Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.2. PTX Decreased TNF-α- and TGF-β1-Induced EMT in CaSki
2.3. PTX Inhibited Cell Proliferation
2.4. PTX Decreased the Migration of CaSki Cells
2.5. PTX Decreased the Invasion of CaSki Cells
2.6. PTX Decreased NF-κB Activity
2.7. PTX Decreased SERPINE1 Gene Expression
3. Discussion
4. Materials and Methods
4.1. Culture Cells
4.2. Drugs and Reagents
4.3. Induction of EMT Cells
4.4. Experimental Conditions
4.5. Cell Viability by 7-AAD Staining for Flow Cytometry
4.6. SRB Proliferation Assay
4.7. Western Blot
4.8. In Vitro Migration Assays
- At0 = is the area of the wound measured immediately after scratching (t0 = area at time 0)
- Att = is the area of the wound measured h hours after the scratch is performed.
4.9. Cell Invasion Assay
- ab group T = absorption of the treated group
- ab group UCG = absorption of the untreated group
4.10. ICW Assay
- NSPP: Normalized signal phosphor protein
- NSTP: Normalized signal total protein
4.11. Reverse Transcription-(RTq)-PCR
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Kang, Y. Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev. Cell 2019, 49, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, Y.; Wakabayashi, I.; Kimuro, S.; Takahashi, N.; Takahashi, K.; Kobayashi, M.; Maishi, N.; Podyma-Inoue, K.A.; Hida, K.; Miyazono, K.; et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci. 2020, 111, 2385–2399. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.A.; Beug, H. Epithelial-Mesenchymal Transition: NF-κB Takes Center Stage. Cell Cycle 2004, 3, 1477–1480. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhou, R.; Ma, M.; Jin, C.; Jiao, L.; Zhang, S.; Tian, M.; Zhou, F. Tumor necrosis factor-α coordinates with transforming growth factor-β1 to induce epithelial-mesenchymal transition and migration via the NF-κB/NOX4 pathway in bronchial epithelial cells. Mol. Biol. Rep. 2022, 49, 9325–9333. [Google Scholar] [CrossRef]
- Kamitani, S.; Yamauchi, Y.; Kawasaki, S.; Takami, K.; Takizawa, H.; Nagase, T.; Kohyama, T. Simultaneous Stimulation with TGF-β1 and TNF-α Induces Epithelial Mesenchymal Transition in Bronchial Epithelial Cells. Int. Arch. Allergy Immunol. 2010, 155, 119–128. [Google Scholar] [CrossRef]
- Marcucci, F.; Stassi, G.; De Maria, R. Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nat. Rev. Drug Discov. 2016, 15, 311–325. [Google Scholar] [CrossRef]
- Schütze, S.; Wiegmann, K.; Machleidt, T.; Krönke, M. TNF-induced activation of NF-kappa B. Immunobiology 1995, 193, 193–203. [Google Scholar] [CrossRef]
- González-Ramella, O.; Ortiz-Lazareno, P.C.; Jiménez-López, X.; Gallegos-Castorena, S.; Hernández-Flores, G.; Medina-Barajas, F.; Meza-Arroyo, J.; Jave-Suárez, L.F.; Lerma-Díaz, J.M.; Sánchez-Zubieta, F.; et al. Pentoxifylline during steroid window phase at induction to remission increases apoptosis in childhood with acute lymphoblastic leukemia. Clin. Transl. Oncol. 2016, 18, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Luévano, M.; Rodríguez-Chávez, J.L.; Ramírez-Flores, S.; Rodríguez-Villa, P.; Jiménez-Partida, M.; Cervantes-Rodríguez, G.; Hernández-Flores, G.; Solís-Martínez, R.; Bravo-Cuellar, A. Treatment of hepatocarcinoma with celecoxib and pentoxifylline: A case report. Rev. Med. Inst. Mex. Seguro Soc. 2018, 56, 309–315. [Google Scholar] [PubMed]
- Fernandes, J.L.; de Oliveira RT, D.; Mamoni, R.L.; Coelho, O.R.; Nicolau, J.C.; Blotta MH, S.L.; Serrano, C.V. Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory activity in patients with coronary artery disease—A randomized placebo-controlled study. Atherosclerosis 2008, 196, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Mostafa-Hedeab, G.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Jeandet, P.; Saad, H.M.; Batiha, G.E.-S. A raising dawn of pentoxifylline in management of inflammatory disorders in COVID-19. Inflammopharmacology 2022, 30, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Shin, B.C.; Park, W.S.; Lee, J.; Kuh, H.J. Antifibrotic effects of pentoxifylline improve the efficacy of gemcitabine in human pancreatic tumor xenografts. Cancer Sci. 2017, 108, 2470–2477. [Google Scholar] [CrossRef]
- Doherty, G.; Jensen, J.C.; Alexander, H.R.; Buresh, C.M.; Norton, J. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 1991, 110, 192–198. [Google Scholar]
- Chiao, T.B.; Lee, A.J. Role of Pentoxifylline and Vitamin E in Attenuation of Radiation-Induced Fibrosis. Ann. Pharmacother. 2005, 39, 516–522. [Google Scholar] [CrossRef]
- Muldowney, J.A.S.; Chen, Q.; Blakemore, D.L.; Vaughan, D.E. Pentoxifylline Lowers Plasminogen Activator Inhibitor 1 Levels in Obese Individuals: A Pilot Study. Angiology 2012, 63, 429–434. [Google Scholar] [CrossRef]
- Lin, S.L.; Chen, R.H.; Chen, Y.M.; Chiang, W.C.; Lai, C.F.; Wu, K.D.; Tsai, T.J. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J. Am. Soc. Nephrol. 2005, 16, 2702–2713. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.-Y.; Chen, Y.-M.; Tsai, T.-J.; Lan, X.-R.; Yang, W.-C.; Lan, H.Y. Pentoxifylline Inhibits Transforming Growth Factor-Beta Signaling and Renal Fibrosis in Experimental Crescentic Glomerulonephritis in Rats. Am. J. Nephrol. 2009, 29, 43–53. [Google Scholar] [CrossRef]
- Mirzaei, S.; Saghari, S.; Bassiri, F.; Raesi, R.; Zarrabi, A.; Hushmandi, K.; Sethi, G.; Tergaonkar, V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial–mesenchymal transition. J. Cell Physiol. 2022, 237, 2770–2795. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemnejad-Berenji, M.; Pashapour, S.; Sadeghpour, S. Pentoxifylline: A Drug with Antiviral and Anti-Inflammatory Effects to Be Considered in the Treatment of Coronavirus Disease 2019. Med. Princ. Pract. 2020, 30, 98–100. [Google Scholar] [CrossRef]
- Samlaska, C.P.; Winfield, E.A. Pentoxifylline. J. Am. Acad. Derm. 1994, 30, 603–621. [Google Scholar] [CrossRef]
- Lerma-Díaz, J.M.; Hernández-Flores, G.; Domínguez-Rodríguez, J.R.; Ortíz-Lazareno, P.C.; Gómez-Contreras, P.; Cervantes-Munguía, R.; Scott-Algara, D.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F.; Bravo-Cuellar, A. In vivo and in vitro sensitization of leukemic cells to Adriamycin-induced apoptosis by Pentoxifylline. Involvement of caspase cascades and IkappaBalpha phosphorylation. Immunol. Lett. 2006, 103, 149–158. [Google Scholar] [CrossRef]
- Dua, P.; Gude, R.P. Antiproliferative and Antiproteolytic activity of Pentoxifylline in cultures of B16F10 Melanoma cells. Cancer Chemother. Pharmacol. 2006, 58, 195–202. [Google Scholar] [CrossRef]
- Kamran, M.Z.; Gude, R.P. Preclinical evaluation of the antimetastatic efficacy of Pentoxifylline on A375 human melanoma cell line. Biomed. Pharmacother. 2012, 66, 617–626. [Google Scholar] [CrossRef]
- Goel, P.N.; Gude, R.P. Curbing the focal adhesion kinase and its associated signaling events by pentoxifylline in MDA-MB-231 human breast cancer cells. Eur. J. Pharmacol. 2013, 714, 432–441. [Google Scholar] [CrossRef]
- Goel, P.N.; Gude, R.P. Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Mol. Cell. Biochem. 2011, 358, 141–151. [Google Scholar] [CrossRef]
- Lee, J.-G.; Shim, S.; Kim, M.-J.; Myung, J.K.; Jang, W.-S.; Bae, C.-H.; Lee, S.-J.; Kim, K.M.; Jin, Y.-W.; Lee, S.-S.; et al. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis. BioMed Res. Int. 2017, 2017, 1279280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shindel, A.W.; Lin, G.; Ning, H.; Banie, L.; Huang, Y.C.; Liu, G.; Lin, C.S.; Lue, T.F. Pentoxifylline attenuates transforming growth factor-β1-stimulated collagen deposition and elastogenesis in human tunica albuginea-derived fibroblasts, Part 1: Impact on extracellular matrix. J. Sex. Med. 2010, 7, 2077–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarakoon, R.; Higgins, C.E.; Higgins, S.P.; Higgins, P.J. TGF-beta1-induced expression of the poor prognosis SERPINE1/PAI-1 ggene requires EGFR signaling: A new target for anti-EGFR herapy. J. Oncol. 2009, 2009, 342391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Novoa, J.M.; Nieto, M.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. 2009, 1, 303–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santibáñnez, J.F.; Obradović, H.; Kukolj, T.; Krstić, J. Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev. Dyn. 2018, 247, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palafox-Mariscal, L.A.; Ortiz-Lazareno, P.C.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A.; Villaseñor-García, M.M.; Cruz-Lozano, J.R.; González-Martínez, K.L.; Méndez-Clemente, A.S.; Bravo-Cuellar, A.; Hernández-Flores, G. Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells. Int. J. Mol. Sci. 2023, 24, 10592. https://doi.org/10.3390/ijms241310592
Palafox-Mariscal LA, Ortiz-Lazareno PC, Jave-Suárez LF, Aguilar-Lemarroy A, Villaseñor-García MM, Cruz-Lozano JR, González-Martínez KL, Méndez-Clemente AS, Bravo-Cuellar A, Hernández-Flores G. Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells. International Journal of Molecular Sciences. 2023; 24(13):10592. https://doi.org/10.3390/ijms241310592
Chicago/Turabian StylePalafox-Mariscal, Luis Arturo, Pablo Cesar Ortiz-Lazareno, Luis Felipe Jave-Suárez, Adriana Aguilar-Lemarroy, María Martha Villaseñor-García, José Roberto Cruz-Lozano, Karen Lilith González-Martínez, Aníbal Samael Méndez-Clemente, Alejandro Bravo-Cuellar, and Georgina Hernández-Flores. 2023. "Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells" International Journal of Molecular Sciences 24, no. 13: 10592. https://doi.org/10.3390/ijms241310592
APA StylePalafox-Mariscal, L. A., Ortiz-Lazareno, P. C., Jave-Suárez, L. F., Aguilar-Lemarroy, A., Villaseñor-García, M. M., Cruz-Lozano, J. R., González-Martínez, K. L., Méndez-Clemente, A. S., Bravo-Cuellar, A., & Hernández-Flores, G. (2023). Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells. International Journal of Molecular Sciences, 24(13), 10592. https://doi.org/10.3390/ijms241310592