Cellularization Transition Features in Maize. Seed Biol. 2023, 2, 8. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Wang, X.; Han, Z.; Ouyang, B.; Zhang, J.; Li, H. Genome-Wide Identification and Expression Analysis of the Expansin Gene Family in Tomato. Mol. Genet. Genomics 2016, 291, 597–608. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Liu, D.; Guo, F.; Yang, Y.; Dong, T.; Zhang, Y.; Ma, C.; Tang, Z.; Li, F.; et al. Genome-Wide Survey and Expression Analysis of GRAS Transcription Factor Family in Sweetpotato Provides Insights into Their Potential Roles in Stress Response. BMC Plant Biol. 2022, 22, 232. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, H.S.; Kalita, P.J.; Choi, S.B. Structural and Functional Similarities and Differences in Nucleolar Pumilio RNA-Binding Proteins between Arabidopsis and the Charophyte Chara Corallina. BMC Plant Biol. 2020, 20, 230. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.U.; Kim, M.J.; Paek, K.H. Arabidopsis Pumilio Protein APUM5 Suppresses Cucumber Mosaic Virus Infection via Direct Binding of Viral RNAs. Proc. Natl. Acad. Sci. USA 2013, 110, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Guo, L.; Ji, C.; Wang, H.; Wang, J.; Zheng, X.; Xiao, Q.; Wu, Y. The B3 Domain-Containing Transcription Factor ZmABI19 Coordinates Expression of Key Factors Required for Maize Seed Development and Grain Filling. Plant Cell 2021, 33, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.; Larkins, B.A. Endosperm origin, development, and function. Plant Cell 1993, 5, 1383–1399. [Google Scholar] [CrossRef]
- Olsen, O.A. Endosperm Development: Cellularization and Cell Fate Specification. Annu. Rev. Plant Biol. 2001, 52, 233–267. [Google Scholar] [CrossRef]
- Sabelli, P.A.; Larkins, B.A. The Development of Endosperm in Grasses. Plant Physiol. 2009, 149, 14–26. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res. 2012, 40, 597–603. [Google Scholar] [CrossRef]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An Integrative Web Server to Predict Subcellular Localization of Proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional Classification of Proteins via Subfamily Domain Architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL Workspace: A Web-Based Environment for Protein Structure Homology Modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef]
- Luthy, R.; Bowei, J.; Einsenberg, D. Verify3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An Upgraded Gene Feature Visualization Server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Rombauts, S.; Déhais, P.; Van Montagu, M.; Rouzé, P. PlantCARE, a Plant Cis-Acting Regulatory Element Database. Nucleic Acids Res. 1999, 27, 295–296. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene Name | ID | Length (bp) a | Length (aa) b | MW (kDa) | PI | II | GRAVY | Local c |
---|---|---|---|---|---|---|---|---|
ZmPum1 | Zm00001eb006950 | 2085 | 694 | 76.22 | 8.12 | 39.11 | −0.219 | C |
ZmPum2 | Zm00001eb008320 | 1191 | 396 | 44.95 | 8.04 | 53.99 | −0.002 | C |
ZmPum3 | Zm00001eb028000 | 2517 | 838 | 92.82 | 9.32 | 42.50 | −0.548 | N |
ZmPum4 | Zm00001eb035700 | 2985 | 994 | 108.97 | 6.02 | 47.08 | −0.470 | N |
ZmPum5 | Zm00001eb063600 | 1149 | 382 | 42.49 | 9.37 | 42.96 | −0.245 | N |
ZmPum6 | Zm00001eb087930 | 2328 | 775 | 86.48 | 5.70 | 39.96 | −0.420 | V |
ZmPum7 | Zm00001eb098710 | 1419 | 472 | 53.14 | 7.63 | 66.34 | −0.202 | N |
ZmPum8 | Zm00001eb174630 | 2961 | 986 | 108.05 | 6.00 | 49.57 | −0.476 | N |
ZmPum9 | Zm00001eb191290 | 3009 | 1002 | 109.02 | 6.16 | 50.92 | −0.450 | N |
ZmPum10 | Zm00001eb200460 | 2265 | 754 | 83.93 | 6.43 | 40.51 | −0.479 | N |
ZmPum11 | Zm00001eb259050 | 3003 | 1000 | 108.94 | 6.36 | 50.17 | −0.459 | N |
ZmPum12 | Zm00001eb266980 | 2616 | 871 | 94.92 | 6.12 | 54.14 | −0.381 | N |
ZmPum13 | Zm00001eb301130 | 1614 | 537 | 58.77 | 8.58 | 49.65 | −0.165 | C |
ZmPum14 | Zm00001eb311340 | 1443 | 480 | 54.23 | 8.16 | 62.40 | −0.248 | N |
ZmPum15 | Zm00001eb355970 | 2622 | 873 | 95.18 | 6.08 | 52.47 | −0.390 | N |
ZmPum16 | Zm00001eb401310 | 2031 | 676 | 74.14 | 6.73 | 46.54 | −0.182 | N |
ZmPum17 | Zm00001eb408690 | 2058 | 685 | 76.04 | 6.15 | 36.44 | −0.336 | N |
ZmPum18 | Zm00001eb409750 | 1440 | 479 | 52.63 | 8.33 | 31.04 | −0.037 | Ch |
ZmPum19 | Zm00001eb419690 | 2343 | 780 | 87.27 | 5.92 | 39.25 | −0.403 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Zhang, H.; Cao, Y.; Yang, C.; Khalid, M.H.B.; Yang, Q.; Li, W.; Wang, Y.; Fu, F.; Yu, H. Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. Int. J. Mol. Sci. 2023, 24, 14036. https://doi.org/10.3390/ijms241814036
Feng W, Zhang H, Cao Y, Yang C, Khalid MHB, Yang Q, Li W, Wang Y, Fu F, Yu H. Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. International Journal of Molecular Sciences. 2023; 24(18):14036. https://doi.org/10.3390/ijms241814036
Chicago/Turabian StyleFeng, Wenqi, Hongwanjun Zhang, Yang Cao, Cheng Yang, Muhammad Hayder Bin Khalid, Qingqing Yang, Wanchen Li, Yingge Wang, Fengling Fu, and Haoqiang Yu. 2023. "Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize" International Journal of Molecular Sciences 24, no. 18: 14036. https://doi.org/10.3390/ijms241814036
APA StyleFeng, W., Zhang, H., Cao, Y., Yang, C., Khalid, M. H. B., Yang, Q., Li, W., Wang, Y., Fu, F., & Yu, H. (2023). Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. International Journal of Molecular Sciences, 24(18), 14036. https://doi.org/10.3390/ijms241814036