Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1′−Site
Abstract
:1. Introduction
2. Results
2.1. MD Simulations of Apo−MMP−13 Show the Partially Flexible Ω−Loop of MMP−13
2.2. MD Simulations of MMP−13 Complexed with a Ligand Occupying the S1′−Site
2.2.1. MD Simulations of the MMP−13 − 1UA Complex Showed Two Different Binding Poses of the Ligand, Depending on the Conformations of T247
2.2.2. MM/GBSA Calculations Confirmed the More Stable Conformation (Binding Pose 2)
2.2.3. The Zn−Site Binder of C1 Positively Contributes to Its Inhibition to MMP−13
2.3. A Fluorine Atom on the Phenyl Ring of C1 Improves Its Inhibitory Effect on MMP−13
2.4. MD Simulations of MMP−13 − Ligands with Distinct Pyrimidin−4−One Scaffolds
2.4.1. MD Simulations of MMP−13 with Ligands Having an Aromatic Ring Occupying the S1′−Site Showed the Parallel and Offset π−π Stacking Interaction with F252
2.4.2. MD Simulations of MMP-13 Complexed with Ligands Showed the Importance of the π−π Stacking and π−CH(Cβ) Interactions with H222 and Y244, respectively
3. Discussion
3.1. The T247 Residue Contributes to the Formation of the Hydrophobic S1′−Site in Solution, but Its Conformation Can Be Varied, Depending on a Ligand in the S1′−Site
3.2. The F252 Residue Is Flexible and Contributes to π−Involved Interactions with the Ligand in the S1′−Site of MMP−13
3.3. The T247 Residue Has Dual Roles for the Ligand Binding to the S1′−Site by Forming the H−Bond Interaction and the Hydrophobic Surface Covering the S1′−Site
3.4. The Offset π−π Stacking and π−CH(Cβ) Interactions Are Important for the Ligand Binding to the S1′−Site of MMP−13
4. Materials and Methods
4.1. Protein Preparation
4.2. Parameterization of Metal Sites
4.3. System Buildup and MD Simulations Using Amber20
4.4. Trajectory Analysis with CPPTRAJ and Python Scripts
4.5. Relative Binding Free Energy Calculation by TI Simulations
4.6. MM/GBSA Calculations and Analysis
4.7. Quantum Mechanical Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 712–768. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef]
- Diaz-Canestro, C.; Puspitasari, Y.M.; Liberale, L.; Guzik, T.J.; Flammer, A.J.; Bonetti, N.R.; Wust, P.; Costantino, S.; Paneni, F.; Akhmedov, A.; et al. MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation. Cardiovasc. Res. 2022, 118, 2385–2396. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Fields, G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019, 8, 984. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Tay, F.R.; Yiu, C.K.Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther. 2020, 207, 107465. [Google Scholar] [CrossRef] [PubMed]
- Lenci, E.; Cosottini, L.; Trabocchi, A. Novel matrix metalloproteinase inhibitors: An updated patent review (2014–2020). Expert Opin. Ther. Pat. 2021, 31, 509–523. [Google Scholar] [CrossRef]
- Choi, J.Y.; Fuerst, R.; Knapinska, A.M.; Taylor, A.B.; Smith, L.; Cao, X.; Hart, P.J.; Fields, G.B.; Roush, W.R. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors. J. Med. Chem. 2017, 60, 5816–5825. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.; Minond, D.; Darout, E.; Liu, Q.; Lauer, J.; Hodder, P.; Fields, G.B.; Roush, W.R. Identification of novel, exosite-binding matrix metalloproteinase-13 inhibitor scaffolds. Bioorg. Med. Chem. Lett. 2011, 21, 7180–7184. [Google Scholar] [CrossRef] [Green Version]
- Engel, C.K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K.U.; Wendt, K.U. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol. 2005, 12, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, R.; Choi, J.Y.; Knapinska, A.M.; Cameron, M.D.; Ruiz, C.; Delmas, A.; Sundrud, M.S.; Fields, G.B.; Roush, W.R. Development of a putative Zn(2+)-chelating but highly selective MMP-13 inhibitor. Bioorg. Med. Chem. Lett. 2022, 76, 129014. [Google Scholar] [CrossRef]
- Fabre, B.; Ramos, A.; de Pascual-Teresa, B. Targeting matrix metalloproteinases: Exploring the dynamics of the s1′ pocket in the design of selective, small molecule inhibitors. J. Med. Chem. 2014, 57, 10205–10219. [Google Scholar] [CrossRef]
- Fuerst, R.; Yong Choi, J.; Knapinska, A.M.; Smith, L.; Cameron, M.D.; Ruiz, C.; Fields, G.B.; Roush, W.R. Development of matrix metalloproteinase-13 inhibitors—A structure-activity/structure-property relationship study. Bioorg. Med. Chem. 2018, 26, 4984–4995. [Google Scholar] [CrossRef] [PubMed]
- Setoh, M.; Ishii, N.; Kono, M.; Miyanohana, Y.; Shiraishi, E.; Harasawa, T.; Ota, H.; Odani, T.; Kanzaki, N.; Aoyama, K.; et al. Discovery of the first potent and orally available agonist of the orphan G-protein-coupled receptor 52. J. Med. Chem. 2014, 57, 5226–5237. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Cournia, Z.; Allen, B.; Sherman, W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. J. Chem. Inf. Model. 2017, 57, 2911–2937. [Google Scholar] [CrossRef] [PubMed]
- Mobley, D.L.; Klimovich, P.V. Perspective: Alchemical free energy calculations for drug discovery. J. Chem. Phys. 2012, 137, 230901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, E.; Aitchison, E.; Li, H.; Luo, R. Recent Developments in Free Energy Calculations for Drug Discovery. Front. Mol. Biosci. 2021, 8, 712085. [Google Scholar] [CrossRef]
- Lee, T.S.; Allen, B.K.; Giese, T.J.; Guo, Z.; Li, P.; Lin, C.; McGee, T.D., Jr.; Pearlman, D.A.; Radak, B.K.; Tao, Y.; et al. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J. Chem. Inf. Model. 2020, 60, 5595–5623. [Google Scholar] [CrossRef]
- Carrascal, N.; Rizzo, R.C. Calculation of binding free energies for non-zinc chelating pyrimidine dicarboxamide inhibitors with MMP-13. Bioorg. Med. Chem. Lett. 2009, 19, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Feng, K.; Ren, Y. Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques. Medchemcomm 2019, 10, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Mathpal, S.; Sharma, P.; Joshi, T.; Pande, V.; Mahmud, S.; Jeong, M.K.; Obaidullah, A.J.; Chandra, S.; Kim, B. Identification of Zinc-Binding Inhibitors of Matrix Metalloproteinase-9 to Prevent Cancer Through Deep Learning and Molecular Dynamics Simulation Approach. Front. Mol. Biosci. 2022, 9, 857430. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Lukacova, V.; Comez, D.; Kroll, D.M.; Raha, S.; Balaz, S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 2005, 48, 5437–5447. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.; Chaturvedi, S.S.; DiCastri, B.; Mehler, E.; Fields, G.B.; Karabencheva-Christova, T.G. Effects of the Nature of the Metal Ion, Protein and Substrate on the Catalytic Center in Matrix Metalloproteinase-1: Insights from Multilevel MD, QM/MM and QM Studies. Chemphyschem 2021, 23, e202100680. [Google Scholar] [CrossRef]
- Waheed, S.O.; Varghese, A.; DiCastri, I.; Kaski, B.; LaRouche, C.; Fields, G.B.; Karabencheva-Christova, T.G. Mechanism of the Early Catalytic Events in the Collagenolysis by Matrix Metalloproteinase-1. Chemphyschem 2023, 24, e202200649. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.; Birch, H.L.; de Leeuw, N.H. Mapping intermolecular interactions and active site conformations: From human MMP-1 crystal structure to molecular dynamics free energy calculations. J. Biomol. Struct. Dyn. 2017, 35, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Karabencheva-Christova, T.G.; Christov, C.Z.; Fields, G.B. Conformational Dynamics of Matrix Metalloproteinase-1.Triple-Helical Peptide Complexes. J. Phys. Chem. B 2018, 122, 5316–5326. [Google Scholar] [CrossRef]
- Singh, W.; Fields, G.B.; Christov, C.Z.; Karabencheva-Christova, T.G. Importance of the Linker Region in Matrix Metalloproteinase-1 Domain Interactions. RSC Adv. 2016, 6, 23223–23232. [Google Scholar] [CrossRef] [Green Version]
- Singh, W.; Fields, G.B.; Christov, C.Z.; Karabencheva-Christova, T.G. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1. Int. J. Mol. Sci. 2016, 17, 1727. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.; Chaturvedi, S.S.; Fields, G.B.; Karabencheva-Christova, T.G. A synergy between the catalytic and structural Zn(II) ions and the enzyme and substrate dynamics underlies the structure-function relationships of matrix metalloproteinase collagenolysis. J. Biol. Inorg. Chem. 2021, 26, 583–597. [Google Scholar] [CrossRef]
- Chen, B.; Kang, Z.; Zheng, E.; Liu, Y.; Gauld, J.W.; Wang, Q. Hydrolysis Mechanism of the Linkers by Matrix Metalloproteinase-9 Using QM/MM Calculations. J. Chem. Inf. Model. 2021, 61, 5203–5211. [Google Scholar] [CrossRef] [PubMed]
- Vasilevskaya, T.; Khrenova, M.G.; Nemukhin, A.V.; Thiel, W. Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling. J. Comput. Chem. 2015, 36, 1621–1630. [Google Scholar] [CrossRef]
- Tallant, C.; Marrero, A.; Gomis-Ruth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys Acta 2010, 1803, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Bode, W.; Gomis-Ruth, F.X.; Stockler, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 1993, 331, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Gonnella, N.C.; Koehn, J.; Pathak, N.; Ganu, V.; Melton, R.; Parker, D.; Hu, S.I.; Nam, K.Y. Solution structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent non-peptidic sulfonamide inhibitor: Binding comparison with stromelysin-1 and collagenase-1. J. Mol. Biol. 2000, 301, 513–524. [Google Scholar] [CrossRef]
- Li, P.; Merz, K.M., Jr. Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program. Methods Mol. Biol. 2021, 2199, 257–275. [Google Scholar] [CrossRef]
- Li, P.; Merz, K.M., Jr. MCPB.py: A Python Based Metal Center Parameter Builder. J. Chem. Inf. Model. 2016, 56, 599–604. [Google Scholar] [CrossRef]
- Spicer, T.P.; Jiang, J.; Taylor, A.B.; Choi, J.Y.; Hart, P.J.; Roush, W.R.; Fields, G.B.; Hodder, P.S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem. 2014, 57, 9598–9611. [Google Scholar] [CrossRef] [Green Version]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Pace, C.J.; Gao, J. Exploring and exploiting polar-pi interactions with fluorinated aromatic amino acids. Acc. Chem. Res. 2013, 46, 907–915. [Google Scholar] [CrossRef]
- Ratnikov, B.I.; Cieplak, P.; Gramatikoff, K.; Pierce, J.; Eroshkin, A.; Igarashi, Y.; Kazanov, M.; Sun, Q.; Godzik, A.; Osterman, A.; et al. Basis for substrate recognition and distinction by matrix metalloproteinases. Proc. Natl. Acad. Sci. USA 2014, 111, E4148–E4155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moy, F.J.; Chanda, P.K.; Chen, J.M.; Cosmi, S.; Edris, W.; Levin, J.I.; Powers, R. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor. J. Mol. Biol. 2000, 302, 671–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devel, L.; Beau, F.; Amoura, M.; Vera, L.; Cassar-Lajeunesse, E.; Garcia, S.; Czarny, B.; Stura, E.A.; Dive, V. Simple pseudo-dipeptides with a P2’ glutamate: A novel inhibitor family of matrix metalloproteases and other metzincins. J. Biol. Chem. 2012, 287, 26647–26656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A.; Joseph-McCarthy, D.; Lovering, F.; Sun, L.; Wang, W.; Xu, W.; Zhu, Y.; Cui, J.; Zhang, Y.; Levin, J.I. Structure-based design of TACE selective inhibitors: Manipulations in the S1′–S3′ pocket. Bioorg. Med. Chem. 2007, 15, 6170–6181. [Google Scholar] [CrossRef]
- Sherrill, C.D. Energy component analysis of pi interactions. Acc. Chem. Res. 2013, 46, 1020–1028. [Google Scholar] [CrossRef]
- Singh, N.J.; Min, S.K.; Kim, D.Y.; Kim, K.S. Comprehensive Energy Analysis for Various Types of pi-Interaction. J. Chem. Theory Comput. 2009, 5, 515–529. [Google Scholar] [CrossRef]
- Wu, J.; Rush, T.S., 3rd; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.B.; Skotnicki, J.; Levin, J.I.; Lovering, F.E. Identification of potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 4105–4109. [Google Scholar] [CrossRef]
- Heim-Riether, A.; Taylor, S.J.; Liang, S.; Gao, D.A.; Xiong, Z.; Michael August, E.; Collins, B.K.; Farmer, B.T., 2nd; Haverty, K.; Hill-Drzewi, M.; et al. Improving potency and selectivity of a new class of non-Zn-chelating MMP-13 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 5321–5324. [Google Scholar] [CrossRef]
- Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; et al. Thieno[2,3-d]pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site. Bioorg. Med. Chem. 2014, 22, 5487–5505. [Google Scholar] [CrossRef]
- Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; et al. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem. 2014, 57, 8886–8902. [Google Scholar] [CrossRef]
- Ferreira de Freitas, R.; Schapira, M. A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm 2017, 8, 1970–1981. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Balaji, P.V. C-H…pi interactions in proteins: Prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability. J. Mol. Model. 2014, 20, 2136. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.; Weiss, M.S.; Jabs, A.; Suhnel, J.; Hilgenfeld, R.C.-H. Pi-interactions in proteins. J. Mol. Biol. 2001, 307, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.J.; Abeywardane, A.; Liang, S.; Xiong, Z.; Proudfoot, J.R.; Farmer, B.S.; Gao, D.A.; Heim-Riether, A.; Smith-Keenan, L.L.; Muegge, I.; et al. Indole Inhibitors of MMP-13 for Arthritic Disorders. ACS Omega 2021, 6, 18635–18650. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cianci, C.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E., 3rd. Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. J. Comput. Chem. 2018, 39, 2110–2117. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
Binding Pose 1 (Figure 2E) | Binding Pose 2 (Figure 2F) | |||
---|---|---|---|---|
ΔGbinding a | ΔGMM/GBSA b | ΔGbinding | ΔGMM/GBSA | |
1UA | −13.3 (2.9) c | −35.7 (2.0) c | −20.6 (4.2) c | −42.2 (2.5) c |
C1 | −16.1 (5.6) c | −44.9 (2.7) c | −22.1 (5.7) c | −50.6 (4.3) c |
interactions | van der Waals by CH3 of T247 | H−bond by OH of T247 |
Ligands | Scaffold a | Subst. (X) a | IC50 (nM) b | Acceptor c | DonorH d | Fraction |
---|---|---|---|---|---|---|
C99 | a | H | 9.4 | T245_O | LIG_N4H | 0.9135 |
LIG_O | T247_OH | 0.2518 | ||||
C100 | a | F | 2.5 | T245_O | LIG_N4H | 0.9337 |
LIG_O | T247_OH | 0.6417 | ||||
C101 | b | H | 8.4 | T245_O | LIG_N4H | 0.9315 |
LIG_O | T247_OH | 0.4352 | ||||
C102 | b | CH3 | 13 | T245_O | LIG_N4H | 0.9112 |
LIG_O | T247_OH | 0.4918 | ||||
C103 | c | − | >5000 | T245_O | LIG_N4H | 0.6115 |
T245_O | LIG_N6H | 0.4205 | ||||
LIG_O | T247_OH | 0.4390 | ||||
G237_O | LIG_N5H | 0.4810 | ||||
C104 | d | C | 2000 | T245_O | LIG_N4H | 0.8538 |
LIG_O | T247_OH | 0.6893 | ||||
A238_O | LIG_N5H | 0.4672 | ||||
C105 | d | N | 274 | T245_O | LIG_N4H | 0.8290 |
LIG_O | T247_OH | 0.5870 | ||||
A238_O | LIG_N5H | 0.6752 | ||||
C106 | e | X=H Y=H | 153 | T245_O | LIG_N4H | 0.9108 |
LIG_O | T247_OH | 0.7200 | ||||
C107 | f | − | 2600 | T245_O | LIG_N4H | 0.0458 |
LIG_O | T247_OH | 0.0508 | ||||
T245_O | LIG_N5H | 0.7390 | ||||
C108 | e | X=CH3 Y=H | 1300 | T245_O | LIG_N4H | 0.9297 |
LIG_O | T247_OH | 0.4493 | ||||
C109 | e | X=H Y=CH3 | 88 | T245_O | LIG_N4H | 0.9367 |
LIG_O | T247_OH | 0.5833 | ||||
C110 | e | X=H Y=CF3 | 1200 | T245_O | LIG_N4H | 0.8892 |
LIG_O | T247_OH | 0.1833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.Y.; Chung, E. Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1′−Site. Int. J. Mol. Sci. 2023, 24, 10577. https://doi.org/10.3390/ijms241310577
Choi JY, Chung E. Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1′−Site. International Journal of Molecular Sciences. 2023; 24(13):10577. https://doi.org/10.3390/ijms241310577
Chicago/Turabian StyleChoi, Jun Yong, and Eugene Chung. 2023. "Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1′−Site" International Journal of Molecular Sciences 24, no. 13: 10577. https://doi.org/10.3390/ijms241310577
APA StyleChoi, J. Y., & Chung, E. (2023). Molecular Dynamics Simulations of Matrix Metalloproteinase 13 and the Analysis of the Specificity Loop and the S1′−Site. International Journal of Molecular Sciences, 24(13), 10577. https://doi.org/10.3390/ijms241310577