Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System
Abstract
:1. Introduction
2. Results
2.1. Solvent-Free Green Synthesis and Characterization of a Functional Amphiphilic Poly(ethylene glycol)-block-polycarbonate (MPEG-b-PC) Diblock Copolymer
2.2. Self-Assembly and Micelles Physico-Chemical Characterization
2.3. Drug Loading and In Vitro Release Studies
2.4. In Vitro Stability, Protein Adsorption, and Antioxidant Activity Evaluation
2.5. In Vitro Metabolic Activity and Morphology of MDCK II Cells Treated with Empty and Curcumin-Loaded Block Copolymer Micelles
3. Materials and Methods
3.1. Materials and Reagents
3.2. Solvent-Free Synthesis of Poly(ethylene glycol)-block-polycarbonate Functional Amphiphilic Copolymer (MPEG-b-PC)
3.3. Characterization
3.4. Preparation of Micelles
3.5. Estimation of the Critical Micelle Concentration (CMC)
3.6. Drug Loading and In Vitro Drug Release Experiments
3.7. In Vitro Stability and Protein Adsorption
3.8. Antioxidant Activity Estimation via DPPH• Radical Scavenging Assay
3.9. MTT Test
3.10. Acridine Orange Staining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Osváth, Z.; Szőke, A.; Pásztor, S.; Szarka, G.; Závoczki, L.B.; Iván, B. Post-polymerization heat effect in the production of polyamide 6 by bulk quasiliving anionic ring-opening polymerization of ε-caprolactam with industrial components: A green processing technique. Processes 2020, 8, 856. [Google Scholar] [CrossRef]
- Seyednejad, H.; Ghassemi, A.H.; van Nostrum, C.F.; Vermonden, T.; Hennink, W.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control Release 2011, 152, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Xia, X.; Gao, T.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T. Synthesis of hyperbranched polyesters via the ring-opening alternating copolymerisation of epoxides with a cyclic anhydride having a carboxyl group. Polym. Chem. 2022, 13, 5469–5477. [Google Scholar] [CrossRef]
- Yadav, N.; Seidi, F.; Crespy, D.; D’Elia, V. Polymers based on cyclic carbonates as trait d’union between polymer chemistry and sustainable CO2 utilization. ChemSusChem 2019, 12, 724–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallon, M.; Halligan, S.; Pezzoli, R.; Geever, L.; Higginbotham, C. Synthesis and characterisation of novel temperature and pH sensitive physically cross-linked poly(N-vinylcaprolactam-co-itaconic acid) hydrogels for drug delivery. Gels 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Ansari, I.; Singh, P.; Mittal, A.; Mahato, R.I.; Chitkara, D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021, 275, 120953. [Google Scholar] [CrossRef]
- Zong, Q.; Zhou, S.; Ye, J.; Peng, X.; Wu, H.; Li, M.; Ye, X.; Tian, N.; Sun, W.; Zhai, Y. Aliphatic polycarbonate-based hydrogel dressing for wound healing. J. Drug Deliv. Sci. Technol. 2023, 79, 104083. [Google Scholar] [CrossRef]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Nair, A.B.; YT, K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022, 14, 1636. [Google Scholar] [CrossRef]
- Raval, N.; Maheshwari, R.; Shukla, H.; Kalia, K.; Torchilin, V.P.; Tekade, R.K. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater. Sci. Eng. C 2021, 126, 112186. [Google Scholar] [CrossRef]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar] [PubMed]
- Islam, W.; Niidome, T.; Sawa, T. Enhanced permeability and retention effect as a ubiquitous and epoch-making phenomenon for the selective drug targeting of solid tumors. J. Pers. Med. 2022, 12, 1964. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.-W.; Rejinold, N.S.; Choy, J.-H. Multifunctional polymeric micelles for cancer therapy. Polymers 2022, 14, 4839. [Google Scholar] [CrossRef]
- Cheng, Q.; Du, L.; Meng, L.; Han, S.; Wei, T.; Wang, X.; Wu, Y.; Song, X.; Zhou, J.; Zheng, S.; et al. The promising nanocarrier for doxorubicin and siRNA codelivery by PDMAEMA based amphiphilic nanomicelles. ACS Appl. Mater. Interfaces 2016, 8, 4347–4356. [Google Scholar] [CrossRef] [PubMed]
- Veeren, A.; Bhaw-Luximon, A.; Mukhopadhyay, D.; Jhurry, D. Mixed poly(vinyl pyrrolidone)-based drug-loaded nanomicelles shows enhanced efficacy against pancreatic cancer cell lines. Eur. J. Pharm. Sci. 2017, 102, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Toughraï, S.; Malinova, V.; Masciadri, R.; Menon, S.; Tanner, P.; Palivan, C.; Bruns, N.; Meier, W. Reduction-sensitive amphiphilic triblock copolymers self-Assemble into stimuli-responsive micelles for drug delivery. Macromol. Biosci. 2015, 15, 481–489. [Google Scholar] [CrossRef]
- Muljajew, I.; Huschke, S.; Ramoji, A.; Cseresnyés, Z.; Hoeppener, S.; Nischang, I.; Foo, W.; Popp, J.; Figge, M.T.; Weber, C.; et al. Stealth effect of short polyoxazolines in graft copolymers: Minor changes of backbone end group determine liver cell-type specificity. ACS Nano 2021, 15, 12298–12313. [Google Scholar] [CrossRef]
- Ma, H.; Niu, Y.; Wang, M.; Hu, S.; Li, H. Synthesis and characterization of pH-sensitive block polymer poly (propylene carbonate)-b-poly (acrylic acid) for sustained chlorpyrifos release. Mater. Today Commun. 2020, 24, 100974. [Google Scholar] [CrossRef]
- Xie, L.; Liu, R.; Chen, X.; He, M.; Zhang, Y.; Chen, S. Micelles based on lysine, histidine, or arginine: Designing structures for enhanced drug delivery. Front. Bioeng. Biotechnol. 2021, 9, 744657. [Google Scholar] [CrossRef]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079. [Google Scholar] [CrossRef]
- D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Zalba, S.; Hagen, T.L.M.; Burgui, C.; Garrido, M.J. Stealth nanoparticles in oncology: Facing the PEG dilemma. J. Control Release 2022, 351, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Rahme, K.; Dagher, N. Chemistry routes for copolymer synthesis containing PEG for targeting, imaging, and drug delivery purposes. Pharmaceutics 2019, 11, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, A.S.; Chauhan, P.N.; Noolvi, M.N.; Chaturvedi, K.; Ganguly, K.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Polymeric micelles: Basic research to clinical practice. Int. J. Pharm. 2017, 532, 249–268. [Google Scholar] [CrossRef]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- Yu, W.; Maynard, E.; Chiaradia, V.; Arno, M.C.; Dove, A.P. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials. Chem. Rev. 2021, 121, 10865–10907. [Google Scholar] [CrossRef]
- Abdel Baki, Z.; Dib, H.; Sahin, T. Overview: Polycarbonates via ring-opening polymerization, differences between six- and five-membered cyclic carbonates: Inspiration for green alternatives. Polymers 2022, 14, 2031. [Google Scholar] [CrossRef]
- Chen, W.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. J. Control Release 2014, 190, 398–414. [Google Scholar] [CrossRef]
- Thomas, A.W.; Dove, A.P. Postpolymerization modifications of alkene-functional polycarbonates for the development of advanced materials biomaterials. Macromol. Biosci. 2006, 16, 1762–1775. [Google Scholar] [CrossRef]
- Kalinova, R.; Yordanov, Y.; Tzankov, B.; Tzankova, V.; Yoncheva, K.; Dimitrov, I. Cinnamyl modified polymer micelles as efficient carriers of caffeic acid phenethyl ester. React. Funct. Polym. 2020, 157, 104763. [Google Scholar] [CrossRef]
- Ray, P.; Confeld, M.; Borowicz, P.; Wang, T.; Mallik, S.; Quadir, M. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf. B 2019, 174, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Domiński, A.; Konieczny, T.; Duale, K.; Krawczyk, M.; Pastuch-Gawołek, G.; Kurcok, P. Stimuli-responsive aliphatic polycarbonate nanocarriers for tumor-targeted drug delivery. Polymers 2020, 12, 2890. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, e527–e545. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin–An updated overview. Pharmaceutics 2021, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Abbasi, P.; Eshaghi, M.M.; Bakhshi, A.; Manicum, A.-L.E.; Rahdar, A.; Pandey, S.; Jadoun, S.; Díez-Pascual, A.M. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J. Drug Deliv. Sci. Technol. 2022, 78, 103982. [Google Scholar] [CrossRef]
- Farhoudi, L.; Kesharwani, P.; Majeed, M.; Johnston, T.P.; Sahebkar, A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int. J. Pharm. 2022, 617, 121622. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Achazi, K.; Schade, B.; Haag, R.; Sharma, S. Nonionic dendritic and carbohydrate based amphiphiles: Self-assembly and transport behavior. Macromol. Biosci. 2018, 18, 1800019. [Google Scholar] [CrossRef]
- Momekova, D.; Ugrinova, I.; Slavkova, M.; Momekov, G.; Grancharov, G.; Gancheva, V.; Petrov, P.D. Superior proapoptotic activity of curcumin-loaded mixed block copolymer micelles with mitochondrial targeting properties. Biomater. Sci. 2018, 6, 3309. [Google Scholar] [CrossRef]
- Babikova, D.; Kalinova, R.; Momekova, D.; Ugrinova, I.; Momekov, G.; Dimitrov, I. Multifunctional polymer nanocarrier for efficient targeted cellular and subcellular anticancer drug delivery. ACS Biomater. Sci. Eng. 2019, 5, 2271–2283. [Google Scholar] [CrossRef]
- Nederberg, F.; Connor, E.; Möller, M.; Glauser, T.; Hedrick, J. New paradigms for organic catalysts: The first organocatalytic living polymerization. Angew. Chem. Int. Ed. 2001, 40, 2712–2715. [Google Scholar] [CrossRef]
- Nederberg, F.; Lohmeijer, B.G.G.; Leibfarth, F.; Pratt, R.C.; Choi, J.; Dove, A.P.; Waymouth, R.M.; Hedrick, J.L. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules 2007, 8, 153–160. [Google Scholar] [CrossRef]
- Hu, D.; Peng, H.; Niu, Y.; Li, Y.; Xia, Y.; Li, L.; He, J.; Liu, X.; Xia, X.; Lu, Y.; et al. Reversibly light-responsive biodegradable poly(carbonate)s micelles constructed via CuAAC reaction. J. Polym. Sci. A Polym. Chem. 2015, 53, 750–760. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.; Hatton, T. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Tang, L.; Yang, X.; Yin, Q.; Cai, K.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J.; et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouelmagd, S.; Sun, B.; Chang, A.; Ku, Y.; Yeo, Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Mol. Pharm. 2015, 12, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, C.-L.; Chou, M.-H.; Lu, P.-L.; Lo, I.; Chiang, Y.-T.; Hung, S.-Y.; Yang, C.-Y.; Lin, S.-Y.; Wey, S.-P.; Lo, J.-M.; et al. The effect of PEG-5K grafting level and particle size on tumor accumulation and cellular uptake. Int. J. Pharm. 2013, 456, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shi, Q.; Chen, X.; Lu, T.; Xie, Z.; Hu, X.; Ma, J.; Jing, X. Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. J. Polym. Sci. Pol. Chem. 2007, 45, 3204–3217. [Google Scholar] [CrossRef]
- Babikova, D.; Kalinova, R.; Zhelezova, I.; Momekova, D.; Konstantinov, S.; Momekov, G.; Dimitrov, I. Functional block copolymer nanocarriers for anticancer drug delivery. RSC Adv. 2016, 6, 84634–84644. [Google Scholar] [CrossRef]
- Tavano, L.; Muzzalupo, R.; Picci, N.; de Cindio, B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloids Surf. B 2014, 114, 144–149. [Google Scholar] [CrossRef]
- Kalinova, R.; Mladenova, K.; Petrova, S.; Doumanov, J.; Dimitrov, I. Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation. Materials 2022, 15, 8917. [Google Scholar] [CrossRef]
- Stouten, J.; Sijstermans, N.; Babilotte, J.; Pich, A.; Moroni, L.; Bernaerts, K. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups. Polym. Chem. 2022, 13, 4832–4847. [Google Scholar] [CrossRef]
Macroinitiator | Amphiphilic Diblock Copolymer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Code | DPn a | Mn a (g mol−1) | Mn b (g mol−1) | ÐM b | Code | t-DPn c | DPn a | Mn a (g mol−1) | Mn b (g mol−1) | ÐM b |
MPEG-5K | 114 | 5000 | 4500 | 1.03 | MPEG-b-PC | 25 | 24 | 9760 | 7350 | 1.24 |
Empty Micelles (MPEG-b-PC) | Curcumin Loaded Micelles (MPEG-b-PC/Curc) | |||||||
---|---|---|---|---|---|---|---|---|
d a (nm) | PdI a | ζ a (mV) | d a (nm) | PdI a | ζ a (mV) | DLE b (wt%) | DLC b (wt%) | IC50 c (μg mL−1) |
43.61 ± 0.42 | 0.245 | −0.44 ± 0.75 | 55.88 ± 2.04 | 0.208 | 1.53 ± 1.64 | 62 | 5.7 | 24.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinova, R.; Grancharov, G.; Doumanov, J.; Mladenova, K.; Petrova, S.; Dimitrov, I. Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System. Int. J. Mol. Sci. 2023, 24, 10588. https://doi.org/10.3390/ijms241310588
Kalinova R, Grancharov G, Doumanov J, Mladenova K, Petrova S, Dimitrov I. Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System. International Journal of Molecular Sciences. 2023; 24(13):10588. https://doi.org/10.3390/ijms241310588
Chicago/Turabian StyleKalinova, Radostina, Georgy Grancharov, Jordan Doumanov, Kirilka Mladenova, Svetla Petrova, and Ivaylo Dimitrov. 2023. "Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System" International Journal of Molecular Sciences 24, no. 13: 10588. https://doi.org/10.3390/ijms241310588
APA StyleKalinova, R., Grancharov, G., Doumanov, J., Mladenova, K., Petrova, S., & Dimitrov, I. (2023). Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System. International Journal of Molecular Sciences, 24(13), 10588. https://doi.org/10.3390/ijms241310588